Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Drug Metab Dispos ; 52(8): 797-812, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38777596

RESUMEN

In vitro clearance assays are routinely conducted in drug discovery to predict in vivo clearance, but low metabolic turnover compounds are often difficult to evaluate. Hepatocyte spheroids can be cultured for days, achieving higher drug turnover, but have been hindered by limitations on cell number per well. Corning Elplasia microcavity 96-well microplates enable the culture of 79 hepatocyte spheroids per well. In this study, microcavity spheroid properties (size, hepatocyte function, longevity, culturing techniques) were assessed and optimized for clearance assays, which were then compared with microsomes, hepatocyte suspensions, two-dimensional-plated hepatocytes, and macrowell spheroids cultured as one per well. Higher enzyme activity coupled with greater hepatocyte concentrations in microcavity spheroids enabled measurable turnover of all 17 test compounds, unlike the other models that exhibited less drug turnover. Microcavity spheroids also predicted intrinsic clearance (CLint) and blood clearance (CLb) within threefold for 53% [9/17; average absolute fold error (AAFE), 3.9] and 82% (14/17; AAFE, 2.6) of compounds using a linear regression correction model, respectively. An alternate method incorporating mechanistic modeling that accounts for mass transport (permeability and diffusion) within spheroids demonstrated improved predictivity for CLint (12/17; AAFE, 4.0) and CLb (14/17; AAFE, 2.1) without the need for empirical scaling factors. The estimated fraction of drug metabolized by cytochrome P450 3A4 (fm,CYP3A4) using 3 µM itraconazole was within 25% of observed values for 6 of 8 compounds, with 5 of 8 compounds within 10%. In sum, spheroid cultures in microcavity plates permit the ability to test and predict clearance as well as fm,CYP3A4 of low metabolic turnover compounds and represent a valuable complement to conventional in vitro clearance assays. SIGNIFICANCE STATEMENT: Culturing multiple spheroids in ultralow attachment microcavities permits accurate quantitation of metabolically stable compounds in substrate depletion assays, overcoming limitations with singly cultured spheroids. In turn, this permits robust estimates of intrinsic clearance, which is improved with the consideration of mass transport within the spheroid. Incubations with 3 µM itraconazole enabled assessments of CYP3A4 involvement in hepatic clearance.


Asunto(s)
Hepatocitos , Tasa de Depuración Metabólica , Esferoides Celulares , Hepatocitos/metabolismo , Humanos , Esferoides Celulares/metabolismo , Microsomas Hepáticos/metabolismo , Preparaciones Farmacéuticas/metabolismo , Modelos Biológicos , Citocromo P-450 CYP3A/metabolismo , Técnicas de Cultivo de Célula/métodos , Células Cultivadas
2.
Proc Natl Acad Sci U S A ; 112(15): 4552-7, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25825775

RESUMEN

Peptide-based agents derived from well-defined scaffolds offer an alternative to antibodies for selective and high-affinity recognition of large and topologically complex protein surfaces. Here, we describe a strategy for designing oligomers containing both α- and ß-amino acid residues ("α/ß-peptides") that mimic several peptides derived from the three-helix bundle "Z-domain" scaffold. We show that α/ß-peptides derived from a Z-domain peptide targeting vascular endothelial growth factor (VEGF) can structurally and functionally mimic the binding surface of the parent peptide while exhibiting significantly decreased susceptibility to proteolysis. The tightest VEGF-binding α/ß-peptide inhibits the VEGF165-induced proliferation of human umbilical vein endothelial cells. We demonstrate the versatility of this strategy by showing how principles underlying VEGF signaling inhibitors can be rapidly extended to produce Z-domain-mimetic α/ß-peptides that bind to two other protein partners, IgG and tumor necrosis factor-α. Because well-established selection techniques can identify high-affinity Z-domain derivatives from large DNA-encoded libraries, our findings should enable the design of biostable α/ß-peptides that bind tightly and specifically to diverse targets of biomedical interest. Such reagents would be useful for diagnostic and therapeutic applications.


Asunto(s)
Péptidos/química , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas/química , Secuencia de Aminoácidos , Sitios de Unión/genética , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Inmunoglobulina G/química , Inmunoglobulina G/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/metabolismo , Péptidos/farmacología , Unión Proteica , Proteínas/metabolismo , Homología de Secuencia de Aminoácido , Factor de Necrosis Tumoral alfa/química , Factor de Necrosis Tumoral alfa/metabolismo , Factor A de Crecimiento Endotelial Vascular/química , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología
3.
J Am Chem Soc ; 137(35): 11365-75, 2015 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-26317395

RESUMEN

Peptides can be developed as effective antagonists of protein-protein interactions, but conventional peptides (i.e., oligomers of l-α-amino acids) suffer from significant limitations in vivo. Short half-lives due to rapid proteolytic degradation and an inability to cross cell membranes often preclude biological applications of peptides. Oligomers that contain both α- and ß-amino acid residues ("α/ß-peptides") manifest decreased susceptibility to proteolytic degradation, and when properly designed these unnatural oligomers can mimic the protein-recognition properties of analogous "α-peptides". This report documents an extension of the α/ß-peptide approach to target intracellular protein-protein interactions. Specifically, we have generated α/ß-peptides based on a "stapled" Bim BH3 α-peptide, which contains a hydrocarbon cross-link to enhance α-helix stability. We show that a stapled α/ß-peptide can structurally and functionally mimic the parent stapled α-peptide in its ability to enter certain types of cells and block protein-protein interactions associated with apoptotic signaling. However, the α/ß-peptide is nearly 100-fold more resistant to proteolysis than is the parent stapled α-peptide. These results show that backbone modification, a strategy that has received relatively little attention in terms of peptide engineering for biomedical applications, can be combined with more commonly deployed peripheral modifications such as side chain cross-linking to produce synergistic benefits.


Asunto(s)
Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/farmacología , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Pliegue de Proteína , Secuencia de Aminoácidos , Animales , Proteínas Reguladoras de la Apoptosis/química , Proteína 11 Similar a Bcl2 , Permeabilidad de la Membrana Celular , Supervivencia Celular/efectos de los fármacos , Péptidos de Penetración Celular/metabolismo , Citocromos c/metabolismo , Células HCT116 , Humanos , Proteínas de la Membrana/química , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Péptido Hidrolasas/metabolismo , Unión Proteica/efectos de los fármacos , Estabilidad Proteica , Estructura Terciaria de Proteína , Proteolisis , Proteínas Proto-Oncogénicas/química
4.
Biomacromolecules ; 15(6): 2038-48, 2014 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-24773176

RESUMEN

Vascular endothelial growth factor (VEGF) activity is highly regulated via sequestering within the ECM and cell-demanded proteolysis to release the sequestered VEGF. Numerous studies have demonstrated that VEGF activity mediates cellular events leading to angiogenesis and capillary formation in vivo. This has motivated the study of biomaterials to sustain VEGF release, and in many cases, the materials are inspired by the structure and function of the native ECM. However, there remains a need for materials that can bind to VEGF with high specificity, as the in vivo environment is rich in a variety of growth factors (GFs) and GF-binding moieties. Here we describe a strategy to control VEGF release using hydrogel microspheres with tethered peptides derived from VEGF receptor 2 (VEGFR2). Using biomaterials covalently modified with varying concentrations of two distinct VEGFR2-derived peptides with varying serum stability, we analyzed both biomaterial and environmental variables that influence VEGF release and activity. The presence of tethered VEGF-binding peptides (VBPs) resulted in significantly extended VEGF release relative to control conditions, and the resulting released VEGF significantly increased the expansion of human umbilical vein endothelial cells in culture. VEGF release rates were also strongly influenced by the concentration of serum. The presence of Feline McDonough Sarcoma-like tyrosine kinase 1 (sFlt-1), a serum-borne receptor fragment derived from VEGF receptor 1, increased VEGF release rates, although sFlt-1 was not sufficient to recapitulate the release profile of VEGF in serum. Further, the influence of serum on VEGF release was not due to protease activity or nonspecific VEGF interactions in the presence of serum-borne heparin. VEGF release kinetics correlated well with a generalizable mathematical model describing affinity-mediated release of VEGF from hydrogel microspheres in defined conditions. Modeling results suggest a potential mechanism whereby competition between VEGF and multiple VEGF-binding serum proteins including sFlt-1, soluble kinase insert domain receptor (sKDR), and α2-macroglobulin (α2-M) likely influenced VEGF release from microspheres. The materials and mathematical model described in this approach may be useful in a range of applications in which sustained, biologically active GF release of a specific GF is desirable.


Asunto(s)
Materiales Biomiméticos/metabolismo , Microesferas , Suero/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Secuencia de Aminoácidos , Animales , Bovinos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Datos de Secuencia Molecular , Unión Proteica/fisiología , Factor A de Crecimiento Endotelial Vascular/genética
5.
J Biomed Mater Res A ; 112(9): 1578-1593, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38530161

RESUMEN

The ability to locally deliver bioactive molecules to distinct regions of the skeleton may provide a novel means by which to improve fracture healing, treat neoplasms or infections, or modulate growth. In this study, we constructed single-sided mineral-coated poly-ε-caprolactone membranes capable of binding and releasing transforming growth factor beta 1 (TGF-ß1) and human growth hormone (hGH). After demonstrating biological activity in vitro and characterization of their release, these thin bioabsorbable membranes were surgically implanted using an immature rabbit model. Membranes were circumferentially wrapped under the periosteum, thus placed in direct contact with the proximal metaphysis to assess its bioactivity in vivo. The direct effects on the metaphyseal bone, bone marrow, and overlying periosteum were assessed using radiography and histology. Effects of membrane placement at the tibial growth plate were assessed via physeal heights, tibial growth rates (pulsed fluorochrome labeling), and tibial lengths. Subperiosteal placement of the mineralized membranes induced greater local chondrogenesis in the plain mineral and TGF-ß1 samples than the hGH. More exuberant and circumferential ossification was seen in the TGF-ß1 treated tibiae. The TGF-ß1 membranes also induced hypocellularity of the bone marrow with characteristics of gelatinous degeneration not seen in the other groups. While the proximal tibial growth plates were taller in the hGH treated than TGF-ß1, no differences in growth rates or overall tibial lengths were found. In conclusion, these data demonstrate the feasibility of using bioabsorbable mineral coated membranes to deliver biologically active compounds subperiosteally in a sustained fashion to affect cells at the insertion site, bone marrow, and even growth plate.


Asunto(s)
Hormona de Crecimiento Humana , Periostio , Poliésteres , Factor de Crecimiento Transformador beta1 , Animales , Hormona de Crecimiento Humana/administración & dosificación , Hormona de Crecimiento Humana/farmacología , Poliésteres/química , Humanos , Conejos , Factor de Crecimiento Transformador beta1/farmacología , Periostio/efectos de los fármacos , Membranas Artificiales , Tibia/efectos de los fármacos
6.
ALTEX ; 39(2): 273­296, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34766620

RESUMEN

Oligonucleotide therapeutics (ONTs) encompass classes of medicines that selectively target and potentially ameliorate previously untreatable and often rare diseases. Several unique classes of ONTs provide versatility, enabling direct modu­lation of gene expression by virtue of Watson-Crick base pairing or modulation of cell signaling through structural mimicry or interference with protein-receptor interactions. Due to a lack of suitable in vitro models capable of recapitulating or predicting in vivo effects of ONTs, their discovery and optimization has relied heavily on animal studies for predicting efficacy and safety in humans. Since ONTs often lack cross-species activity, animal models with genetic humanization and/or species-specific surrogate ONTs are often required. Human microphysiological systems (MPS) offer an oppor­tunity to reduce the use of animals and may enable evaluation of drug mechanisms, optimization of cell and tissue targeting ligands or delivery vehicles, and characterization of pharmacokinetics (PK), pharmacodynamics (PD), and safety of candidate ONTs. The lack of published examples for MPS applications with ONT demonstrates the need for a focused effort to characterize and build confidence in their utility. The goals of this review are to summarize the current landscape of ONTs and highlight potential opportunities and challenges for application of MPS during ONT discovery and development. In addition, this review aims to raise awareness with ONT drug developers and regulatory authorities on the potential impact of MPS with respect to characterizing pharmacology, ADME, and toxicity and to educate MPS platform developers on unique design attributes needed to fully appreciate MPS advantages in ONT development.


Asunto(s)
Oligonucleótidos , Animales , Oligonucleótidos/uso terapéutico , Preparaciones Farmacéuticas
7.
Biomater Sci ; 9(3): 645-652, 2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33289741

RESUMEN

Prolonged and elevated transforming growth factor-ß1 (TGF-ß1) signaling can lead to undesired scar formation during tissue repair and fibrosis that is often a result of chronic inflammation in the lung, kidney, liver, heart, skin, and joints. We report new TGF-ß1 binding peptides that interfere with TGF-ß1 binding to its cognate receptors and thus attenuate its biological activity. We identified TGF-ß1 binding peptides from the TGF-ß1 binding domains of TGF-ß receptors and engineered their sequences to facilitate chemical conjugation to biomaterials using molecular docking simulations. The in vitro binding studies and cell-based assays showed that RIPΔ, which was derived from TGF-ß type I receptor, bound TGF-ß1 in a sequence-specific manner and reduced the biological activity of TGF-ß1 when the peptide was presented either in soluble form or conjugated to a commonly used synthetic biomaterial. This approach may have implications for clinical applications such as treatment of various fibrotic diseases and soft tissue repair and offer a design strategy for peptide antibodies based on the biomimicry of ligand-receptor interactions.


Asunto(s)
Receptores de Factores de Crecimiento Transformadores beta , Factor de Crecimiento Transformador beta1 , Simulación del Acoplamiento Molecular , Péptidos , Transducción de Señal
8.
Toxicol Sci ; 181(2): 160-174, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33749749

RESUMEN

Chemotherapy-induced peripheral neuropathy (CIPN) is a common and debilitating adverse event that can alter patient treatment options and halt candidate drug development. A case study is presented here describing the preclinical and clinical development of CC-90003, a small molecule extracellular signal-regulated kinase (ERK)1/2 inhibitor investigated as an oncology therapy. In a Phase Ia clinical trial, CC-90003 elicited adverse drug-related neuropathy and neurotoxicity that contributed to discontinued development of CC-90003 for oncology therapy. Preclinical evaluation of CC-90003 in dogs revealed clinical signs and electrophysiological changes consistent with peripheral neuropathy that was reversible. Mice did not exhibit signs of neuropathy upon daily dosing with CC-90003, supporting that rodents generally poorly predict CIPN. We sought to investigate the mechanism of CC-90003-induced peripheral neuropathy using a phenotypic in vitro assay. Translating preclinical neuropathy findings to humans proves challenging as no robust in vitro models of CIPN exist. An approach was taken to examine the influence of CIPN-associated drugs on human-induced pluripotent stem cell-derived peripheral neuron (hiPSC-PN) electrophysiology on multielectrode arrays (MEAs). The MEA assay with hiPSC-PNs was sensitive to CIPN-associated drugs cisplatin, sunitinib, colchicine, and importantly, to CC-90003 in concordance with clinical neuropathy incidence. Biochemical data together with in vitro MEA data for CC-90003 and 12 of its structural analogs, all having similar ERK inhibitory activity, revealed that CC-90003 disrupted in vitro neuronal electrophysiology likely via on-target ERK inhibition combined with off-target kinase inhibition and translocator protein inhibition. This approach could prove useful for assessing CIPN risk and interrogating mechanisms of drug-induced neuropathy.


Asunto(s)
Antineoplásicos , Síndromes de Neurotoxicidad , Enfermedades del Sistema Nervioso Periférico , Animales , Antineoplásicos/toxicidad , Cisplatino , Perros , Humanos , Ratones , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Inhibidores de Proteínas Quinasas/toxicidad
9.
Sci Rep ; 10(1): 2864, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32071327

RESUMEN

Exposure to thalidomide during a critical window of development results in limb defects in humans and non-human primates while mice and rats are refractory to these effects. Thalidomide-induced teratogenicity is dependent on its binding to cereblon (CRBN), the substrate receptor of the Cul4A-DDB1-CRBN-RBX1 E3 ubiquitin ligase complex. Thalidomide binding to CRBN elicits subsequent ubiquitination and proteasomal degradation of CRBN neosubstrates including SALL4, a transcription factor of which polymorphisms phenocopy thalidomide-induced limb defects in humans. Herein, thalidomide-induced degradation of SALL4 was examined in human induced pluripotent stem cells (hiPSCs) that were differentiated either to lateral plate mesoderm (LPM)-like cells, the developmental ontology of the limb bud, or definitive endoderm. Thalidomide and its immunomodulatory drug (IMiD) analogs, lenalidomide, and pomalidomide, dose-dependently inhibited hiPSC mesendoderm differentiation. Thalidomide- and IMiD-induced SALL4 degradation can be abrogated by CRBN V388I mutation or SALL4 G416A mutation in hiPSCs. Genetically modified hiPSCs expressing CRBN E377V/V388I mutant or SALL4 G416A mutant were insensitive to the inhibitory effects of thalidomide, lenalidomide, and pomalidomide on LPM differentiation while retaining sensitivity to another known limb teratogen, all-trans retinoic acid (atRA). Finally, disruption of LPM differentiation by atRA or thalidomide perturbed subsequent chondrogenic differentiation in vitro. The data here show that thalidomide, lenalidomide, and pomalidomide affect stem cell mesendoderm differentiation through CRBN-mediated degradation of SALL4 and highlight the utility of the LPM differentiation model for studying the teratogenicity of new CRBN modulating agents.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Deformidades Congénitas de las Extremidades/genética , Talidomida/farmacología , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Proteínas Portadoras/genética , Proteínas Cullin/genética , Proteínas de Unión al ADN/genética , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Lenalidomida/farmacología , Deformidades Congénitas de las Extremidades/inducido químicamente , Deformidades Congénitas de las Extremidades/patología , Ratones , Complejos Multiproteicos/efectos de los fármacos , Complejos Multiproteicos/genética , Mutación/genética , Proteolisis/efectos de los fármacos , Ratas , Talidomida/efectos adversos
10.
Toxicol In Vitro ; 68: 104928, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32622998

RESUMEN

Drug-induced gastrointestinal toxicity (GIT) is a common treatment-emergent adverse event that can negatively impact dosing, thereby limiting efficacy and treatment options for patients. An in vitro assay of GIT is needed to address patient variability, mimic the microphysiology of the gut, and accurately predict drug-induced GIT. Primary human ileal organoids (termed 'enteroids') have proven useful for stimulating intestinal stem cell proliferation and differentiation to multiple cell types present in the gut epithelium. Enteroids have enabled characterization of gut biology and the signaling involved in the pathogenesis of disease. Here, enteroids were differentiated from four healthy human donors and assessed for culture duration-dependent differentiation status by immunostaining for gut epithelial markers lysozyme, chromogranin A, mucin, and sucrase isomaltase. Differentiated enteroids were evaluated with a reference set of 31 drugs exhibiting varying degrees of clinical incidence of diarrhea, a common manifestation of GIT that can be caused by drug-induced thinning of the gut epithelium. An assay examining enteroid viability in response to drug treatment demonstrated 90% accuracy for recapitulating the incidence of drug-induced diarrhea. The human enteroid viability assay developed here presents a promising in vitro model for evaluating drug-induced diarrhea.


Asunto(s)
Diarrea/inducido químicamente , Íleon , Modelos Biológicos , Organoides , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Preparaciones Farmacéuticas
11.
Birth Defects Res ; 112(1): 19-39, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31471948

RESUMEN

Cleft palate has been linked to both genetic and environmental factors that perturb key events during palatal morphogenesis. As a developmental outcome, it presents a challenging, mechanistically complex endpoint for predictive modeling. A data set of 500 chemicals evaluated for their ability to induce cleft palate in animal prenatal developmental studies was compiled from Toxicity Reference Database and the biomedical literature, which included 63 cleft palate active and 437 inactive chemicals. To characterize the potential molecular targets for chemical-induced cleft palate, we mined the ToxCast high-throughput screening database for patterns and linkages in bioactivity profiles and chemical structural descriptors. ToxCast assay results were filtered for cytotoxicity and grouped by target gene activity to produce a "gene score." Following unsuccessful attempts to derive a global prediction model using structural and gene score descriptors, hierarchical clustering was applied to the set of 63 cleft palate positives to extract local structure-bioactivity clusters for follow-up study. Patterns of enrichment were confirmed on the complete data set, that is, including cleft palate inactives, and putative molecular initiating events identified. The clusters corresponded to ToxCast assays for cytochrome P450s, G-protein coupled receptors, retinoic acid receptors, the glucocorticoid receptor, and tyrosine kinases/phosphatases. These patterns and linkages were organized into preliminary decision trees and the resulting inferences were mapped to a putative adverse outcome pathway framework for cleft palate supported by literature evidence of current mechanistic understanding. This general data-driven approach offers a promising avenue for mining chemical-bioassay drivers of complex developmental endpoints where data are often limited.


Asunto(s)
Fisura del Paladar/etiología , Bibliotecas de Moléculas Pequeñas/análisis , Pruebas de Toxicidad/métodos , Análisis por Conglomerados , Bases de Datos Factuales , Femenino , Estudios de Seguimiento , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Medición de Riesgo
12.
Toxicol Sci ; 166(2): 394-408, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30496568

RESUMEN

Embryologic development involves cell differentiation and organization events that are unique to each tissue and organ and are susceptible to developmental toxicants. Animal models are the gold standard for identifying putative teratogens, but the limited throughput of developmental toxicological studies in animals coupled with the limited concordance between animal and human teratogenicity motivates a different approach. In vitro organoid models can mimic the three-dimensional (3D) morphogenesis of developing tissues and can thus be useful tools for studying developmental toxicology. Common themes during development like the involvement of epithelial-mesenchymal transition and tissue fusion present an opportunity to develop in vitro organoid models that capture key morphogenesis events that occur in the embryo. We previously described organoids composed of human stem and progenitor cells that recapitulated the cellular features of palate fusion, and here we further characterized the model by examining pharmacological inhibitors targeting known palatogenesis and epithelial morphogenesis pathways as well as 12 cleft palate teratogens identified from rodent models. Organoid survival was dependent on signaling through EGF, IGF, HGF, and FGF pathways, and organoid fusion was disrupted by inhibition of BMP signaling. We observed concordance between the effects of EGF, FGF, and BMP inhibitors on organoid fusion and epithelial cell migration in vitro, suggesting that organoid fusion is dependent on epithelial morphogenesis. Three of the 12 putative cleft palate teratogens studied here (theophylline, triamcinolone, and valproic acid) significantly disrupted in vitro organoid fusion, while tributyltin chloride and all-trans retinoic acid were cytotoxic to fusing organoids. The study herein demonstrates the utility of the in vitro fusion assay for identifying chemicals that disrupt human organoid morphogenesis in a scalable format amenable to toxicology screening.


Asunto(s)
Morfogénesis/efectos de los fármacos , Técnicas de Cultivo de Órganos/métodos , Organoides/efectos de los fármacos , Hueso Paladar/efectos de los fármacos , Hueso Paladar/embriología , Teratógenos/farmacología , Aminopiridinas/farmacología , Anilidas/farmacología , Benzazepinas/farmacología , Bencimidazoles/farmacología , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Epidérmicas/efectos de los fármacos , Compuestos Heterocíclicos con 3 Anillos/farmacología , Humanos , Indoles/farmacología , Queratina-17/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Organoides/metabolismo , Fenoles/farmacología , Pirazoles/farmacología , Piridinas/farmacología , Piridonas/farmacología , Esferoides Celulares , Estaurosporina/farmacología , Células Madre/efectos de los fármacos , Sulfonas/farmacología , Vimentina/metabolismo
13.
Birth Defects Res ; 110(17): 1322-1334, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30347137

RESUMEN

BACKGROUND: Cleft palate (CP) is a common birth defect, occurring in an estimated 1 in 1,000 births worldwide. The secondary palate is formed by paired palatal shelves, consisting of a mesenchymal core with an outer layer of epithelial cells that grow toward each other, attach, and fuse. One of the mechanisms that can cause CP is failure of fusion, that is, failure to remove the epithelial seam between the palatal shelves to allow the mesenchyme confluence. Epidermal growth factor (EGF) plays an important role in palate growth and differentiation, while it may impede fusion. METHODS: We developed a 3D organotypic model using human mesenchymal and epithelial stem cells to mimic human embryonic palatal shelves, and tested the effects of human EGF (hEGF) on proliferation and fusion. Spheroids were generated from human umbilical-derived mesenchymal stem cells (hMSCs) directed down an osteogenic lineage. Heterotypic spheroids, or organoids, were constructed by coating hMSC spheroids with extracellular matrix solution followed by a layer of human progenitor epithelial keratinocytes (hPEKs). Organoids were incubated in co-culture medium with or without hEGF and assessed for cell proliferation and time to fusion. RESULTS: Osteogenic differentiation in hMSC spheroids was highest by Day 13. hEGF delayed fusion of organoids after 12 and 18 hr of contact. hEGF increased proliferation in organoids at 4 ng/ml, and proliferation was detected in hPEKs alone. CONCLUSION: Our results show that this model of human palatal fusion appropriately mimics the morphology of the developing human palate and responds to hEGF as expected.


Asunto(s)
Desarrollo Óseo/fisiología , Fisura del Paladar/embriología , Factor de Crecimiento Epidérmico/metabolismo , Células Epiteliales/citología , Células Madre Mesenquimatosas/citología , Hueso Paladar/embriología , Proliferación Celular/fisiología , Células Cultivadas , Humanos , Osteogénesis/fisiología , Esferoides Celulares/citología , Venas Umbilicales/citología
14.
Toxicology ; 382: 93-107, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28285100

RESUMEN

Crosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue homeostasis. Epithelial-stromal interactions (ESIs) have historically been examined using mammalian models and ex vivo tissue recombination. Although these approaches have elucidated signaling mechanisms underlying embryonic morphogenesis processes and adult mammalian epithelial tissue function, they are limited by the availability of tissue, low throughput, and human developmental or physiological relevance. In this review, we describe how bioengineered ESIs, using either human stem cells or co-cultures of human primary epithelial and stromal cells, have enabled the development of human in vitro epithelial tissue models that recapitulate the architecture, phenotype, and function of adult human epithelial tissues. We discuss how the strategies used to engineer mature epithelial tissue models in vitro could be extrapolated to instruct the design of organotypic culture models that can recapitulate the structure of embryonic ectodermal tissues and enable the in vitro assessment of events critical to organ/tissue morphogenesis. Given the importance of ESIs towards normal epithelial tissue development and function, such models present a unique opportunity for toxicological screening assays to incorporate ESIs to assess the impact of chemicals on mature and developing epidermal tissues.


Asunto(s)
Células Epiteliales , Células del Estroma , Animales , Bioingeniería , Técnicas de Cocultivo , Humanos , Pruebas de Toxicidad
15.
PLoS One ; 12(9): e0184155, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28898253

RESUMEN

Epithelial-mesenchymal interactions drive embryonic fusion events during development, and perturbations of these interactions can result in birth defects. Cleft palate and neural tube defects can result from genetic defects or environmental exposures during development, yet very little is known about the effect of chemical exposures on fusion events during human development because of a lack of relevant and robust human in vitro assays of developmental fusion behavior. Given the etiology and prevalence of cleft palate and the relatively simple architecture and composition of the embryonic palate, we sought to develop a three-dimensional culture system that mimics the embryonic palate and could be used to study fusion behavior in vitro using human cells. We engineered size-controlled human Wharton's Jelly stromal cell (HWJSC) spheroids and established that 7 days of culture in osteogenesis differentiation medium was sufficient to promote an osteogenic phenotype consistent with embryonic palatal mesenchyme. HWJSC spheroids supported the attachment of human epidermal keratinocyte progenitor cells (HPEKp) on the outer spheroid surface likely through deposition of collagens I and IV, fibronectin, and laminin by mesenchymal spheroids. HWJSC spheroids coated in HPEKp cells exhibited fusion behavior in culture, as indicated by the removal of epithelial cells from the seams between spheroids, that was dependent on epidermal growth factor signaling and fibroblast growth factor signaling in agreement with palate fusion literature. The method described here may broadly apply to the generation of three-dimensional epithelial-mesenchymal co-cultures to study developmental fusion events in a format that is amenable to predictive toxicology applications.


Asunto(s)
Bioingeniería , Técnicas de Cultivo de Órganos , Hueso Paladar/embriología , Esferoides Celulares , Fosfatasa Alcalina/metabolismo , Bioingeniería/métodos , Diferenciación Celular/genética , Análisis por Conglomerados , Biología Computacional/métodos , Proteínas de la Matriz Extracelular , Perfilación de la Expresión Génica , Ontología de Genes , Humanos , Técnicas In Vitro , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/genética , Hueso Paladar/metabolismo , Factores de Tiempo , Transcriptoma
16.
Artículo en Inglés | MEDLINE | ID: mdl-29104816

RESUMEN

The physiological relevance of Matrigel as a cell-culture substrate and in angiogenesis assays is often called into question. Here, we describe an array-based method for the identification of synthetic hydrogels that promote the formation of robust in vitro vascular networks for the detection of putative vascular disruptors, and that support human embryonic stem cell expansion and pluripotency. We identified hydrogel substrates that promoted endothelial-network formation by primary human umbilical vein endothelial cells and by endothelial cells derived from human induced pluripotent stem cells, and used the hydrogels with endothelial networks to identify angiogenesis inhibitors. The synthetic hydrogels show superior sensitivity and reproducibility over Matrigel when evaluating known inhibitors, as well as in a blinded screen of a subset of 38 chemicals, selected according to predicted vascular disruption potential, from the Toxicity ForeCaster library of the US Environmental Protection Agency. The identified synthetic hydrogels should be suitable alternatives to Matrigel for common cell-culture applications.

17.
Biomater Sci ; 4(5): 819-25, 2016 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-27010034

RESUMEN

Platelets contain an abundance of growth factors that mimic the composition of the wound healing milieu, and platelet-derived VEGF in particular can negatively influence wound healing if unregulated. Here, we sought to capture and regulate the activity of VEGF factor from human platelets using poly(ethylene glycol) microspheres. In this communication, we demonstrate that platelet freeze/thaw produced significantly higher levels of Vascular Endothelial Growth Factor (VEGF) than either calcium chloride treatment, protease activated receptor 1 activating peptide (PAR1AP) treatment, or thrombin treatment. PEG microspheres containing a VEGF-binding peptide (VBP), derived from VEGFR2, sequestered VEGF from platelet concentrate, prepared via freeze/thaw, and reduced the bioactivity of platelet concentrate in HUVEC culture, which suggests that VBP microspheres sequestered and reduced the activity of VEGF from patient-derived platelets. Here, we demonstrate the ability of VEGF sequestering microspheres to regulate the activity of VEGF derived from a growth factor-rich autologous human blood product.


Asunto(s)
Plaquetas/metabolismo , Activación Plaquetaria , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/química , Becaplermina , Plaquetas/química , Células Cultivadas , Congelación , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Microesferas , Péptidos/química , Polietilenglicoles/química , Unión Proteica , Proteínas Proto-Oncogénicas c-sis/química , Trombina/química , Factor de Crecimiento Transformador beta1/química , Receptor 2 de Factores de Crecimiento Endotelial Vascular/química
18.
Acta Biomater ; 39: 12-24, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27181878

RESUMEN

UNLABELLED: Activation of vascular endothelial cells (ECs) by growth factors initiates a cascade of events during angiogenesis in vivo consisting of EC tip cell selection, sprout formation, EC stalk cell proliferation, and ultimately vascular stabilization by support cells. Although EC functional assays can recapitulate one or more aspects of angiogenesis in vitro, they are often limited by undefined substrates and lack of dependence on key angiogenic signaling axes. Here, we designed and characterized a chemically-defined model of endothelial sprouting behavior in vitro using human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs). We rapidly encapsulated iPSC-ECs at high density in poly(ethylene glycol) (PEG) hydrogel spheres using thiol-ene chemistry and subsequently encapsulated cell-dense hydrogel spheres in a cell-free hydrogel layer. The hydrogel sprouting array supported pro-angiogenic phenotype of iPSC-ECs and supported growth factor-dependent proliferation and sprouting behavior. iPSC-ECs in the sprouting model responded appropriately to several reference pharmacological angiogenesis inhibitors of vascular endothelial growth factor, NF-κB, matrix metalloproteinase-2/9, protein kinase activity, and ß-tubulin, which confirms their functional role in endothelial sprouting. A blinded screen of 38 putative vascular disrupting compounds from the US Environmental Protection Agency's ToxCast library identified six compounds that inhibited iPSC-EC sprouting and five compounds that were overtly cytotoxic to iPSC-ECs at a single concentration. The chemically-defined iPSC-EC sprouting model (iSM) is thus amenable to enhanced-throughput screening of small molecular libraries for effects on angiogenic sprouting and iPSC-EC toxicity assessment. STATEMENT OF SIGNIFICANCE: Angiogenesis assays that are commonly used for drug screening and toxicity assessment applications typically utilize natural substrates like Matrigel(TM) that are difficult to spatially pattern, costly, ill-defined, and may exhibit lot-to-lot variability. Herein, we describe a novel angiogenic sprouting assay using chemically-defined, bioinert poly(ethylene glycol) hydrogels functionalized with biomimetic peptides to promote cell attachment and degradation in a reproducible format that may mitigate the need for natural substrates. The quantitative assay of angiogenic sprouting here enables precise control over the initial conditions and can be formulated into arrays for screening. The sprouting assay here was dependent on key angiogenic signaling axes in a screen of angiogenesis inhibitors and a blinded screen of putative vascular disrupting compounds from the US-EPA.


Asunto(s)
Diferenciación Celular , Células Endoteliales/metabolismo , Hidrogeles/química , Células Madre Pluripotentes Inducidas/metabolismo , Polietilenglicoles/química , Células Endoteliales/citología , Humanos , Hidrogeles/síntesis química , Células Madre Pluripotentes Inducidas/citología
19.
Biomaterials ; 93: 27-37, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27061268

RESUMEN

Vascular endothelial growth factor (VEGF) spatial and temporal activity must be tightly controlled during angiogenesis to form perfusable vasculature in a healing wound. The native extracellular matrix (ECM) regulates growth factor activity locally via sequestering, and researchers have used ECM-mimicking approaches to regulate the activity of VEGF in cell culture and in vivo. However, the impact of dynamic, affinity-mediated growth factor sequestering has not been explored in detail with biomaterials. Here, we sought to modulate VEGF activity dynamically over time using poly(ethylene glycol) microspheres containing VEGF-binding peptides (VBPs) and exhibiting varying degradation rates. The degradation rate of VBP microspheres conferred a differential ability to up- or down-regulate VEGF activity in culture with primary human endothelial cells. VBP microspheres with fast-degrading crosslinks reduced VEGF activity and signaling, while VBP microspheres with no inherent degradability sequestered and promoted VEGF activity in culture with endothelial cells. VBP microspheres with degradable crosslinks significantly reduced neovascularization in vivo, but neither non-degradable VBP microspheres nor bolus delivery of soluble VBP reduced neovascularization. The covalent incorporation of VBP to degradable microspheres was required to reduce neovascularization in a mouse model of choroidal neovascularization in vivo, which demonstrates a potential clinical application of degradable VBP microspheres to reduce pathological angiogenesis. The results herein highlight the ability to modulate the activity of a sequestered growth factor by changing the crosslinker identity within PEG hydrogel microspheres. The insights gained here may instruct the design and translation of affinity-based growth factor sequestering biomaterials for regenerative medicine applications.


Asunto(s)
Microesferas , Neovascularización Fisiológica , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Neovascularización Coroidal/patología , Reactivos de Enlaces Cruzados/química , Modelos Animales de Enfermedad , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacología , Células Madre Pluripotentes Inducidas/citología , Ratones Endogámicos C57BL , Neovascularización Fisiológica/efectos de los fármacos , Péptidos/metabolismo , Polietilenglicoles/química , Transducción de Señal
20.
Stem Cell Rev Rep ; 11(3): 511-25, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25190668

RESUMEN

Here we describe a strategy to model blood vessel development using a well-defined induced pluripotent stem cell-derived endothelial cell type (iPSC-EC) cultured within engineered platforms that mimic the 3D microenvironment. The iPSC-ECs used here were first characterized by expression of endothelial markers and functional properties that included VEGF responsiveness, TNF-α-induced upregulation of cell adhesion molecules (MCAM/CD146; ICAM1/CD54), thrombin-dependent barrier function, shear stress-induced alignment, and 2D and 3D capillary-like network formation in Matrigel. The iPSC-ECs also formed 3D vascular networks in a variety of engineering contexts, yielded perfusable, interconnected lumen when co-cultured with primary human fibroblasts, and aligned with flow in microfluidics devices. iPSC-EC function during tubule network formation, barrier formation, and sprouting was consistent with that of primary ECs, and the results suggest a VEGF-independent mechanism for sprouting, which is relevant to therapeutic anti-angiogenesis strategies. Our combined results demonstrate the feasibility of using a well-defined, stable source of iPSC-ECs to model blood vessel formation within a variety of contexts using standard in vitro formats.


Asunto(s)
Vasos Sanguíneos/crecimiento & desarrollo , Diferenciación Celular/genética , Células Madre Pluripotentes Inducidas , Neovascularización Fisiológica/genética , Vasos Sanguíneos/metabolismo , Células Endoteliales/citología , Células Endoteliales/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Factor de Necrosis Tumoral alfa/biosíntesis , Factor A de Crecimiento Endotelial Vascular/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA