Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
2.
PLoS Pathog ; 10(9): e1004343, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25211330

RESUMEN

Hepatitis B virus infection (HBV) is a major risk factor for the development of hepatocellular carcinoma. HBV replicates from a covalently closed circular DNA (cccDNA) that remains as an episome within the nucleus of infected cells and serves as a template for the transcription of HBV RNAs. The regulatory protein HBx has been shown to be essential for cccDNA transcription in the context of infection. Here we identified Spindlin1, a cellular Tudor-domain protein, as an HBx interacting partner. We further demonstrated that Spindlin1 is recruited to the cccDNA and inhibits its transcription in the context of infection. Spindlin1 knockdown induced an increase in HBV transcription and in histone H4K4 trimethylation at the cccDNA, suggesting that Spindlin1 impacts on epigenetic regulation. Spindlin1-induced transcriptional inhibition was greater for the HBV virus deficient for the expression of HBx than for the HBV WT virus, suggesting that HBx counteracts Spindlin1 repression. Importantly, we showed that the repressive role of Spindlin1 is not limited to HBV transcription but also extends to other DNA virus that replicate within the nucleus such as Herpes Simplex Virus type 1 (HSV-1). Taken together our results identify Spindlin1 as a critical component of the intrinsic antiviral defense and shed new light on the function of HBx in HBV infection.


Asunto(s)
Antivirales/metabolismo , Carcinoma Hepatocelular/inmunología , Proteínas de Ciclo Celular/metabolismo , Virus de la Hepatitis B/fisiología , Hepatitis B/inmunología , Herpes Simple/inmunología , Herpesvirus Humano 1/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Fosfoproteínas/metabolismo , Northern Blotting , Western Blotting , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/virología , Proteínas de Ciclo Celular/genética , Células Cultivadas , ADN Viral/genética , Hepatitis B/metabolismo , Hepatitis B/virología , Herpes Simple/metabolismo , Herpes Simple/virología , Humanos , Inmunoprecipitación , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/virología , Proteínas Asociadas a Microtúbulos/genética , Fosfoproteínas/genética , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Replicación Viral
3.
J Virol ; 87(8): 4360-71, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23388725

RESUMEN

The hepatitis B virus X protein (HBx) is essential for virus replication and has been implicated in the development of liver cancer. HBx is recruited to viral and cellular promoters and activates transcription by interacting with transcription factors and coactivators. Here, we purified HBx-associated factors in nuclear extracts from HepG2 hepatoma cells and identified protein arginine methyltransferase 1 (PRMT1) as a novel HBx-interacting protein. We showed that PRMT1 overexpression reduced the transcription of hepatitis B virus (HBV), and this inhibition was dependent on the methyltransferase function of PRMT1. Conversely, depletion of PRMT1 correlated with increased HBV transcription. Using a quantitative chromatin immunoprecipitation assay, we found that PRMT1 is recruited to HBV DNA, suggesting a direct effect of PRMT1 on the regulation of HBV transcription. Finally, we showed that HBx expression inhibited PRMT1-mediated protein methylation. Downregulation of PRMT1 activity was further observed in HBV-replicating cells in an in vivo animal model. Altogether, our results support the notion that the binding of HBx to PRMT1 might benefit viral replication by relieving the inhibitory activity of PRMT1 on HBV transcription.


Asunto(s)
Virus de la Hepatitis B/patogenicidad , Interacciones Huésped-Patógeno , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Represoras/metabolismo , Transactivadores/metabolismo , Transcripción Genética , Replicación Viral , Línea Celular , Inmunoprecipitación de Cromatina , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/fisiología , Hepatocitos/virología , Humanos , Evasión Inmune , Unión Proteica , Proteínas Reguladoras y Accesorias Virales
4.
Cancer Discov ; 13(12): 2548-2565, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-37655965

RESUMEN

PML nuclear bodies (NB) are disrupted in PML-RARA-driven acute promyelocytic leukemia (APL). Arsenic trioxide (ATO) cures 70% of patients with APL, driving PML-RARA degradation and NB reformation. In non-APL cells, arsenic binding onto PML also amplifies NB formation. Yet, the actual molecular mechanism(s) involved remain(s) elusive. Here, we establish that PML NBs display some features of liquid-liquid phase separation and that ATO induces a gel-like transition. PML B-box-2 structure reveals an alpha helix driving B2 trimerization and positioning a cysteine trio to form an ideal arsenic-binding pocket. Altering either of the latter impedes ATO-driven NB assembly, PML sumoylation, and PML-RARA degradation, mechanistically explaining clinical ATO resistance. This B2 trimer and the C213 trio create an oxidation-sensitive rheostat that controls PML NB assembly dynamics and downstream signaling in both basal state and during stress response. These findings identify the structural basis for arsenic targeting of PML that could pave the way to novel cancer drugs. SIGNIFICANCE: Arsenic curative effects in APL rely on PML targeting. We report a PML B-box-2 structure that drives trimer assembly, positioning a cysteine trio to form an arsenic-binding pocket, which is disrupted in resistant patients. Identification of this ROS-sensitive triad controlling PML dynamics and functions could yield novel drugs. See related commentary by Salomoni, p. 2505. This article is featured in Selected Articles from This Issue, p. 2489.


Asunto(s)
Arsénico , Arsenicales , Leucemia Promielocítica Aguda , Humanos , Arsénico/farmacología , Cuerpos Nucleares de la Leucemia Promielocítica , Cisteína , Arsenicales/farmacología , Óxidos/farmacología , Trióxido de Arsénico/farmacología , Leucemia Promielocítica Aguda/tratamiento farmacológico , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/metabolismo , Proteínas Oncogénicas , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo
5.
Cancer Discov ; 11(12): 3198-3213, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34301789

RESUMEN

Acute myeloid leukemia (AML) pathogenesis often involves a mutation in the NPM1 nucleolar chaperone, but the bases for its transforming properties and overall association with favorable therapeutic responses remain incompletely understood. Here we demonstrate that an oncogenic mutant form of NPM1 (NPM1c) impairs mitochondrial function. NPM1c also hampers formation of promyelocytic leukemia (PML) nuclear bodies (NB), which are regulators of mitochondrial fitness and key senescence effectors. Actinomycin D (ActD), an antibiotic with unambiguous clinical efficacy in relapsed/refractory NPM1c-AMLs, targets these primed mitochondria, releasing mitochondrial DNA, activating cyclic GMP-AMP synthase signaling, and boosting reactive oxygen species (ROS) production. The latter restore PML NB formation to drive TP53 activation and senescence of NPM1c-AML cells. In several models, dual targeting of mitochondria by venetoclax and ActD synergized to clear AML and prolong survival through targeting of PML. Our studies reveal an unexpected role for mitochondria downstream of NPM1c and implicate a mitochondrial/ROS/PML/TP53 senescence pathway as an effector of ActD-based therapies. SIGNIFICANCE: ActD induces complete remissions in NPM1-mutant AMLs. We found that NPM1c affects mitochondrial biogenesis and PML NBs. ActD targets mitochondria, yielding ROS which enforce PML NB biogenesis and restore senescence. Dual targeting of mitochondria with ActD and venetoclax sharply potentiates their anti-AML activities in vivo. This article is highlighted in the In This Issue feature, p. 2945.


Asunto(s)
Leucemia Mieloide Aguda , Proteínas Nucleares , Dactinomicina/farmacología , Dactinomicina/uso terapéutico , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Mitocondrias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina
6.
Nat Commun ; 9(1): 1841, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29728567

RESUMEN

In the originally published version of this Article, the authors Sai-Juan Chen and Zhu Chen were incorrectly listed as being affiliated with 'University Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR7212, Equipe labellisée LNCC, Hôpital St. Louis 1, Paris 75475, France', and the affiliation 'Institute of Health Sciences, Shanghai Institutes for Biological Sciences and Graduate School, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China' was inadvertently omitted. These errors have now been corrected in both the PDF and HTML versions of the Article.

7.
Nat Commun ; 9(1): 1277, 2018 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-29599493

RESUMEN

ProMyelocyticLeukemia nuclear bodies (PML NBs) are stress-regulated domains directly implicated in acute promyelocytic leukemia eradication. Most TRIM family members bind ubiquitin E2s and many acquire ligase activity upon RING dimerization. In contrast, PML binds UBC9, the SUMO E2 enzyme. Here, using X-ray crystallography and SAXS characterization, we demonstrate that PML RING tetramerizes through highly conserved PML-specific sequences, which are required for NB assembly and PML sumoylation. Conserved residues implicated in RING dimerization of other TRIMs also contribute to PML tetramer stability. Wild-type PML rescues the ability of some RING mutants to form NBs as well as their sumoylation. Impaired RING tetramerization abolishes PML/RARA-driven leukemogenesis in vivo and arsenic-induced differentiation ex vivo. Our studies thus identify RING tetramerization as a key step in the NB macro-molecular scaffolding. They suggest that higher order RING interactions allow efficient UBC9 recruitment and thus change the biochemical nature of TRIM-facilitated post-translational modifications.


Asunto(s)
Proteínas Nucleares/metabolismo , Proteína de la Leucemia Promielocítica/metabolismo , Multimerización de Proteína , Enzimas Ubiquitina-Conjugadoras/metabolismo , Animales , Línea Celular , Cristalografía por Rayos X , Humanos , Leucemia Promielocítica Aguda/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Complejos Multiproteicos/metabolismo , Pliegue de Proteína , Procesamiento Proteico-Postraduccional , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , Ubiquitina-Proteína Ligasas/metabolismo
8.
J Thorac Oncol ; 12(10): 1582-1587, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28779874

RESUMEN

INTRODUCTION: Targeted therapies such as tyrosine kinase inhibitors (TKIs) have dramatically improved the treatment of lung adenocarcinoma, and detection of activating mutations of genes such as EGFR or anaplastic lymphoma kinase gene (ALK) is now mandatory in the clinical setting. However, additional targetable alterations are continuously being described and forcing us to adapt our detection methods. Here we have evaluated the ability of eight amplicon-based next-generation sequencing (NGS) panels to detect the recently described mesenchymal epithelial transition factor (MET) exon 14 (METex14) alterations or new mutations conferring resistance to TKIs. METHODS: A total of 191 tumor samples from patients with NSCLC were screened for METex14 mutations by Sanger sequencing, and 62 additional cases were screened by Sanger sequencing and two amplicon-based NGS panels. In silico comparison of eight commercially available targeted NGS panels was also performed for the detection of METex14 alterations or ALK, ROS1, or EGFR resistance mutations. RESULTS: NGS analysis of the positive METex14 cases revealed a false-negative case because of amplicon design. Moreover, in silico analysis revealed that none of the eight panels considered would be able to detect more than 63% of literature-reported cases of METex14 mutations and similar limitations would be expected with new ALK, ROS1, or EGFR resistance mutations. CONCLUSIONS: We have illustrated major limitations of commercially available amplicon-based DNA NGS panels for detection of METex14 and recently described resistance mutations to TKIs. Documented choice of available panels and their frequent reevaluation are mandatory to deliver the most accurate data to the clinician for therapeutic decisions.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Inhibidores de Proteínas Quinasas/uso terapéutico , Anciano , Anciano de 80 o más Años , Exones , Femenino , Humanos , Masculino , Mutación
9.
J Cell Biol ; 204(6): 931-45, 2014 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-24637324

RESUMEN

The promyelocytic leukemia (PML) protein organizes PML nuclear bodies (NBs), which are stress-responsive domains where many partner proteins accumulate. Here, we clarify the basis for NB formation and identify stress-induced partner sumoylation as the primary NB function. NB nucleation does not rely primarily on intermolecular interactions between the PML SUMO-interacting motif (SIM) and SUMO, but instead results from oxidation-mediated PML multimerization. Oxidized PML spherical meshes recruit UBC9, which enhances PML sumoylation, allow partner recruitment through SIM interactions, and ultimately enhance partner sumoylation. Intermolecular SUMO-SIM interactions then enforce partner sequestration within the NB inner core. Accordingly, oxidative stress enhances NB formation and global sumoylation in vivo. Some NB-associated sumoylated partners also become polyubiquitinated by RNF4, precipitating their proteasomal degradation. As several partners are protein-modifying enzymes, NBs could act as sensors that facilitate and confer oxidative stress sensitivity not only to sumoylation but also to other post-translational modifications, thereby explaining alterations of stress response upon PML or NB loss.


Asunto(s)
Proteínas Nucleares/metabolismo , Estrés Oxidativo , Sumoilación , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Células CHO , Células COS , Núcleo Celular/metabolismo , Senescencia Celular , Chlorocebus aethiops , Cricetinae , Cricetulus , Células HeLa , Humanos , Ratones , Proteína de la Leucemia Promielocítica , Transporte de Proteínas , Especies Reactivas de Oxígeno/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas
10.
Sci Signal ; 5(205): ra1, 2012 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-22215732

RESUMEN

The regulatory protein HBx is essential for hepatitis B virus (HBV) replication in vivo and for transcription of the episomal HBV genome. We previously reported that in infected cells HBx activates genes targeted by the transcription factor CREB [cyclic adenosine monophosphate (cAMP) response element-binding protein]. cAMP induces phosphorylation and activation of CREB, and CREB inactivation is promoted by protein phosphatase 1 (PP1), which binds to CREB through histone deacetylase 1 (HDAC1). We showed that CREB was recruited to HBV DNA. Phosphorylation induced by cAMP had a longer half-life when CREB was bound to the episomal HBV genome compared to when it was bound to the promoter of a host target gene not regulated by HBx, suggesting that the virus has developed a mechanism to favor its own transcription. This mechanism required HBx, which interacted with and inhibited PP1 to extend the half-life of CREB phosphorylation. Silencing of PP1 rescued replication of an HBx-deficient HBV genome, suggesting that HBx enhances viral transcription in part by neutralizing PP1 activity. Our results illustrate a previously unknown mechanism of HBV transcriptional activation by HBx in which HBx interferes with the inactivation of CREB by the PP1 and HDAC1 complex.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Virus de la Hepatitis B/fisiología , Modelos Biológicos , Proteína Fosfatasa 1/antagonistas & inhibidores , Transactivadores/metabolismo , Activación Transcripcional/fisiología , Análisis de Varianza , Northern Blotting , Inmunoprecipitación de Cromatina , Cromatografía en Gel , Colforsina , Cartilla de ADN/genética , ADN Viral/metabolismo , Células HEK293 , Células HeLa , Humanos , Fosforilación , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Transactivadores/fisiología , Proteínas Reguladoras y Accesorias Virales
11.
Adv Cancer Res ; 103: 75-109, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19854353

RESUMEN

Despite the existence of effective vaccines, HBV infection remains a major health problem with 2 billion people infected worldwide. Among them, 350 million are chronically infected, a major risk factor for the development of hepatocellular carcinoma (HCC). There is a strong need to develop new and efficient treatments against chronic infection and HCC. It is therefore important to understand HBV replication and persistence as well as the role of HBV in liver carcinogenesis. This chapter focuses on the regulatory protein HBx which is thought to play a central role in HBV regulation and pathogenesis. HBx has been shown to modulate a myriad of viral and cellular functions, yet its role in virus replication and pathogenesis in infected individuals remains far from being completely understood.


Asunto(s)
Virus de la Hepatitis B/crecimiento & desarrollo , Virus de la Hepatitis B/patogenicidad , Transactivadores/fisiología , Animales , Apoptosis/genética , Carcinoma Hepatocelular/etiología , Carcinoma Hepatocelular/virología , Reparación del ADN/genética , Regulación Viral de la Expresión Génica , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/fisiología , Humanos , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/virología , Modelos Biológicos , Transactivadores/genética , Proteínas Reguladoras y Accesorias Virales , Replicación Viral/genética , Replicación Viral/fisiología
12.
Viruses ; 1(3): 630-646, 2009 12.
Artículo en Inglés | MEDLINE | ID: mdl-21994562

RESUMEN

Epidemiological studies have provided overwhelming evidence for a causal role of chronic HBV infection in the development of hepatocellular carcinoma (HCC), but the molecular mechanisms underlying virally-induced tumorigenesis remain largely debated. In the absence of a dominant oncogene encoded by the HBV genome, indirect roles have been proposed, including insertional activation of cellular oncogenes by HBV DNA integration, induction of genetic instability by viral integration or by the regulatory protein HBx, and long term effects of viral proteins in enhancing immune-mediated liver disease. In this chapter, we discuss different models of HBV-mediated liver cell transformation based on animal systems of hepadnavirus infection as well as functional studies in hepatocyte and hepatoma cell lines. These studies might help identifying the cellular effectors connecting HBV infection and liver cell transformation.

13.
Nat Cell Biol ; 10(5): 547-55, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18408733

RESUMEN

In acute promyelocytic leukaemia (APL), arsenic trioxide induces degradation of the fusion protein encoded by the PML-RARA oncogene, differentiation of leukaemic cells and produces clinical remissions. SUMOylation of its PML moiety was previously implicated, but the nature of the degradation pathway involved and the role of PML-RARalpha catabolism in the response to therapy have both remained elusive. Here, we demonstrate that arsenic-induced PML SUMOylation triggers its Lys 48-linked polyubiquitination and proteasome-dependent degradation. When exposed to arsenic, SUMOylated PML recruits RNF4, the human orthologue of the yeast SUMO-dependent E3 ubiquitin-ligase, as well as ubiquitin and proteasomes onto PML nuclear bodies. Arsenic-induced differentiation is impaired in cells transformed by a non-degradable PML-RARalpha SUMOylation mutant or in APL cells transduced with a dominant-negative RNF4, directly implicating PML-RARalpha catabolism in the therapeutic response. We thus identify PML as the first protein degraded by SUMO-dependent polyubiquitination. As PML SUMOylation recruits not only RNF4, ubiquitin and proteasomes, but also many SUMOylated proteins onto PML nuclear bodies, these domains could physically integrate the SUMOylation, ubiquitination and degradation pathways.


Asunto(s)
Arsénico/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Proteína SUMO-1/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Diferenciación Celular/fisiología , Línea Celular , Humanos , Ratones , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Proteínas de Fusión Oncogénica/genética , Poliubiquitina/metabolismo , Proteína de la Leucemia Promielocítica , Complejo de la Endopetidasa Proteasomal/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteína SUMO-1/genética , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA