Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 177(6): 1436-1447.e12, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31150620

RESUMEN

Circadian rhythms control organismal physiology throughout the day. At the cellular level, clock regulation is established by a self-sustained Bmal1-dependent transcriptional oscillator network. However, it is still unclear how different tissues achieve a synchronized rhythmic physiology. That is, do they respond independently to environmental signals, or require interactions with each other to do so? We show that unexpectedly, light synchronizes the Bmal1-dependent circadian machinery in single tissues in the absence of Bmal1 in all other tissues. Strikingly, light-driven tissue autonomous clocks occur without rhythmic feeding behavior and are lost in constant darkness. Importantly, tissue-autonomous Bmal1 partially sustains homeostasis in otherwise arrhythmic and prematurely aging animals. Our results therefore support a two-branched model for the daily synchronization of tissues: an autonomous response branch, whereby light entrains circadian clocks without any commitment of other Bmal1-dependent clocks, and a memory branch using other Bmal1-dependent clocks to "remember" time in the absence of external cues.


Asunto(s)
Factores de Transcripción ARNTL/fisiología , Relojes Circadianos/genética , Factores de Transcripción ARNTL/metabolismo , Animales , Proteínas CLOCK/metabolismo , Relojes Circadianos/fisiología , Ritmo Circadiano/genética , Conducta Alimentaria/fisiología , Femenino , Homeostasis , Luz , Masculino , Ratones , Ratones Noqueados , Modelos Animales , Especificidad de Órganos/fisiología , Fotoperiodo , Núcleo Supraquiasmático/metabolismo
2.
Cell ; 177(6): 1448-1462.e14, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31150621

RESUMEN

Mammals rely on a network of circadian clocks to control daily systemic metabolism and physiology. The central pacemaker in the suprachiasmatic nucleus (SCN) is considered hierarchically dominant over peripheral clocks, whose degree of independence, or tissue-level autonomy, has never been ascertained in vivo. Using arrhythmic Bmal1-null mice, we generated animals with reconstituted circadian expression of BMAL1 exclusively in the liver (Liver-RE). High-throughput transcriptomics and metabolomics show that the liver has independent circadian functions specific for metabolic processes such as the NAD+ salvage pathway and glycogen turnover. However, although BMAL1 occupies chromatin at most genomic targets in Liver-RE mice, circadian expression is restricted to ∼10% of normally rhythmic transcripts. Finally, rhythmic clock gene expression is lost in Liver-RE mice under constant darkness. Hence, full circadian function in the liver depends on signals emanating from other clocks, and light contributes to tissue-autonomous clock function.


Asunto(s)
Factores de Transcripción ARNTL/fisiología , Relojes Circadianos/genética , Hígado/metabolismo , Factores de Transcripción ARNTL/metabolismo , Animales , Proteínas CLOCK/metabolismo , Relojes Circadianos/fisiología , Ritmo Circadiano/genética , Femenino , Regulación de la Expresión Génica , Homeostasis , Luz , Masculino , Ratones , Ratones Noqueados , Modelos Animales , Especificidad de Órganos/fisiología , Fotoperiodo , Núcleo Supraquiasmático/metabolismo
3.
Cell ; 175(6): 1575-1590.e22, 2018 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30415840

RESUMEN

During aging, stromal functions are thought to be impaired, but little is known whether this stems from changes of fibroblasts. Using population- and single-cell transcriptomics, as well as long-term lineage tracing, we studied whether murine dermal fibroblasts are altered during physiological aging under different dietary regimes that affect longevity. We show that the identity of old fibroblasts becomes undefined, with the fibroblast states present in young skin no longer clearly demarcated. In addition, old fibroblasts not only reduce the expression of genes involved in the formation of the extracellular matrix, but also gain adipogenic traits, paradoxically becoming more similar to neonatal pro-adipogenic fibroblasts. These alterations are sensitive to systemic metabolic changes: long-term caloric restriction reversibly prevents them, whereas a high-fat diet potentiates them. Our results therefore highlight loss of cell identity and the acquisition of adipogenic traits as a mechanism underlying cellular aging, which is influenced by systemic metabolism.


Asunto(s)
Adipogénesis , Senescencia Celular , Fibroblastos/metabolismo , Envejecimiento de la Piel , Animales , Restricción Calórica , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Ratones , Ratones Transgénicos
4.
Cell ; 170(4): 664-677.e11, 2017 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-28802039

RESUMEN

The process of aging and circadian rhythms are intimately intertwined, but how peripheral clocks involved in metabolic homeostasis contribute to aging remains unknown. Importantly, caloric restriction (CR) extends lifespan in several organisms and rewires circadian metabolism. Using young versus old mice, fed ad libitum or under CR, we reveal reprogramming of the circadian transcriptome in the liver. These age-dependent changes occur in a highly tissue-specific manner, as demonstrated by comparing circadian gene expression in the liver versus epidermal and skeletal muscle stem cells. Moreover, de novo oscillating genes under CR show an enrichment in SIRT1 targets in the liver. This is accompanied by distinct circadian hepatic signatures in NAD+-related metabolites and cyclic global protein acetylation. Strikingly, this oscillation in acetylation is absent in old mice while CR robustly rescues global protein acetylation. Our findings indicate that the clock operates at the crossroad between protein acetylation, liver metabolism, and aging.


Asunto(s)
Envejecimiento/metabolismo , Ritmo Circadiano , Hígado/metabolismo , Redes y Vías Metabólicas , Acetilcoenzima A/metabolismo , Acetilación , Envejecimiento/patología , Animales , Restricción Calórica , Histonas/metabolismo , Hígado/patología , Ratones , NAD/metabolismo , Proteínas/metabolismo , Sirtuina 1/metabolismo , Células Madre/metabolismo , Transcriptoma
5.
Cell ; 170(4): 678-692.e20, 2017 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-28802040

RESUMEN

Normal homeostatic functions of adult stem cells have rhythmic daily oscillations that are believed to become arrhythmic during aging. Unexpectedly, we find that aged mice remain behaviorally circadian and that their epidermal and muscle stem cells retain a robustly rhythmic core circadian machinery. However, the oscillating transcriptome is extensively reprogrammed in aged stem cells, switching from genes involved in homeostasis to those involved in tissue-specific stresses, such as DNA damage or inefficient autophagy. Importantly, deletion of circadian clock components did not reproduce the hallmarks of this reprogramming, underscoring that rewiring, rather than arrhythmia, is associated with physiological aging. While age-associated rewiring of the oscillatory diurnal transcriptome is not recapitulated by a high-fat diet in young adult mice, it is significantly prevented by long-term caloric restriction in aged mice. Thus, stem cells rewire their diurnal timed functions to adapt to metabolic cues and to tissue-specific age-related traits.


Asunto(s)
Células Madre Adultas/patología , Senescencia Celular , Ritmo Circadiano , Epidermis/patología , Músculo Esquelético/patología , Células Madre Adultas/fisiología , Animales , Autofagia , Restricción Calórica , Relojes Circadianos , Daño del ADN , Dieta Alta en Grasa , Homeostasis , Ratones , Estrés Fisiológico , Transcriptoma
7.
Nature ; 613(7942): 169-178, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36544018

RESUMEN

Tissue regeneration requires coordination between resident stem cells and local niche cells1,2. Here we identify that senescent cells are integral components of the skeletal muscle regenerative niche that repress regeneration at all stages of life. The technical limitation of senescent-cell scarcity3 was overcome by combining single-cell transcriptomics and a senescent-cell enrichment sorting protocol. We identified and isolated different senescent cell types from damaged muscles of young and old mice. Deeper transcriptome, chromatin and pathway analyses revealed conservation of cell identity traits as well as two universal senescence hallmarks (inflammation and fibrosis) across cell type, regeneration time and ageing. Senescent cells create an aged-like inflamed niche that mirrors inflammation associated with ageing (inflammageing4) and arrests stem cell proliferation and regeneration. Reducing the burden of senescent cells, or reducing their inflammatory secretome through CD36 neutralization, accelerates regeneration in young and old mice. By contrast, transplantation of senescent cells delays regeneration. Our results provide a technique for isolating in vivo senescent cells, define a senescence blueprint for muscle, and uncover unproductive functional interactions between senescent cells and stem cells in regenerative niches that can be overcome. As senescent cells also accumulate in human muscles, our findings open potential paths for improving muscle repair throughout life.


Asunto(s)
Envejecimiento , Senescencia Celular , Inflamación , Músculo Esquelético , Regeneración , Nicho de Células Madre , Anciano , Animales , Humanos , Ratones , Envejecimiento/metabolismo , Envejecimiento/fisiología , Senescencia Celular/fisiología , Inflamación/metabolismo , Inflamación/fisiopatología , Músculo Esquelético/fisiología , Músculo Esquelético/fisiopatología , Células Madre/fisiología , Fibrosis/fisiopatología , Nicho de Células Madre/fisiología , Transcriptoma , Cromatina/genética , Gerociencia
8.
Nat Rev Mol Cell Biol ; 17(10): 643-58, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27405257

RESUMEN

Mammalian embryonic development is a tightly regulated process that, from a single zygote, produces a large number of cell types with hugely divergent functions. Distinct cellular differentiation programmes are facilitated by tight transcriptional and epigenetic regulation. However, the contribution of epigenetic regulation to tissue homeostasis after the completion of development is less well understood. In this Review, we explore the effects of epigenetic dysregulation on adult stem cell function. We conclude that, depending on the tissue type and the epigenetic regulator affected, the consequences range from negligible to stem cell malfunction and disruption of tissue homeostasis, which may predispose to diseases such as cancer.


Asunto(s)
Células Madre Adultas/fisiología , Epigénesis Genética , Animales , Diferenciación Celular , Metilación de ADN , Células Epidérmicas , Epidermis/fisiología , Regulación del Desarrollo de la Expresión Génica , Humanos , Glándulas Mamarias Humanas/citología , Glándulas Mamarias Humanas/fisiología , Regeneración
9.
Nature ; 607(7919): 593-603, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35768510

RESUMEN

Aggressive and metastatic cancers show enhanced metabolic plasticity1, but the precise underlying mechanisms of this remain unclear. Here we show how two NOP2/Sun RNA methyltransferase 3 (NSUN3)-dependent RNA modifications-5-methylcytosine (m5C) and its derivative 5-formylcytosine (f5C) (refs.2-4)-drive the translation of mitochondrial mRNA to power metastasis. Translation of mitochondrially encoded subunits of the oxidative phosphorylation complex depends on the formation of m5C at position 34 in mitochondrial tRNAMet. m5C-deficient human oral cancer cells exhibit increased levels of glycolysis and changes in their mitochondrial function that do not affect cell viability or primary tumour growth in vivo; however, metabolic plasticity is severely impaired as mitochondrial m5C-deficient tumours do not metastasize efficiently. We discovered that CD36-dependent non-dividing, metastasis-initiating tumour cells require mitochondrial m5C to activate invasion and dissemination. Moreover, a mitochondria-driven gene signature in patients with head and neck cancer is predictive for metastasis and disease progression. Finally, we confirm that this metabolic switch that allows the metastasis of tumour cells can be pharmacologically targeted through the inhibition of mitochondrial mRNA translation in vivo. Together, our results reveal that site-specific mitochondrial RNA modifications could be therapeutic targets to combat metastasis.


Asunto(s)
5-Metilcitosina , Citosina/análogos & derivados , Glucólisis , Mitocondrias , Metástasis de la Neoplasia , Fosforilación Oxidativa , ARN Mitocondrial , 5-Metilcitosina/biosíntesis , 5-Metilcitosina/metabolismo , Antígenos CD36 , Supervivencia Celular , Citosina/metabolismo , Progresión de la Enfermedad , Glucólisis/efectos de los fármacos , Humanos , Metilación/efectos de los fármacos , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/metabolismo , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Metástasis de la Neoplasia/tratamiento farmacológico , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Fosforilación Oxidativa/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo
10.
Nature ; 599(7885): 485-490, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34759321

RESUMEN

Fatty acid uptake and altered metabolism constitute hallmarks of metastasis1,2, yet evidence of the underlying biology, as well as whether all dietary fatty acids are prometastatic, is lacking. Here we show that dietary palmitic acid (PA), but not oleic acid or linoleic acid, promotes metastasis in oral carcinomas and melanoma in mice. Tumours from mice that were fed a short-term palm-oil-rich diet (PA), or tumour cells that were briefly exposed to PA in vitro, remained highly metastatic even after being serially transplanted (without further exposure to high levels of PA). This PA-induced prometastatic memory requires the fatty acid transporter CD36 and is associated with the stable deposition of histone H3 lysine 4 trimethylation by the methyltransferase Set1A (as part of the COMPASS complex (Set1A/COMPASS)). Bulk, single-cell and positional RNA-sequencing analyses indicate that genes with this prometastatic memory predominantly relate to a neural signature that stimulates intratumoural Schwann cells and innervation, two parameters that are strongly correlated with metastasis but are aetiologically poorly understood3,4. Mechanistically, tumour-associated Schwann cells secrete a specialized proregenerative extracellular matrix, the ablation of which inhibits metastasis initiation. Both the PA-induced memory of this proneural signature and its long-term boost in metastasis require the transcription factor EGR2 and the glial-cell-stimulating peptide galanin. In summary, we provide evidence that a dietary metabolite induces stable transcriptional and chromatin changes that lead to a long-term stimulation of metastasis, and that this is related to a proregenerative state of tumour-activated Schwann cells.


Asunto(s)
Grasas de la Dieta/farmacología , Metástasis de la Neoplasia , Ácido Palmítico/farmacología , Células de Schwann/efectos de los fármacos , Animales , Línea Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Grasas de la Dieta/administración & dosificación , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Femenino , Galanina/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Masculino , Ratones , Ácido Palmítico/administración & dosificación , Células de Schwann/metabolismo
11.
Nat Rev Mol Cell Biol ; 14(11): 737-48, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24064540

RESUMEN

In the past years, our view of the molecular and cellular mechanisms that ensure the self-renewal of the skin has dramatically changed. Several populations of stem cells have been identified that differ in their spatio-temporal contribution to their compartment in steady-state and damaged conditions, suggesting that epidermal stem cell heterogeneity is far greater than previously anticipated. There is also increasing evidence that these different stem cells require a tightly controlled spatial and temporal communication between other skin residents to carry out their function.


Asunto(s)
Piel/citología , Células Madre/citología , Animales , Humanos , Modelos Biológicos , Nicho de Células Madre/fisiología , Células Madre/fisiología
12.
Mol Cell Proteomics ; 22(11): 100655, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37793502

RESUMEN

Molecular clocks and daily feeding cycles support metabolism in peripheral tissues. Although the roles of local clocks and feeding are well defined at the transcriptional level, their impact on governing protein abundance in peripheral tissues is unclear. Here, we determine the relative contributions of local molecular clocks and daily feeding cycles on liver and muscle proteomes during the active phase in mice. LC-MS/MS was performed on liver and gastrocnemius muscle harvested 4 h into the dark phase from WT, Bmal1 KO, and dual liver- and muscle-Bmal1-rescued mice under either ad libitum feeding or time-restricted feeding during the dark phase. Feeding-fasting cycles had only minimal effects on levels of liver proteins and few, if any, on the muscle proteome. In contrast, Bmal1 KO altered the abundance of 674 proteins in liver and 80 proteins in muscle. Local rescue of liver and muscle Bmal1 restored ∼50% of proteins in liver and ∼25% in muscle. These included proteins involved in fatty acid oxidation in liver and carbohydrate metabolism in muscle. For liver, proteins involved in de novo lipogenesis were largely dependent on Bmal1 function in other tissues (i.e., the wider clock system). Proteins regulated by BMAL1 in liver and muscle were enriched for secreted proteins. We found that the abundance of fibroblast growth factor 1, a liver secreted protein, requires BMAL1 and that autocrine fibroblast growth factor 1 signaling modulates mitochondrial respiration in hepatocytes. In liver and muscle, BMAL1 is a more potent regulator of dark phase proteomes than daily feeding cycles, highlighting the need to assess protein levels in addition to mRNA when investigating clock mechanisms. The proteome is more extensively regulated by BMAL1 in liver than in muscle, and many metabolic pathways in peripheral tissues are reliant on the function of the clock system as a whole.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Animales , Ratones , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Cromatografía Liquida , Relojes Circadianos/genética , Ritmo Circadiano/genética , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Hígado/metabolismo , Músculos/metabolismo , Proteoma/metabolismo , Espectrometría de Masas en Tándem
14.
Nature ; 541(7635): 41-45, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-27974793

RESUMEN

The fact that the identity of the cells that initiate metastasis in most human cancers is unknown hampers the development of antimetastatic therapies. Here we describe a subpopulation of CD44bright cells in human oral carcinomas that do not overexpress mesenchymal genes, are slow-cycling, express high levels of the fatty acid receptor CD36 and lipid metabolism genes, and are unique in their ability to initiate metastasis. Palmitic acid or a high-fat diet specifically boosts the metastatic potential of CD36+ metastasis-initiating cells in a CD36-dependent manner. The use of neutralizing antibodies to block CD36 causes almost complete inhibition of metastasis in immunodeficient or immunocompetent orthotopic mouse models of human oral cancer, with no side effects. Clinically, the presence of CD36+ metastasis-initiating cells correlates with a poor prognosis for numerous types of carcinomas, and inhibition of CD36 also impairs metastasis, at least in human melanoma- and breast cancer-derived tumours. Together, our results indicate that metastasis-initiating cells particularly rely on dietary lipids to promote metastasis.


Asunto(s)
Anticuerpos Neutralizantes/farmacología , Antígenos CD36/antagonistas & inhibidores , Neoplasias de la Boca/patología , Metástasis de la Neoplasia/patología , Metástasis de la Neoplasia/prevención & control , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/uso terapéutico , Antígenos CD36/genética , Antígenos CD36/inmunología , Antígenos CD36/metabolismo , Proliferación Celular , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Receptores de Hialuranos/metabolismo , Metabolismo de los Lípidos/genética , Metástasis Linfática/genética , Metástasis Linfática/patología , Masculino , Ratones , Neoplasias de la Boca/diagnóstico , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/metabolismo , Metástasis de la Neoplasia/tratamiento farmacológico , Metástasis de la Neoplasia/genética , Células Madre Neoplásicas/metabolismo , Ácido Palmítico/administración & dosificación , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacología , Penetrancia , Pronóstico , Transcriptoma , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Genes Dev ; 28(2): 182-97, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24449271

RESUMEN

The molecular mechanisms underlying specification from embryonic stem cells (ESCs) and maintenance of neural progenitor cells (NPCs) are largely unknown. Recently, we reported that the Zuotin-related factor 1 (Zrf1) is necessary for chromatin displacement of the Polycomb-repressive complex 1 (PRC1). We found that Zrf1 is required for NPC specification from ESCs and that it promotes the expression of NPC markers, including the key regulator Pax6. Moreover, Zrf1 is essential to establish and maintain Wnt ligand expression levels, which are necessary for NPC self-renewal. Reactivation of proper Wnt signaling in Zrf1-depleted NPCs restores Pax6 expression and the self-renewal capacity. ESC-derived NPCs in vitro resemble most of the characteristics of the self-renewing NPCs located in the developing embryonic cortex, which are termed radial glial cells (RGCs). Depletion of Zrf1 in vivo impairs the expression of key self-renewal regulators and Wnt ligand genes in RGCs. Thus, we demonstrate that Zrf1 plays an essential role in NPC generation and maintenance.


Asunto(s)
Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Placa Neural/citología , Placa Neural/metabolismo , Proteínas Oncogénicas/metabolismo , Células Madre/citología , Células Madre/metabolismo , Animales , Línea Celular , Proteínas de Unión al ADN/genética , Células Madre Embrionarias/citología , Proteínas del Ojo/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Humanos , Ligandos , Ratones , Chaperonas Moleculares , Neurogénesis/genética , Proteínas Oncogénicas/genética , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/genética , Proteínas de Unión al ARN , Proteínas Represoras/genética , Transducción de Señal , Proteínas Wnt/metabolismo
16.
Nature ; 480(7376): 209-14, 2011 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-22080954

RESUMEN

Murine epidermal stem cells undergo alternate cycles of dormancy and activation, fuelling tissue renewal. However, only a subset of stem cells becomes active during each round of morphogenesis, indicating that stem cells coexist in heterogeneous responsive states. Using a circadian-clock reporter-mouse model, here we show that the dormant hair-follicle stem cell niche contains coexisting populations of cells at opposite phases of the clock, which are differentially predisposed to respond to homeostatic cues. The core clock protein Bmal1 modulates the expression of stem cell regulatory genes in an oscillatory manner, to create populations that are either predisposed, or less prone, to activation. Disrupting this clock equilibrium, through deletion of Bmal1 (also known as Arntl) or Per1/2, resulted in a progressive accumulation or depletion of dormant stem cells, respectively. Stem cell arrhythmia also led to premature epidermal ageing, and a reduction in the development of squamous tumours. Our results indicate that the circadian clock fine-tunes the temporal behaviour of epidermal stem cells, and that its perturbation affects homeostasis and the predisposition to tumorigenesis.


Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Folículo Piloso/citología , Células Madre/citología , Factores de Transcripción ARNTL/deficiencia , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Animales , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Adhesión Celular/genética , Ciclo Celular/genética , Células Cultivadas , Senescencia Celular , Relojes Circadianos/genética , Ritmo Circadiano/genética , Señales (Psicología) , Femenino , Regulación de la Expresión Génica/genética , Homeostasis/genética , Homeostasis/fisiología , Masculino , Ratones , Ratones Noqueados , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Nicho de Células Madre , Células Madre/metabolismo , Factor de Crecimiento Transformador beta/genética , Vía de Señalización Wnt/genética
17.
EMBO J ; 30(17): 3635-46, 2011 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-21811233

RESUMEN

Jarid2 is required for the genomic recruitment of the polycomb repressive complex-2 (PRC2) in embryonic stem cells. However, its specific role during late development and adult tissues remains largely uncharacterized. Here, we show that deletion of Jarid2 in mouse epidermis reduces the proliferation and potentiates the differentiation of postnatal epidermal progenitors, without affecting epidermal development. In neonatal epidermis, Jarid2 deficiency reduces H3K27 trimethylation, a chromatin repressive mark, in epidermal differentiation genes previously shown to be targets of the PRC2. However, in adult epidermis Jarid2 depletion does not affect interfollicular epidermal differentiation but results in delayed hair follicle (HF) cycling as a consequence of decreased proliferation of HF stem cells and their progeny. We conclude that Jarid2 is required for the scheduled proliferation of epidermal stem and progenitor cells necessary to maintain epidermal homeostasis.


Asunto(s)
Diferenciación Celular , Células Epidérmicas , Queratinocitos/citología , Proteínas del Tejido Nervioso/metabolismo , Células Madre/citología , Animales , Células Cultivadas , Epidermis/metabolismo , Folículo Piloso/metabolismo , Histonas/metabolismo , Humanos , Queratinocitos/metabolismo , Masculino , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Complejo Represivo Polycomb 2 , Células Madre/metabolismo
18.
Semin Cell Dev Biol ; 23(8): 897-905, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22944592

RESUMEN

One fundamental aspect of biological sciences is to understand how different cell fates are established during development and how cellular identity is maintained in adulthood. The molecular root of these processes is the interaction of chromatin modifications with epigenetic regulators and tissue-specific transcription factors. The concerted activities among them robustly define lineage specification, but also allow a degree of lineage flexibility required for tissue homeostasis and repair. The epidermis is emerging as an ideal model system to characterize the functional roles of epigenetic mechanisms that orchestrate organogenesis and adult tissue homeostasis. Here we summarize and discuss emerging roles of chromatin and epigenetic complexes in the mammalian epidermis.


Asunto(s)
Cromatina , Epidermis/metabolismo , Animales , Células Epidérmicas , Epigénesis Genética , Folículo Piloso/citología , Folículo Piloso/metabolismo , Humanos , Proteínas del Grupo Polycomb/metabolismo , Factores de Transcripción/metabolismo
19.
PLoS Genet ; 7(12): e1002403, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22144916

RESUMEN

Homeostasis of most adult tissues is maintained by balancing stem cell self-renewal and differentiation, but whether post-transcriptional mechanisms can regulate this process is unknown. Here, we identify that an RNA methyltransferase (Misu/Nsun2) is required to balance stem cell self-renewal and differentiation in skin. In the epidermis, this methyltransferase is found in a defined sub-population of hair follicle stem cells poised to undergo lineage commitment, and its depletion results in enhanced quiescence and aberrant stem cell differentiation. Our results reveal that post-transcriptional RNA methylation can play a previously unappreciated role in controlling stem cell fate.


Asunto(s)
Diferenciación Celular/genética , Epidermis/metabolismo , Folículo Piloso/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , ARN de Transferencia/metabolismo , Células Madre/metabolismo , Animales , Peso Corporal/genética , Diferenciación Celular/fisiología , Desarrollo Embrionario/genética , Células Epidérmicas , Folículo Piloso/citología , Homeostasis/genética , Queratinocitos/citología , Queratinocitos/metabolismo , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Metilación , Ratones , Ratones Transgénicos , Procesamiento Postranscripcional del ARN/genética , ARN de Transferencia/genética , Células Madre/citología , beta Catenina/metabolismo
20.
Biochim Biophys Acta Rev Cancer ; 1879(1): 189051, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38101461

RESUMEN

This review delves into the most recent research on the metabolic adaptability of cancer cells and examines how their metabolic functions can impact their progression into metastatic forms. We emphasize the growing significance of lipid metabolism and dietary lipids within the tumor microenvironment, underscoring their influence on tumor progression. Additionally, we present an outline of the interplay between metabolic processes and the epigenome of cancer cells, underscoring the importance regarding the metastatic process. Lastly, we examine the potential of targeting metabolism as a therapeutic approach in combating cancer progression, shedding light on innovative drugs/targets currently undergoing preclinical evaluation.


Asunto(s)
Metabolismo de los Lípidos , Neoplasias , Humanos , Neoplasias/patología , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA