Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Ann Vasc Surg ; 99: 186-192, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37717818

RESUMEN

BACKGROUND: Endovascular treatment is continuously gaining ground in vascular surgery procedures. However, current patient radiation dose estimation does not take into account the exact patient morphology and organs' composition. Monte Carlo (MC) simulation can accurately estimate the dose by recreating the irradiation process generated during X-ray-guided interventions. This study aimed to validate the MC simulation models by comparing simulated and measured dose distributions in endovascular aortic aneurysm repair (EVAR) procedures. METHODS: We conducted a clinical study in patients treated for EVAR. Patient dose measurements were taken with passive dosimeters using Optically Stimulated Luminescence technology in 4 specific anatomical points on the skin: xiphoid process, pubic symphysis, right and left iliac crest. Dose measurements were compared to the corresponding simulated doses with the Geant4 Application for Emission Tomography (GATE) and GPU Geant4-based Monte Carlo Simulations (GGEMS) MC simulations softwares. The MC simulation took as input the computed tomography scan of the patient and the parameters of the imaging system (orientation angles, tube voltage, and aluminum filtration) and gives as output the three-dimensional (3D) dose map for each patient and angulation. RESULTS: A good agreement with real doses was found for doses simulated by the MC GATE method (P < 0.0001; r = 0.97; 95% confidence interval [CI] [0.96-0.98]), as well as for doses simulated by the GGEMS method (P < 0.0001; r = 0.96; 95% CI [0.94-0.97]). The mean relative error for all measurements was 5 ± 5% in the MC GATE group and 6 ± 5% in the GGEMS group. Process execution on GGEMS (6 sec) was faster than the GATE MC simulation (5 hr). CONCLUSION: Considering the current imaging settings, this study shows the potential of using the GATE and GGEMS MC simulations platforms to model the 3D dose distributions during EVAR procedures.


Asunto(s)
Procedimientos Endovasculares , Programas Informáticos , Humanos , Dosis de Radiación , Rayos X , Resultado del Tratamiento , Método de Montecarlo , Procedimientos Endovasculares/efectos adversos
2.
Neuroimage ; 147: 346-359, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27988322

RESUMEN

AIM: To accurately quantify the radioactivity concentration measured by PET, emission data need to be corrected for photon attenuation; however, the MRI signal cannot easily be converted into attenuation values, making attenuation correction (AC) in PET/MRI challenging. In order to further improve the current vendor-implemented MR-AC methods for absolute quantification, a number of prototype methods have been proposed in the literature. These can be categorized into three types: template/atlas-based, segmentation-based, and reconstruction-based. These proposed methods in general demonstrated improvements compared to vendor-implemented AC, and many studies report deviations in PET uptake after AC of only a few percent from a gold standard CT-AC. Using a unified quantitative evaluation with identical metrics, subject cohort, and common CT-based reference, the aims of this study were to evaluate a selection of novel methods proposed in the literature, and identify the ones suitable for clinical use. METHODS: In total, 11 AC methods were evaluated: two vendor-implemented (MR-ACDIXON and MR-ACUTE), five based on template/atlas information (MR-ACSEGBONE (Koesters et al., 2016), MR-ACONTARIO (Anazodo et al., 2014), MR-ACBOSTON (Izquierdo-Garcia et al., 2014), MR-ACUCL (Burgos et al., 2014), and MR-ACMAXPROB (Merida et al., 2015)), one based on simultaneous reconstruction of attenuation and emission (MR-ACMLAA (Benoit et al., 2015)), and three based on image-segmentation (MR-ACMUNICH (Cabello et al., 2015), MR-ACCAR-RiDR (Juttukonda et al., 2015), and MR-ACRESOLUTE (Ladefoged et al., 2015)). We selected 359 subjects who were scanned using one of the following radiotracers: [18F]FDG (210), [11C]PiB (51), and [18F]florbetapir (98). The comparison to AC with a gold standard CT was performed both globally and regionally, with a special focus on robustness and outlier analysis. RESULTS: The average performance in PET tracer uptake was within ±5% of CT for all of the proposed methods, with the average±SD global percentage bias in PET FDG uptake for each method being: MR-ACDIXON (-11.3±3.5)%, MR-ACUTE (-5.7±2.0)%, MR-ACONTARIO (-4.3±3.6)%, MR-ACMUNICH (3.7±2.1)%, MR-ACMLAA (-1.9±2.6)%, MR-ACSEGBONE (-1.7±3.6)%, MR-ACUCL (0.8±1.2)%, MR-ACCAR-RiDR (-0.4±1.9)%, MR-ACMAXPROB (-0.4±1.6)%, MR-ACBOSTON (-0.3±1.8)%, and MR-ACRESOLUTE (0.3±1.7)%, ordered by average bias. The overall best performing methods (MR-ACBOSTON, MR-ACMAXPROB, MR-ACRESOLUTE and MR-ACUCL, ordered alphabetically) showed regional average errors within ±3% of PET with CT-AC in all regions of the brain with FDG, and the same four methods, as well as MR-ACCAR-RiDR, showed that for 95% of the patients, 95% of brain voxels had an uptake that deviated by less than 15% from the reference. Comparable performance was obtained with PiB and florbetapir. CONCLUSIONS: All of the proposed novel methods have an average global performance within likely acceptable limits (±5% of CT-based reference), and the main difference among the methods was found in the robustness, outlier analysis, and clinical feasibility. Overall, the best performing methods were MR-ACBOSTON, MR-ACMAXPROB, MR-ACRESOLUTE and MR-ACUCL, ordered alphabetically. These methods all minimized the number of outliers, standard deviation, and average global and local error. The methods MR-ACMUNICH and MR-ACCAR-RiDR were both within acceptable quantitative limits, so these methods should be considered if processing time is a factor. The method MR-ACSEGBONE also demonstrates promising results, and performs well within the likely acceptable quantitative limits. For clinical routine scans where processing time can be a key factor, this vendor-provided solution currently outperforms most methods. With the performance of the methods presented here, it may be concluded that the challenge of improving the accuracy of MR-AC in adult brains with normal anatomy has been solved to a quantitatively acceptable degree, which is smaller than the quantification reproducibility in PET imaging.


Asunto(s)
Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Demencia/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones/métodos , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/normas , Imagen por Resonancia Magnética/normas , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones/normas , Radiofármacos , Adulto Joven
3.
Phys Med Biol ; 68(16)2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37433326

RESUMEN

Objective.Patient dose estimation in x-ray-guided interventions is essential to prevent radiation-induced biological side effects. Current dose monitoring systems estimate the skin dose based in dose metrics such as the reference air kerma. However, these approximations do not take into account the exact patient morphology and organs composition. Furthermore, accurate organ dose estimation has not been proposed for these procedures. Monte Carlo simulation can accurately estimate the dose by recreating the irradiation process generated during the x-ray imaging, but at a high computation time, limiting an intra-operative application. This work presents a fast deep convolutional neural network trained with MC simulations for patient dose estimation during x-ray-guided interventions.Approach.We introduced a modified 3D U-Net that utilizes a patient's CT scan and the numerical values of imaging settings as input to produce a Monte Carlo dose map. To create a dataset of dose maps, we simulated the x-ray irradiation process for the abdominal region using a publicly available dataset of 82 patient CT scans. The simulation involved varying the angulation, position, and tube voltage of the x-ray source for each scan. We additionally conducted a clinical study during endovascular abdominal aortic repairs to validate the reliability of our Monte Carlo simulation dose maps. Dose measurements were taken at four specific anatomical points on the skin and compared to the corresponding simulated doses. The proposed network was trained using a 4-fold cross-validation approach with 65 patients, and evaluating the performance on the remaining 17 patients during testing.Main results.The clinical validation demonstrated a average error within the anatomical points of 5.1%. The network yielded test errors of 11.5 ± 4.6% and 6.2 ± 1.5% for peak and average skin doses, respectively. Furthermore, the mean errors for the abdominal region and pancreas doses were 5.0 ± 1.4% and 13.1 ± 2.7%, respectively.Significance.Our network can accurately predict a personalized 3D dose map considering the current imaging settings. A short computation time was achieved, making our approach a potential solution for dose monitoring and reporting commercial systems.


Asunto(s)
Aprendizaje Profundo , Humanos , Dosis de Radiación , Rayos X , Reproducibilidad de los Resultados , Fantasmas de Imagen , Método de Montecarlo
4.
J Cereb Blood Flow Metab ; 39(5): 782-793, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-29333914

RESUMEN

In this study, a new hybrid PET/MRI method for quantitative regional cerebral blood flow (rCBF) measurements in healthy newborn infants was assessed and the low values of rCBF in white matter previously obtained by arterial spin labeling (ASL) were tested. Four healthy full-term newborn subjects were scanned in a PET/MRI scanner during natural sleep after median intravenous injection of 14 MBq 15O-water. Regional CBF was quantified using a one-tissue-compartment model employing an image-derived input function (IDIF) from the left ventricle. PET rCBF showed the highest values in the thalami, mesencephalon and brain stem and the lowest in cortex and unmyelinated white matter. The average global CBF was 17.8 ml/100 g/min. The average frontal and occipital unmyelinated white matter CBF was 10.3 ml/100 g/min and average thalamic CBF 31.3 ml/100 g/min. The average white matter/thalamic ratio CBF was 0.36, significantly higher than previous ASL data. The rCBF ASL measurements were all unsuccessful primarily owing to subject movement. In this study, we demonstrated for the first time, a minimally invasive PET/MRI method using low activity 15O-water PET for quantitative rCBF assessment in unsedated healthy newborn infants and found a white/grey matter CBF ratio similar to that of the adult human brain.


Asunto(s)
Encéfalo/irrigación sanguínea , Circulación Cerebrovascular , Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones/métodos , Femenino , Humanos , Recién Nacido , Masculino , Radioisótopos de Oxígeno/análisis , Marcadores de Spin , Agua/análisis
5.
Phys Med Biol ; 63(18): 185005, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30113313

RESUMEN

In tomographic medical imaging (PET, SPECT, CT), differences in data acquisition and organization are a major hurdle for the development of tomographic reconstruction software. The implementation of a given reconstruction algorithm is usually limited to a specific set of conditions, depending on the modality, the purpose of the study, the input data, or on the characteristics of the reconstruction algorithm itself. It causes restricted or limited use of algorithms, differences in implementation, code duplication, impractical code development, and difficulties for comparing different methods. This work attempts to address these issues by proposing a unified and generic code framework for formatting, processing and reconstructing acquired multi-modal and multi-dimensional data. The proposed iterative framework processes in the same way elements from list-mode (i.e. events) and histogrammed (i.e. sinogram or other bins) data sets. Each element is processed separately, which opens the way for highly parallel execution. A unique iterative algorithm engine makes use of generic core components corresponding to the main parts of the reconstruction process. Features that are specific to different modalities and algorithms are embedded into specific components inheriting from the generic abstract components. Temporal dimensions are taken into account in the core architecture. The framework is implemented in an open-source C++ parallel platform, called CASToR (customizable and advanced software for tomographic reconstruction). Performance assessments show that the time loss due to genericity remains acceptable, being one order of magnitude slower compared to a manufacturer's software optimized for computational efficiency for a given system geometry. Specific optimizations were made possible by the underlying data set organization and processing and allowed for an average speed-up factor ranging from 1.54 to 3.07 when compared to more conventional implementations. Using parallel programming, an almost linear speed-up increase (factor of 0.85 times number of cores) was obtained in a realistic clinical PET setting. In conclusion, the proposed framework offers a substantial flexibility for the integration of new reconstruction algorithms while maintaining computation efficiency.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Programas Informáticos , Algoritmos , Humanos , Fantasmas de Imagen , Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada por Rayos X/métodos
6.
Med Phys ; 44(11): 5835-5848, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28837224

RESUMEN

PURPOSE: The purpose of this study was to investigate the use of a probabilistic quad-tree graph (hidden Markov tree, HMT) to provide fast computation, robustness and an interpretational framework for multimodality image processing and to evaluate this framework for single gross tumor target (GTV) delineation from both positron emission tomography (PET) and computed tomography (CT) images. METHODS: We exploited joint statistical dependencies between hidden states to handle the data stack using multi-observation, multi-resolution of HMT and Bayesian inference. This framework was applied to segmentation of lung tumors in PET/CT datasets taking into consideration simultaneously the CT and the PET image information. PET and CT images were considered using either the original voxels intensities, or after wavelet/contourlet enhancement. The Dice similarity coefficient (DSC), sensitivity (SE), positive predictive value (PPV) were used to assess the performance of the proposed approach on one simulated and 15 clinical PET/CT datasets of non-small cell lung cancer (NSCLC) cases. The surrogate of truth was a statistical consensus (obtained with the Simultaneous Truth and Performance Level Estimation algorithm) of three manual delineations performed by experts on fused PET/CT images. The proposed framework was applied to PET-only, CT-only and PET/CT datasets, and were compared to standard and improved fuzzy c-means (FCM) multimodal implementations. RESULTS: A high agreement with the consensus of manual delineations was observed when using both PET and CT images. Contourlet-based HMT led to the best results with a DSC of 0.92 ± 0.11 compared to 0.89 ± 0.13 and 0.90 ± 0.12 for Intensity-based HMT and Wavelet-based HMT, respectively. Considering PET or CT only in the HMT led to much lower accuracy. Standard and improved FCM led to comparatively lower accuracy than HMT, even when considering multimodal implementations. CONCLUSIONS: We evaluated the accuracy of the proposed HMT-based framework for PET/CT image segmentation. The proposed method reached good accuracy, especially with pre-processing in the contourlet domain.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Cadenas de Markov , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Análisis de Ondículas
7.
Phys Med Biol ; 61(11): 4001-18, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27163656

RESUMEN

Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: (99m) Tc, (111)In and (131)I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational efficiency of SPECT imaging simulations.


Asunto(s)
Computadores , Método de Montecarlo , Tomografía Computarizada de Emisión de Fotón Único , Cámaras gamma , Fantasmas de Imagen , Fotones , Programas Informáticos , Factores de Tiempo
8.
Phys Med Biol ; 61(24): 8854-8874, 2016 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-27910823

RESUMEN

For quantitative tracer distribution in positron emission tomography, attenuation correction is essential. In a hybrid PET/CT system the CT images serve as a basis for generation of the attenuation map, but in PET/MR, the MR images do not have a similarly simple relationship with the attenuation map. Hence attenuation correction in PET/MR systems is more challenging. Typically either of two MR sequences are used: the Dixon or the ultra-short time echo (UTE) techniques. However these sequences have some well-known limitations. In this study, a reconstruction technique based on a modified and optimized non-TOF MLAA is proposed for PET/MR brain imaging. The idea is to tune the parameters of the MLTR applying some information from an attenuation image computed from the UTE sequences and a T1w MR image. In this MLTR algorithm, an [Formula: see text] parameter is introduced and optimized in order to drive the algorithm to a final attenuation map most consistent with the emission data. Because the non-TOF MLAA is used, a technique to reduce the cross-talk effect is proposed. In this study, the proposed algorithm is compared to the common reconstruction methods such as OSEM using a CT attenuation map, considered as the reference, and OSEM using the Dixon and UTE attenuation maps. To show the robustness and the reproducibility of the proposed algorithm, a set of 204 [18F]FDG patients, 35 [11C]PiB patients and 1 [18F]FET patient are used. The results show that by choosing an optimized value of [Formula: see text] in MLTR, the proposed algorithm improves the results compared to the standard MR-based attenuation correction methods (i.e. OSEM using the Dixon or the UTE attenuation maps), and the cross-talk and the scale problem are limited.


Asunto(s)
Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Imagen Multimodal , Tomografía de Emisión de Positrones , Algoritmos , Fluorodesoxiglucosa F18 , Humanos , Reproducibilidad de los Resultados , Factores de Tiempo
9.
Phys Med Biol ; 60(20): 8047-65, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26422177

RESUMEN

The reconstruction of PET brain data in a PET/MR hybrid scanner is challenging in the absence of transmission sources, where MR images are used for MR-based attenuation correction (MR-AC). The main challenge of MR-AC is to separate bone and air, as neither have a signal in traditional MR images, and to assign the correct linear attenuation coefficient to bone. The ultra-short echo time (UTE) MR sequence was proposed as a basis for MR-AC as this sequence shows a small signal in bone. The purpose of this study was to develop a new clinically feasible MR-AC method with patient specific continuous-valued linear attenuation coefficients in bone that provides accurate reconstructed PET image data. A total of 164 [(18)F]FDG PET/MR patients were included in this study, of which 10 were used for training. MR-AC was based on either standard CT (reference), UTE or our method (RESOLUTE). The reconstructed PET images were evaluated in the whole brain, as well as regionally in the brain using a ROI-based analysis. Our method segments air, brain, cerebral spinal fluid, and soft tissue voxels on the unprocessed UTE TE images, and uses a mapping of R(*)2 values to CT Hounsfield Units (HU) to measure the density in bone voxels. The average error of our method in the brain was 0.1% and less than 1.2% in any region of the brain. On average 95% of the brain was within ±10% of PETCT, compared to 72% when using UTE. The proposed method is clinically feasible, reducing both the global and local errors on the reconstructed PET images, as well as limiting the number and extent of the outliers.


Asunto(s)
Huesos/patología , Encefalopatías/diagnóstico , Encéfalo/patología , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Neuroimagen/estadística & datos numéricos , Neuroimagen/normas , Tomografía de Emisión de Positrones/métodos , Tejido Adiposo/diagnóstico por imagen , Tejido Adiposo/patología , Anciano , Huesos/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Encefalopatías/metabolismo , Líquido Cefalorraquídeo/química , Femenino , Fluorodesoxiglucosa F18/metabolismo , Humanos , Masculino , Neuroimagen/métodos , Radiofármacos/metabolismo , Estudios Retrospectivos , Tomografía Computarizada de Emisión de Fotón Único/métodos , Tomografía Computarizada por Rayos X/métodos
10.
J Nucl Med ; 55(11): 1825-30, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25278515

RESUMEN

UNLABELLED: We present an approach for head MR-based attenuation correction (AC) based on the Statistical Parametric Mapping 8 (SPM8) software, which combines segmentation- and atlas-based features to provide a robust technique to generate attenuation maps (µ maps) from MR data in integrated PET/MR scanners. METHODS: Coregistered anatomic MR and CT images of 15 glioblastoma subjects were used to generate the templates. The MR images from these subjects were first segmented into 6 tissue classes (gray matter, white matter, cerebrospinal fluid, bone, soft tissue, and air), which were then nonrigidly coregistered using a diffeomorphic approach. A similar procedure was used to coregister the anatomic MR data for a new subject to the template. Finally, the CT-like images obtained by applying the inverse transformations were converted to linear attenuation coefficients to be used for AC of PET data. The method was validated on 16 new subjects with brain tumors (n = 12) or mild cognitive impairment (n = 4) who underwent CT and PET/MR scans. The µ maps and corresponding reconstructed PET images were compared with those obtained using the gold standard CT-based approach and the Dixon-based method available on the Biograph mMR scanner. Relative change (RC) images were generated in each case, and voxel- and region-of-interest-based analyses were performed. RESULTS: The leave-one-out cross-validation analysis of the data from the 15 atlas-generation subjects showed small errors in brain linear attenuation coefficients (RC, 1.38% ± 4.52%) compared with the gold standard. Similar results (RC, 1.86% ± 4.06%) were obtained from the analysis of the atlas-validation datasets. The voxel- and region-of-interest-based analysis of the corresponding reconstructed PET images revealed quantification errors of 3.87% ± 5.0% and 2.74% ± 2.28%, respectively. The Dixon-based method performed substantially worse (the mean RC values were 13.0% ± 10.25% and 9.38% ± 4.97%, respectively). Areas closer to the skull showed the largest improvement. CONCLUSION: We have presented an SPM8-based approach for deriving the head µ map from MR data to be used for PET AC in integrated PET/MR scanners. Its implementation is straightforward and requires only the morphologic data acquired with a single MR sequence. The method is accurate and robust, combining the strengths of both segmentation- and atlas-based approaches while minimizing their drawbacks.


Asunto(s)
Encéfalo/diagnóstico por imagen , Glioblastoma/diagnóstico por imagen , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Algoritmos , Huesos/diagnóstico por imagen , Encéfalo/patología , Mapeo Encefálico/métodos , Trastornos del Conocimiento/diagnóstico por imagen , Trastornos del Conocimiento/patología , Glioblastoma/patología , Humanos , Procesamiento de Imagen Asistido por Computador , Neuroimagen , Reproducibilidad de los Resultados , Cráneo/diagnóstico por imagen
11.
Z Med Phys ; 23(1): 65-70, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22909417

RESUMEN

EduGATE is a collection of basic examples to introduce students to the fundamental physical aspects of medical imaging devices. It is based on the GATE platform, which has received a wide acceptance in the field of simulating medical imaging devices including SPECT, PET, CT and also applications in radiation therapy. GATE can be configured by commands, which are, for the sake of simplicity, listed in a collection of one or more macro files to set up phantoms, multiple types of sources, detection device, and acquisition parameters. The aim of the EduGATE is to use all these helpful features of GATE to provide insights into the physics of medical imaging by means of a collection of very basic and simple GATE macros in connection with analysis programs based on ROOT, a framework for data processing. A graphical user interface to define a configuration is also included.


Asunto(s)
Instrucción por Computador/métodos , Diagnóstico por Imagen , Física Sanitaria/educación , Radiología/educación , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA