Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Biochim Biophys Acta Gen Subj ; 1861(12): 3178-3189, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28935608

RESUMEN

BACKGROUND: Intracellular transport requires molecular motors that step along cytoskeletal filaments actively dragging cargoes through the crowded cytoplasm. Here, we explore the interplay of the opposed polarity motors kinesin-1 and cytoplasmic dynein during peroxisome transport along microtubules in Drosophila S2 cells. METHODS: We used single particle tracking with nanometer accuracy and millisecond time resolution to extract quantitative information on the bidirectional motion of organelles. The transport performance was studied in cells expressing a slow chimeric plus-end directed motor or the kinesin heavy chain. We also analyzed the influence of peroxisomes membrane fluidity in methyl-ß-ciclodextrin treated cells. The experimental data was also confronted with numerical simulations of two well-established tug of war scenarios. RESULTS AND CONCLUSIONS: The velocity distributions of retrograde and anterograde peroxisomes showed a multimodal pattern suggesting that multiple motor teams drive transport in either direction. The chimeric motors interfered with the performance of anterograde transport and also reduced the speed of the slowest retrograde team. In addition, increasing the fluidity of peroxisomes membrane decreased the speed of the slowest anterograde and retrograde teams. GENERAL SIGNIFICANCE: Our results support the existence of a crosstalk between opposed-polarity motor teams. Moreover, the slowest teams seem to mechanically communicate with each other through the membrane to trigger transport.


Asunto(s)
Microtúbulos/fisiología , Peroxisomas/metabolismo , Animales , Transporte Biológico , Células Cultivadas , Drosophila , Fluidez de la Membrana , beta-Ciclodextrinas/farmacología
2.
Biophys J ; 106(12): 2625-35, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24940780

RESUMEN

The cytoskeleton is involved in numerous cellular processes such as migration, division, and contraction and provides the tracks for transport driven by molecular motors. Therefore, it is very important to quantify the mechanical behavior of the cytoskeletal filaments to get a better insight into cell mechanics and organization. It has been demonstrated that relevant mechanical properties of microtubules can be extracted from the analysis of their motion and shape fluctuations. However, tracking individual filaments in living cells is extremely complex due, for example, to the high and heterogeneous background. We introduce a believed new tracking algorithm that allows recovering the coordinates of fluorescent microtubules with ∼9 nm precision in in vitro conditions. To illustrate potential applications of this algorithm, we studied the curvature distributions of fluorescent microtubules in living cells. By performing a Fourier analysis of the microtubule shapes, we found that the curvatures followed a thermal-like distribution as previously reported with an effective persistence length of ∼20 µm, a value significantly smaller than that measured in vitro. We also verified that the microtubule-associated protein XTP or the depolymerization of the actin network do not affect this value; however, the disruption of intermediate filaments decreased the persistence length. Also, we recovered trajectories of microtubule segments in actin or intermediate filament-depleted cells, and observed a significant increase of their motion with respect to untreated cells showing that these filaments contribute to the overall organization of the microtubule network. Moreover, the analysis of trajectories of microtubule segments in untreated cells showed that these filaments presented a slower but more directional motion in the cortex with respect to the perinuclear region, and suggests that the tracking routine would allow mapping the microtubule dynamical organization in cells.


Asunto(s)
Fenómenos Biofísicos , Rastreo Celular/métodos , Filamentos Intermedios/metabolismo , Melanóforos/citología , Melanóforos/metabolismo , Microtúbulos/metabolismo , Actinas/metabolismo , Algoritmos , Animales , Supervivencia Celular , Análisis de Fourier , Proteínas Asociadas a Microtúbulos/metabolismo , Xenopus laevis
3.
Proc Natl Acad Sci U S A ; 107(16): 7311-6, 2010 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-20368450

RESUMEN

The neurofibromatosis type 2 (NF2) tumor-suppressor protein Merlin is a member of the ERM family of proteins that links the cytoskeleton to the plasma membrane. In humans, mutations in the NF2 gene cause neurofibromatosis type-2 (NF2), a cancer syndrome characterized by the development of tumors of the nervous system. Previous reports have suggested that the subcellular distribution of Merlin is critical to its function, and that several NF2 mutants that lack tumor-suppressor activity present improper localization. Here we used a Drosophila cell culture model to study the distribution and mechanism of intracellular transport of Merlin and its mutants. We found that Drosophila Merlin formed cytoplasmic particles that move bidirectionally along microtubules. A single NF2-causing amino acid substitution in the FERM domain dramatically inhibited Merlin particle movement. Surprisingly, the presence of this immotile Merlin mutant also inhibited trafficking of the WT protein. Analysis of the movement of WT protein using RNAi and pull-downs showed that Merlin particles are associated with and moved by microtubule motors (kinesin-1 and cytoplasmic dynein), and that binding of motors and movement is regulated by Merlin phosphorylation. Inhibition of Merlin transport by expression of the dominant-negative mutant or depletion of kinesin-1 results in increased nuclear accumulation of the transcriptional coactivator Yorkie. These results demonstrate the requirement of microtubule-dependent transport for Merlin function.


Asunto(s)
Drosophila melanogaster/metabolismo , Dineínas/metabolismo , Microtúbulos/metabolismo , Neurofibromina 2/metabolismo , Neurofibromina 2/fisiología , Animales , Transporte Biológico , Concanavalina A/metabolismo , Citoplasma/metabolismo , Proteínas de Drosophila/metabolismo , Endocitosis , Proteínas Fluorescentes Verdes/metabolismo , Cinesinas/metabolismo , Modelos Biológicos , Proteínas Nucleares/metabolismo , Fosforilación , Estructura Terciaria de Proteína , Transactivadores/metabolismo , Proteínas Señalizadoras YAP
4.
J Cell Sci ; 120(Pt 4): 658-69, 2007 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-17264147

RESUMEN

IQGAP1 has been implicated as a regulator of cell motility because its overexpression or underexpression stimulates or inhibits cell migration, respectively, but the underlying mechanisms are not well understood. Here, we present evidence that IQGAP1 stimulates branched actin filament assembly, which provides the force for lamellipodial protrusion, and that this function of IQGAP1 is regulated by binding of type 2 fibroblast growth factor (FGF2) to a cognate receptor, FGFR1. Stimulation of serum-starved MDBK cells with FGF2 promoted IQGAP1-dependent lamellipodial protrusion and cell migration, and intracellular associations of IQGAP1 with FGFR1--and two other factors--the Arp2/3 complex and its activator N-WASP, that coordinately promote nucleation of branched actin filament networks. FGF2 also induced recruitment of IQGAP1, FGFR1, N-WASP and Arp2/3 complex to lamellipodia. N-WASP was also required for FGF2-stimulated migration of MDBK cells. In vitro, IQGAP1 bound directly to the cytoplasmic tail of FGFR1 and to N-WASP, and stimulated branched actin filament nucleation in the presence of N-WASP and the Arp2/3 complex. Based on these observations, we conclude that IQGAP1 links FGF2 signaling to Arp2/3 complex-dependent actin assembly by serving as a binding partner for FGFR1 and as an activator of N-WASP.


Asunto(s)
Actinas/metabolismo , Movimiento Celular/fisiología , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal , Proteínas Activadoras de ras GTPasa/fisiología , Proteína 2 Relacionada con la Actina/metabolismo , Proteína 3 Relacionada con la Actina/metabolismo , Animales , Bovinos , Línea Celular , Movimiento Celular/efectos de los fármacos , Factor 2 de Crecimiento de Fibroblastos/farmacología , Riñón/citología , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo
5.
Cell Motil Cytoskeleton ; 58(4): 231-41, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15236354

RESUMEN

IQGAP1 is a homodimeric protein that reversibly associates with F-actin, calmodulin, activated Cdc42 and Rac1, CLIP-170, beta-catenin, and E-cadherin. Its F-actin binding site includes a calponin homology domain (CHD) located near the N-terminal of each subunit. Prior studies have implied that medium- to high-affinity F-actin binding (5-50 microM K(d)) requires multiple CHDs located either on an individual polypeptide or on distinct subunits of a multimeric protein. For IQGAP1, a series of six tandem IQGAP coiled-coil repeats (IRs) located past the C-terminal of the CHD of each subunit support protein dimerization and, by extension, the IRs or an undefined subset of them were thought to be essential for F-actin binding mediated by its CHDs. Here we describe efforts to determine the minimal region of IQGAP1 capable of binding F-actin. Several truncation mutants of IQGAP1, which contain progressive deletions of the IRs and CHD, were assayed for F-actin binding in vitro. Fragments that contain both the CHD and at least one IR could bind F-actin and, as expected, removal of all six IRs and the CHD abolished binding. Unexpectedly, a fragment called IQGAP1(2-210), which contains the CHD, but lacks IRs, could bind actin filaments. IQGAP1(2-210) was found to be monomeric, to bind F-actin with a K(d) of approximately 47 microM, to saturate F-actin at a molar ratio of one IQGAP1(2-210) per actin monomer, and to co-localize with cortical actin filaments when expressed by transfection in cultured cells. These collective results identify the first known example of high-affinity actin filament binding mediated by a single CHD.


Asunto(s)
Actinas/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo , Animales , Células COS , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Chlorocebus aethiops , Dimerización , Células HeLa , Humanos , Proteínas de Microfilamentos , Microscopía Fluorescente , Peso Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Estructura Terciaria de Proteína , Conejos , Transfección , Proteínas Activadoras de ras GTPasa/química , Calponinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA