Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Intervalo de año de publicación
1.
Plant Cell Environ ; 47(3): 782-798, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37994626

RESUMEN

The relationship between plants and pollinators is known to be influenced by ecological interactions with other community members. While most research has focused on aboveground communities affecting plant-pollinator interactions, it is increasingly recognized that soil-dwelling organisms can directly or indirectly impact these interactions. Although studies have examined the effects of arbuscular mycorrhizal fungi on floral traits, there is a gap in research regarding similar effects associated with plant growth-promoting rhizobacteria (PGPR), particularly concerning floral scent. Our study aimed to investigate the influence of the PGPR Bacillus amyloliquefaciens on the floral traits of wild (Solanum habrochaites, Solanum pimpinellifolium and Solanum peruvianum) and cultivated tomato (Solanum lycopersicum), as well as the impact of microbially-driven changes in floral scent on the foraging behaviour of the stingless bee Melipona quadrifasciata. Our findings revealed that inoculating tomatoes with PGPR led to an increased number of flowers and enhanced overall floral volatile emission. Additionally, we observed higher flower biomass and pollen levels in all species, except S. peruvianum. Importantly, these changes in volatile emissions influenced the foraging behaviour of M. quadrifasciata significantly. Our results highlight the impact of beneficial soil microbes on plant-pollinator interactions, shedding light on the multiple effects that plant-microbial interactions can have on aboveground organisms.


Asunto(s)
Solanum lycopersicum , Solanum , Animales , Polinización , Flores , Plantas , Polen , Suelo
2.
Planta ; 257(4): 76, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36894799

RESUMEN

MAIN CONCLUSION: Cultivated tomato presented lower constitutive volatiles, reduced morphological and chemical defenses, and increased leaf nutritional quality that affect its resistance against the specialist herbivore Tuta absoluta compared to its wild relatives. Plant domestication process has selected desirable agronomic attributes that can both intentionally and unintentionally compromise other important traits, such as plant defense and nutritional value. However, the effect of domestication on defensive and nutritional traits of plant organs not exposed to selection and the consequent interactions with specialist herbivores are only partly known. Here, we hypothesized that the modern cultivated tomato has reduced levels of constitutive defense and increased levels of nutritional value compared with its wild relatives, and such differences affect the preference and performance of the South American tomato pinworm, Tuta absoluta-an insect pest that co-evolved with tomato. To test this hypothesis, we compared plant volatile emissions, leaf defensive (glandular and non-glandular trichome density, and total phenolic content), and nutritional traits (nitrogen content) among the cultivated tomato Solanum lycopersicum and its wild relatives S. pennellii and S. habrochaites. We also determined the attraction and ovipositional preference of female moths and larval performance on cultivated and wild tomatoes. Volatile emissions were qualitatively and quantitatively different among the cultivated and wild species. Glandular trichomes density and total phenolics were lower in S. lycopersicum. In contrast, this species had a greater non-glandular trichome density and leaf nitrogen content. Female moths were more attracted and consistently laid more eggs on the cultivated S. lycopersicum. Larvae fed on S. lycopersicum leaves had a better performance reaching shorter larval developmental times and increasing the pupal weight compared to those fed on wild tomatoes. Overall, our study documents that agronomic selection for increased yields has altered the defensive and nutritional traits in tomato plants, affecting their resistance to T. absoluta.


Asunto(s)
Mariposas Nocturnas , Solanum lycopersicum , Solanum , Animales , Herbivoria , Larva , Nitrógeno
3.
Naturwissenschaften ; 110(1): 3, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36700962

RESUMEN

Cyclocephaline beetles are flower visitors attracted primarily by major floral volatiles. Addressing the identity of these volatile compounds is pivotal for understanding the evolution of plant-beetle interactions. We report the identification and field testing of the attractant volatiles from trumpet flowers, Brugmansia suaveolens (Willd.) Sweet (Solanaceae), for the beetle Cyclocephala paraguayensis Arrow (Melolonthidae: Dynastinae). Analysis of headspace floral volatiles revealed 19 compounds, from which eucalyptol (57%), methyl benzoate (16%), and ß-myrcene (6%) were present in the largest amounts, whereas E-nerolidol in much lesser amounts (1.8%). During a first-field assay, traps baited with Mebe alone or blended with the other two major compounds attracted more beetles than myrcene and eucalyptol alone, which did not differ from the negative controls. In a second assay, Mebe and nerolidol attracted more beetles as a blend than individually. Nerolidol was more attractive than Mebe, and all treatments attracted more beetles than negative controls. The number of attracted beetles in the Mebe-nerolidol blend was greater than the combined sum of beetles attracted to these compounds alone, suggesting a synergistic interaction. The attraction of C. paraguayensis by trumpet-flower volatiles supports the beetle's extended preference for sphingophilous plants, especially when cantharophilous (beetle-pollinated) flowers are lacking. This phenomenon, thus, might have contributed to the widespread occurrence of this beetle throughout the Brazilian biomes.


Asunto(s)
Escarabajos , Solanaceae , Animales , Eucaliptol , Flores , Feromonas
4.
J Chem Ecol ; 49(11-12): 696-709, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37875650

RESUMEN

Co-infestations by herbivores, a common situation found in natural settings, can distinctly affect induced plant defenses compared to single infestations. Related tritrophic interactions might be affected through the emission of changed blends of herbivore-induced plant volatiles (HIPVs). In a previous study, we observed that the infestation by red spider mite (Oligonychus ilicis) on coffee plants facilitated the infestation by white mealybug (Planococcus minor), whereas the reverse sequence of infestation did not occur. Here, we examined the involvement of the jasmonate and salicylate pathways in the plant-mediated asymmetrical facilitation between red spider mites and white mealybugs as well as the effect of multiple herbivory on attractiveness to the predatory mite Euseius concordis and the ladybug Cryptolaemus montrouzieri. Both mite and mealybug herbivory led to the accumulation of JA-Ile, JA, and cis-OPDA in plants, although the catabolic reactions of JA-Ile were specifically regulated by each herbivore. Infestation by mites or mealybugs induced the release of novel volatiles by coffee plants, which selectively attracted their respective predators. Even though the co-infestation by mites and mealybugs resulted in a stronger accumulation of JA-Ile, JA and SA than the single infestation treatments, the volatile emission was similar to that of mite-infested or mealybug-infested plants. However, multiple infestation had a negative impact on the attractiveness of HIPVs to the predators, making them less attractive to the predatory mite and a repellent to the ladybug. We discuss the potential underlying mechanisms of the susceptibility induced by mites, and the effect of multiple infestation on each predator.


Asunto(s)
Coffea , Tetranychidae , Animales , Herbivoria , Café , Ciclopentanos/metabolismo
5.
J Chem Ecol ; 48(5-6): 569-582, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35501536

RESUMEN

A novel trisubstituted tetrahydropyran was isolated and identified from the sex-specific volatiles produced by males of the cerambycid beetle Macropophora accentifer (Olivier), a serious pest of citrus and other fruit crops in South America. The compound was the major component in the headspace volatiles, and it was synthesized in racemic form. However, in field trials, the racemate was only weakly attractive to beetles of both sexes, suggesting that attraction might be inhibited by the presence of the "unnatural" enantiomer in the racemate. Alternatively, the male-produced volatiles contained a number of minor and trace components, including a compound tentatively identified as a homolog of the major component, as well as a number of unsaturated 8-carbon alcohols and aldehydes. Further work is required to conclusively identify and synthesize these minor components, to determine whether one or more of them are crucial components of the active pheromone blend for this species.


Asunto(s)
Escarabajos , Atractivos Sexuales , Arañas , Aldehídos , Animales , Femenino , Masculino , Feromonas , Atractivos Sexuales/farmacología
6.
Naturwissenschaften ; 109(1): 9, 2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34913094

RESUMEN

The use of nectar-producing companion plants in crops is a well-known strategy of conserving natural enemies in biological control. However, the role of floral volatiles in attracting parasitoids and effects on host location via herbivore-induced plant volatiles is poorly known. Here, we examined the role of floral volatiles from marigold (Tagetes erecta), alone or in combination with volatiles from sweet pepper plant (Capsicum annuum), in recruiting Aphidius platensis, an important parasitoid of the green peach aphid Myzus persicae. We also investigated whether marigold floral volatiles are more attractive to the parasitoid than those emitted by sweet pepper plants infested by M. persicae. Olfactometry assays indicated that floral volatiles attracted A. platensis to the marigold plant and are more attractive than sweet pepper plant volatiles. However, volatiles emitted by aphid-infested sweet pepper were as attractive to the parasitoid as those of uninfested or aphid-infested blooming marigold. The composition of volatile blends released by uninfested and aphid-infested plants differed between both blooming marigold and sweet pepper, but the parasitoid did not discriminate aphid-infested from uninfested blooming marigold. Volatile released from blooming marigold and sweet pepper shared several compounds, but that of blooming marigold contained larger amounts of fatty-acid derivatives and a different composition of terpenes. We discuss the potential implications of the aphid parasitoid attraction in a diversified crop management strategy.


Asunto(s)
Áfidos , Himenópteros , Tagetes , Compuestos Orgánicos Volátiles , Animales , Herbivoria , Interacciones Huésped-Parásitos , Néctar de las Plantas
7.
J Chem Ecol ; 47(12): 941-949, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34532812

RESUMEN

Here, we study the pheromone chemistry of two South American cerambycid beetle species, and their behavioral responses to candidate pheromone components. Adult males of Stizocera phtisica Gounelle (subfamily Cerambycinae: tribe Elaphidiini) produced a sex-specific blend of (R)-3-hydroxyhexan-2-one with lesser amounts of 3-methylthiopropan-1-ol. In field bioassays, traps baited with racemic 3-hydroxyhexan-2-one and 3-methylthiopropan-1-ol did not catch conspecific beetles, but did catch both sexes of a sympatric species, Chydarteres dimidiatus dimidiatus (F.) (Cerambycinae: Trachyderini). We found that males of this species also produce (R)-3-hydroxyhexan-2-one and 3-methylthiopropan-1-ol, and small amounts of 2-phenylethanol. Subsequent bioassays with these compounds showed that a blend of 3-hydroxyhexan-2-one and 3-methylthiopropan-1-ol constitutes the aggregation-sex pheromone of C. d. dimidiatus, with 2-phenylethanol not influencing the attraction of conspecifics. During the field bioassays, six other species in the Cerambycinae also were caught in significant numbers, including Aglaoschema ventrale (Germar) (tribe Compsocerini), congeners Chrysoprasis aurigena (Germar), Chrysoprasis linearis Bates, and an unidentified Chrysoprasis species (Dichophyiini), and Cotyclytus curvatus (Germar) and Itaclytus olivaceus (Laporte & Gory) (both Clytini), suggesting that one or more of the compounds tested are also pheromone components for these species.


Asunto(s)
Escarabajos/efectos de los fármacos , Feromonas/farmacología , Animales , Escarabajos/fisiología , Hexanonas/farmacología , Masculino , América del Sur , Especificidad de la Especie
8.
PLoS Pathog ; 12(9): e1005869, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27607357

RESUMEN

The interaction between an antibiotic and bacterium is not merely restricted to the drug and its direct target, rather antibiotic induced stress seems to resonate through the bacterium, creating selective pressures that drive the emergence of adaptive mutations not only in the direct target, but in genes involved in many different fundamental processes as well. Surprisingly, it has been shown that adaptive mutations do not necessarily have the same effect in all species, indicating that the genetic background influences how phenotypes are manifested. However, to what extent the genetic background affects the manner in which a bacterium experiences antibiotic stress, and how this stress is processed is unclear. Here we employ the genome-wide tool Tn-Seq to construct daptomycin-sensitivity profiles for two strains of the bacterial pathogen Streptococcus pneumoniae. Remarkably, over half of the genes that are important for dealing with antibiotic-induced stress in one strain are dispensable in another. By confirming over 100 genotype-phenotype relationships, probing potassium-loss, employing genetic interaction mapping as well as temporal gene-expression experiments we reveal genome-wide conditionally important/essential genes, we discover roles for genes with unknown function, and uncover parts of the antibiotic's mode-of-action. Moreover, by mapping the underlying genomic network for two query genes we encounter little conservation in network connectivity between strains as well as profound differences in regulatory relationships. Our approach uniquely enables genome-wide fitness comparisons across strains, facilitating the discovery that antibiotic responses are complex events that can vary widely between strains, which suggests that in some cases the emergence of resistance could be strain specific and at least for species with a large pan-genome less predictable.


Asunto(s)
Antibacterianos/farmacología , Daptomicina/farmacología , Farmacorresistencia Bacteriana/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/fisiología , Genoma Bacteriano , Streptococcus pneumoniae/genética , Farmacorresistencia Bacteriana/efectos de los fármacos , Streptococcus pneumoniae/crecimiento & desarrollo
9.
J Chem Ecol ; 44(12): 1115-1119, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30306314

RESUMEN

We describe the identification, synthesis, and field bioassays of a novel aggregation-sex pheromone produced by males of Susuacanga octoguttata (Germar), a South American cerambycid beetle. Analyses of extracts of headspace volatiles produced by adult beetles revealed a sex-specific compound emitted by males which was identified as (Z)-7-hexadecene by microchemical and spectroscopic analyses. The synthesized pheromone was attractive to beetles of both sexes in field trials. This unsaturated hydrocarbon motif is unprecedented among cerambycid pheromones identified to date. During field bioassays, we serendipitously discovered that adults of S. octoguttata trapped in two Brazilian biomes differed considerably in elytral markings, although males from both populations produced (Z)-7-hexadecene as an aggregation-sex pheromone.


Asunto(s)
Alquenos/síntesis química , Escarabajos/fisiología , Atractivos Sexuales/química , Alquenos/química , Alquenos/farmacología , Animales , Escarabajos/química , Femenino , Masculino , Atractivos Sexuales/farmacología , Conducta Sexual Animal/efectos de los fármacos , América del Sur , Espectrometría de Masa por Ionización de Electrospray , Estereoisomerismo
10.
J Chem Ecol ; 44(3): 268-275, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29430578

RESUMEN

During field screening trials conducted in Brazil in 2015, adults of both sexes of the cerambycid beetles Cotyclytus curvatus (Germar) and Megacyllene acuta (Germar) (subfamily Cerambycinae, tribe Clytini) were significantly attracted to racemic 3-hydroxyhexan-2-one and racemic 2-methylbutan-1-ol, chemicals which previously have been identified as male-produced aggregation-sex pheromones of a number of cerambycid species endemic to other continents. Subsequent analyses of samples of beetle-produced volatiles revealed that males of C. curvatus sex-specifically produce only (R)-3-hydroxyhexan-2-one, whereas males of M. acuta produce the same compound along with lesser amounts of (2S,3S)-2,3-hexanediol and (S)-2-methylbutan-1-ol. Follow-up field trials showed that both sexes of both species were attracted to synthetic reconstructions of their respective pheromones, confirming that males produce aggregation-sex pheromones. The minor pheromone components of M. acuta, (S)-2-methylbutan-1-ol and (2S,3S)-2,3-hexanediol, synergized attraction of that species, but antagonized attraction of C. curvatus to (R)-3-hydroxyhexan-2-one. Beetles of other cerambycine species also were attracted in significant numbers, including Chrysoprasis linearis Bates, Cotyclytus dorsalis (Laporte & Gory), and Megacyllene falsa (Chevrolat). Our results provide further evidence that 3-hydroxyhexan-2-one is a major component of attractant pheromones of numerous cerambycine species world-wide. Our results also highlight our increasing understanding of the crucial role of minor pheromone components in imparting species specificity to cerambycid pheromone blends, as is known to occur in numerous species in other insect families.


Asunto(s)
Escarabajos/efectos de los fármacos , Atractivos Sexuales/farmacología , Conducta Sexual Animal/efectos de los fármacos , Animales , Bioensayo , Femenino , Masculino , Compuestos Orgánicos Volátiles/farmacología
11.
J Chem Ecol ; 44(1): 29-39, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29177897

RESUMEN

Plants emit volatile compounds in response to insect herbivory, which may play multiple roles as defensive compounds and mediators of interactions with other plants, microorganisms and animals. Herbivore-induced plant volatiles (HIPVs) may act as indirect plant defenses by attracting natural enemies of the attacking herbivore. We report here the first evidence of the attraction of three Neotropical mirid predators (Macrolophus basicornis, Engytatus varians and Campyloneuropsis infumatus) toward plants emitting volatiles induced upon feeding by two tomato pests, the leaf miner Tuta absoluta and the phloem feeder Bemisia tabaci, in olfactometer bioassays. Subsequently, we compared the composition of volatile blends emitted by insect-infested tomato plants by collecting headspace samples and analyzing them with GC-FID and GC-MS. Egg deposition by T. absoluta did not make tomato plants more attractive to the mirid predators than uninfested tomato plants. Macrolophus basicornis is attracted to tomato plants infested with either T. absoluta larvae or by a mixture of B. tabaci eggs, nymphs and adults. Engytatus varians and C. infumatus responded to volatile blends released by tomato plants infested with T. absoluta larvae over uninfested plants. Also, multiple herbivory by T. absoluta and B. tabaci did not increase the attraction of the mirids compared to infestation with T. absoluta alone. Terpenoids represented the most important class of compounds in the volatile blends and there were significant differences between the volatile blends emitted by tomato plants in response to attack by T. absoluta, B. tabaci, or by both insects. We, therefore, conclude that all three mirids use tomato plant volatiles to find T. absoluta larvae. Multiple herbivory did neither increase, nor decrease attraction of C. infumatus, E. varians and M. basicornis. By breeding for higher rates of emission of selected terpenes, increased attractiveness of tomato plants to natural enemies may improve the effectiveness of biological control.


Asunto(s)
Heterópteros/fisiología , Mariposas Nocturnas/fisiología , Solanum lycopersicum/química , Animales , Femenino , Cromatografía de Gases y Espectrometría de Masas , Heterópteros/crecimiento & desarrollo , Larva/efectos de los fármacos , Larva/fisiología , Solanum lycopersicum/metabolismo , Mariposas Nocturnas/crecimiento & desarrollo , Ninfa/efectos de los fármacos , Ninfa/fisiología , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Conducta Predatoria/efectos de los fármacos , Análisis de Componente Principal , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/farmacología
12.
Naturwissenschaften ; 104(9-10): 77, 2017 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-28871442

RESUMEN

Numerous studies have demonstrated that entomophagous arthropods use herbivore-induced plant volatile (HIPV) blends to search for their prey or host. However, no study has yet focused on the response of nocturnal predators to volatile blends emitted by prey damaged plants. We investigated the olfactory behavioral responses of the night-active generalist predatory earwig Doru luteipes Scudder (Dermaptera: Forficulidae) to diurnal and nocturnal volatile blends emitted by maize plants (Zea mays) attacked by either a stem borer (Diatraea saccharalis) or a leaf-chewing caterpillar (Spodoptera frugiperda), both suitable lepidopteran prey. Additionally, we examined whether the earwig preferred odors emitted from short- or long-term damaged maize. We first determined the earwig diel foraging rhythm and confirmed that D. luteipes is a nocturnal predator. Olfactometer assays showed that during the day, although the earwigs were walking actively, they did not discriminate the volatiles of undamaged maize plants from those of herbivore damaged maize plants. In contrast, at night, earwigs preferred volatiles emitted by maize plants attacked by D. saccharalis or S. frugiperda over undamaged plants and short- over long-term damaged maize. Our GC-MS analysis revealed that short-term damaged nocturnal plant volatile blends were comprised mainly of fatty acid derivatives (i.e., green leaf volatiles), while the long-term damaged plant volatile blend contained mostly terpenoids. We also observed distinct volatile blend composition emitted by maize damaged by the different caterpillars. Our results showed that D. luteipes innately uses nocturnal herbivore-induced plant volatiles to search for prey. Moreover, the attraction of the earwig to short-term damaged plants is likely mediated by fatty acid derivatives.


Asunto(s)
Herbivoria , Animales , Cromatografía de Gases y Espectrometría de Masas , Hojas de la Planta , Spodoptera , Zea mays
13.
Oecologia ; 182(4): 933-946, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27538674

RESUMEN

Volatile organic compounds (VOCs) mediate both mutualistic and antagonistic plant-animal interactions; thus, the attraction of mutualists and antagonists by floral VOCs constitutes an important trade-off in the evolutionary ecology of angiosperms. Here, we evaluate the role of VOCs in mediating communication between the plant and its mutualist and antagonist floral visitors. To assess the evolutionary consequences of VOC-mediated signalling to distinct floral visitors, we studied the reproductive ecology of Dichaea pendula, assessing the effects of florivores on fruit set, the pollination efficiency of pollinators and florivores, the floral scent composition and the attractiveness of the major VOC to pollinators and florivores. The orchid depends entirely on orchid-bees for sexual reproduction, and the major florivores, the weevils, feed on corollas causing self-pollination, triggering abortion of 26.4 % of the flowers. Floral scent was composed of approximately 99 % 2-methoxy-4-vinylphenol, an unusual floral VOC attractive to pollinators and florivores. The low fruit set from natural pollination (5.6 %) compared to hand cross-pollination (45.5 %) and low level of pollinator visitation [0.02 visits (flower hour)-1] represent the limitations to pollination. Our research found that 2-methoxy-4-vinylphenol mediates both mutualistic and antagonistic interactions, which could result in contrary evolutionary pressures on novo-emission. The scarcity of pollinators, not florivory, was the major constraint to fruit set. Our results suggest that, rather than anti-florivory adaptations, adaptations to enhance pollinator attraction and cross-pollination might be the primary drivers of the evolution of VOC emission in euglossine-pollinated flowers.


Asunto(s)
Orchidaceae , Polinización , Animales , Abejas , Evolución Biológica , Flores , Simbiosis
14.
J Chem Ecol ; 42(10): 1082-1085, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27515934

RESUMEN

We report the identification, synthesis, and first field bioassays of a pheromone component with a novel structure produced by adult males of Chlorida festiva (L.) and Chlorida costata Audinet-Serville, longhorn beetle species in the subfamily Cerambycinae. Headspace volatiles from males contained a sex-specific compound that was identified as (6E,8Z)-6,8-pentadecadienal. Traps baited with this compound captured adults of both species and sexes, consistent with the aggregation-sex pheromones produced by males of many species in this subfamily. This compound represents a new structural class of cerambycid pheromones, and it is the first pheromone identified from species in the tribe Bothriospilini.


Asunto(s)
Aldehídos/metabolismo , Alquenos/metabolismo , Escarabajos/fisiología , Atractivos Sexuales/metabolismo , Aldehídos/análisis , Alquenos/análisis , Animales , Cromatografía de Gases , Escarabajos/química , Femenino , Masculino , Atractivos Sexuales/análisis , Conducta Sexual Animal , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo
15.
Biosci Biotechnol Biochem ; 80(5): 848-55, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26873673

RESUMEN

The guava weevil, Conotrachelus psidii is an aggressive pest of guava (Psidium guajava L.) that causes irreparable damages inside the fruit. The volatile compounds of male and female insects were separately collected by headspace solid-phase microextraction or with dynamic headspace collection on a polymer sorbent, and comparatively analyzed by GC-MS. (1R,2S,6R)-2-Hydroxymethyl-2,6-dimethyl-3-oxabicyclo[4.2.0]octane (papayanol), and (1R,2S,6R)-2,6-dimethyl-3-oxabicyclo[4.2.0]octane-2-carbaldehyde (papayanal) were identified (ratio of 9:1, respectively) as male-specific guava weevil volatiles. Papayanal structure was confirmed by comparison of spectroscopic (EIMS) and chromatographic (retention time) data with those of the synthetic pure compound. The behavioral response of the above-mentioned compounds was studied in a Y-tube olfactometer bioassay, and their role as aggregation pheromone candidate components was suggested in this species.


Asunto(s)
Aldehídos/aislamiento & purificación , Compuestos Bicíclicos Heterocíclicos con Puentes/aislamiento & purificación , Feromonas/aislamiento & purificación , Psidium/parasitología , Compuestos Orgánicos Volátiles/aislamiento & purificación , Gorgojos/efectos de los fármacos , Aldehídos/farmacología , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Bioensayo , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Femenino , Frutas/parasitología , Cromatografía de Gases y Espectrometría de Masas , Masculino , Feromonas/farmacología , Microextracción en Fase Sólida , Compuestos Orgánicos Volátiles/farmacología , Gorgojos/fisiología
16.
J Insect Sci ; 142014.
Artículo en Inglés | MEDLINE | ID: mdl-25502043

RESUMEN

The beetle, Anomala testaceipennis Blanchard (Coleoptera: Scarabaeidae), occurs in central-western Brazil where larvae feed on the roots of plants causing damage. This research aimed to study sexual dimorphism and mating behavior of A. testaceipennis. Adults of A. testaceipennis were collected with light traps in the experimental area of the State University of Mato Grosso do Sul, in Aquidauana. Laboratory experiments were performed to describe copulation behavior and adult morphology of males and females. In males the last abdominal segment has a pronounced constriction, which is absent in females, and the male's last segment of the first pair of legs has a ventral projection, which is poorly developed in females. The mating activities of adults begin soon after sunset, when adults leave the soil and fly. When the male encounters a female, he touches her with antennae and tarsi. If accepted, the male climbs on the female and remains on her back, and soon after the copulation begins. When the female does not accept the male for mating, she moves rapidly and can roll on the ground, and by so removing the male. In the field, adults feed and mate on bloomed trees of Oiti, Licania tomentosa Benth (Malpighiales: Chrysobalanaceae) and Louro, Cordia glabrata Martius (Boraginaceae). In trees without inflorescences no adults of this species were found.


Asunto(s)
Escarabajos/fisiología , Copulación/fisiología , Caracteres Sexuales , Animales , Boraginaceae , Brasil , Chrysobalanaceae , Escarabajos/anatomía & histología , Femenino , Flores , Masculino , Conducta Sexual Animal
17.
J Econ Entomol ; 117(3): 1032-1040, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38625049

RESUMEN

3-Hydroxyhexan-2-one (3-C6-ketol) has emerged as the most conserved pheromone structure within the beetle family Cerambycidae. In this study, we report the sex-specific production of this compound by males of 12 species of South American cerambycid beetles. Males of Chrysoprasis chalybea Redtenbacher and Mallosoma zonatum (Sahlberg) (Tribe Dichophyiini), and Ambonus lippus (Germar), Eurysthea hirta (Kirby), Pantonyssus nigriceps Bates, Stizocera plicicollis (Germar), and Stizocera tristis (Guérin-Méneville) (Elaphidiini) produced 3R-C6-ketol as a single component, whereas males of Neoclytus pusillus (Laporte & Gory) (Clytini), Aglaoschema concolor (Gounelle), Orthostoma abdominale (Gyllenhal) (Compsocerini), Dorcacerus barbatus (Olivier), and Retrachydes thoracicus thoracicus (Olivier) (Trachyderini) produced 3R-C6-ketol, along with lesser amounts of other compounds. In field trials testing 8 known cerambycid pheromone compounds, C. chalybea, E. hirta, and R. t. thoracicus were attracted in significant numbers to traps baited with 3-C6-ketol. A second field experiment provided support for the strategy of using the attraction of cerambycid species to test lures as a method of providing leads to their likely pheromone components. Because both sexes are attracted to these aggregation-sex pheromones, live beetles can be obtained from baited traps to verify they produce the compound(s) to which they were attracted, that is, that the compounds are indeed pheromone components.


Asunto(s)
Escarabajos , Animales , Masculino , Femenino , Hexanonas/farmacología , Feromonas/farmacología , Atractivos Sexuales/farmacología , Especificidad de la Especie , América del Sur
18.
Sci Rep ; 14(1): 455, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172384

RESUMEN

The Asian Citrus Psyllid (ACP), Diaphorina citri, is a vector of the pathological bacterium Candidatus Liberibacter asiaticus (CLas), which causes the most devastating disease to the citrus industry worldwide, known as greening or huanglongbing (HLB). Earlier field tests with an acetic acid-based lure in greening-free, 'Valencia' citrus orange groves in California showed promising results. The same type of lures tested in São Paulo, Brazil, showed unsettling results. During the unsuccessful trials, we noticed a relatively large proportion of females in the field, ultimately leading us to test field-collected males and females for Wolbachia and CLas. The results showed high rates of Wolbachia and CLas infection in field populations. We then compared the olfactory responses of laboratory-raised, CLas-free, and CLas-infected males to acetic acid. As previously reported, CLas-uninfected males responded to acetic acid at 1 µg. Surprisingly, CLas-infected males required 50 × higher doses of the putative sex pheromone, thus explaining the failure to capture CLas-infected males in the field. CLas infection was also manifested in electrophysiological responses. Electroantennogram responses from CLas-infected ACP males were significantly higher than those obtained with uninfected males. To the best of our knowledge, this is the first report of a pathogen infection affecting a vector's response to a sex attractant.


Asunto(s)
Citrus sinensis , Citrus , Hemípteros , Rhizobiaceae , Atractivos Sexuales , Wolbachia , Femenino , Masculino , Animales , Hemípteros/fisiología , Atractivos Sexuales/farmacología , Brasil , Citrus/microbiología , Rhizobiaceae/fisiología , Acetatos , Enfermedades de las Plantas/microbiología
19.
Ecol Evol ; 13(8): e10416, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37575593

RESUMEN

Abiotic factors strongly influence ecological interactions and the spatial distribution of organisms. Despite the essential role of barometric pressure, its influence on insect behaviour remains poorly understood, particularly in predators. The effect of barometric pressure variation can significantly impact biological control programs involving entomophagous insects, as they must efficiently allocate time and energy to search for prey in challenging environments. We investigated how predatory insects from different taxonomic groups (Coleoptera, Dermaptera and Neuroptera) adapt their foraging behaviour in response to variations in barometric pressure (low, medium and high). We also examined the response of different life stages to changes in pressure regimes during foraging activities. Our results showed that the searching time of Doru luteipes (Dermaptera: Forficulidae) was faster in a favourable high-pressure regime, whereas Chrysoperla externa (Neuroptera: Chrysopidae) and Eriopis connexa (Coleoptera: Coccinellidae) had similar searching times under varying pressure regimes. Although no differences in prey feeding time were observed among the studied species, the consumption rate was influenced by low barometric pressure leading to a decrease in the number of preyed eggs. Moreover, we provide novel insights into how hemimetabolous (D. luteipes) and holometabolous (E. connexa) species at different life stages respond to barometric pressure. Doru luteipes nymphs and adults had similar consumption rates across all pressure regimes tested, whereas E. connexa larvae consumed fewer eggs under low barometric pressure, but adults were unaffected. This highlights the importance of investigating how abiotic factors affect insects foraging efficiency and predator-prey interactions. Such studies are especially relevant in the current context of climate change, as even subtle changes in abiotic factors can have strong effects on insect behaviour. Barometric pressure is a key meteorological variable that serve as a warning signal for insects to seek shelter and avoid exposure to weather events that could potentially increase their mortality. Understanding the effects of barometric pressure on predatory insects' behaviour can help us develop more effective pest management strategies and promote the resilience of agroecosystems. We provide new insights into the complex relationship between barometric pressure and predator-prey interactions.

20.
Sci Data ; 10(1): 99, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36823157

RESUMEN

Biomedical datasets are increasing in size, stored in many repositories, and face challenges in FAIRness (findability, accessibility, interoperability, reusability). As a Consortium of infectious disease researchers from 15 Centers, we aim to adopt open science practices to promote transparency, encourage reproducibility, and accelerate research advances through data reuse. To improve FAIRness of our datasets and computational tools, we evaluated metadata standards across established biomedical data repositories. The vast majority do not adhere to a single standard, such as Schema.org, which is widely-adopted by generalist repositories. Consequently, datasets in these repositories are not findable in aggregation projects like Google Dataset Search. We alleviated this gap by creating a reusable metadata schema based on Schema.org and catalogued nearly 400 datasets and computational tools we collected. The approach is easily reusable to create schemas interoperable with community standards, but customized to a particular context. Our approach enabled data discovery, increased the reusability of datasets from a large research consortium, and accelerated research. Lastly, we discuss ongoing challenges with FAIRness beyond discoverability.


Asunto(s)
Enfermedades Transmisibles , Conjuntos de Datos como Asunto , Metadatos , Reproducibilidad de los Resultados , Conjuntos de Datos como Asunto/normas , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA