Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 565(7740): 476-479, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30675043

RESUMEN

Although the terrestrial biosphere absorbs about 25 per cent of anthropogenic carbon dioxide (CO2) emissions, the rate of land carbon uptake remains highly uncertain, leading to uncertainties in climate projections1,2. Understanding the factors that limit or drive land carbon storage is therefore important for improving climate predictions. One potential limiting factor for land carbon uptake is soil moisture, which can reduce gross primary production through ecosystem water stress3,4, cause vegetation mortality5 and further exacerbate climate extremes due to land-atmosphere feedbacks6. Previous work has explored the impact of soil-moisture availability on past carbon-flux variability3,7,8. However, the influence of soil-moisture variability and trends on the long-term carbon sink and the mechanisms responsible for associated carbon losses remain uncertain. Here we use the data output from four Earth system models9 from a series of experiments to analyse the responses of terrestrial net biome productivity to soil-moisture changes, and find that soil-moisture variability and trends induce large CO2 fluxes (about two to three gigatons of carbon per year; comparable with the land carbon sink itself1) throughout the twenty-first century. Subseasonal and interannual soil-moisture variability generate CO2 as a result of the nonlinear response of photosynthesis and net ecosystem exchange to soil-water availability and of the increased temperature and vapour pressure deficit caused by land-atmosphere interactions. Soil-moisture variability reduces the present land carbon sink, and its increase and drying trends in several regions are expected to reduce it further. Our results emphasize that the capacity of continents to act as a future carbon sink critically depends on the nonlinear response of carbon fluxes to soil moisture and on land-atmosphere interactions. This suggests that the increasing trend in carbon uptake rate may not be sustained past the middle of the century and could result in accelerated atmospheric CO2 growth.


Asunto(s)
Ciclo del Carbono , Dióxido de Carbono/análisis , Dióxido de Carbono/metabolismo , Ecosistema , Humedad , Suelo/química , Agua/análisis , Atmósfera/química , Procesos Autotróficos , Secuestro de Carbono , Respiración de la Célula , Mapeo Geográfico , Fotosíntesis , Plantas/metabolismo , Estaciones del Año
2.
Proc Natl Acad Sci U S A ; 116(38): 18848-18853, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31481606

RESUMEN

Compound extremes such as cooccurring soil drought (low soil moisture) and atmospheric aridity (high vapor pressure deficit) can be disastrous for natural and societal systems. Soil drought and atmospheric aridity are 2 main physiological stressors driving widespread vegetation mortality and reduced terrestrial carbon uptake. Here, we empirically demonstrate that strong negative coupling between soil moisture and vapor pressure deficit occurs globally, indicating high probability of cooccurring soil drought and atmospheric aridity. Using the Global Land Atmosphere Coupling Experiment (GLACE)-CMIP5 experiment, we further show that concurrent soil drought and atmospheric aridity are greatly exacerbated by land-atmosphere feedbacks. The feedback of soil drought on the atmosphere is largely responsible for enabling atmospheric aridity extremes. In addition, the soil moisture-precipitation feedback acts to amplify precipitation and soil moisture deficits in most regions. CMIP5 models further show that the frequency of concurrent soil drought and atmospheric aridity enhanced by land-atmosphere feedbacks is projected to increase in the 21st century. Importantly, land-atmosphere feedbacks will greatly increase the intensity of both soil drought and atmospheric aridity beyond that expected from changes in mean climate alone.


Asunto(s)
Atmósfera/química , Suelo/química , Tiempo (Meteorología) , Cambio Climático , Sequías , Retroalimentación , Mapeo Geográfico , Humedad , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA