Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Ann Hum Genet ; 79(2): 122-35, 2015 03.
Artículo en Inglés | MEDLINE | ID: mdl-25600682

RESUMEN

Genome-wide association studies (GWAS) have detected large numbers of variants associated with complex human traits and diseases. However, the proportion of variance explained by GWAS-significant single nucleotide polymorphisms has been usually small. This brought interest in the use of whole-genome regression (WGR) methods. However, there has been limited research on the factors that affect prediction accuracy (PA) of WGRs when applied to human data of distantly related individuals. Here, we examine, using real human genotypes and simulated phenotypes, how trait complexity, marker-quantitative trait loci (QTL) linkage disequilibrium (LD), and the model used affect the performance of WGRs. Our results indicated that the estimated rate of missing heritability is dependent on the extent of marker-QTL LD. However, this parameter was not greatly affected by trait complexity. Regarding PA our results indicated that: (a) under perfect marker-QTL LD WGR can achieve moderately high prediction accuracy, and with simple genetic architectures variable selection methods outperform shrinkage procedures and (b) under imperfect marker-QTL LD, variable selection methods can achieved reasonably good PA with simple or moderately complex genetic architectures; however, the PA of these methods deteriorated as trait complexity increases and with highly complex traits variable selection and shrinkage methods both performed poorly. This was confirmed with an analysis of human height.


Asunto(s)
Enfermedad/genética , Genoma Humano , Modelos Genéticos , Sitios de Carácter Cuantitativo , Simulación por Computador , Estudio de Asociación del Genoma Completo , Humanos , Desequilibrio de Ligamiento , Análisis de Regresión
2.
PLoS One ; 10(10): e0141216, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26517830

RESUMEN

The understanding of non-random association between loci, termed linkage disequilibrium (LD), plays a central role in genomic research. Since causal mutations are generally not included in genomic marker data, LD between those and available markers is essential for capturing the effects of causal loci on localizing genes responsible for traits. Thus, the interpretation of association studies requires a detailed knowledge of LD patterns. It is well known that most LD measures depend on minor allele frequencies (MAF) of the considered loci and the magnitude of LD is influenced by the physical distances between loci. In the present study, a procedure to compare the LD structure between genomic regions comprising several markers each is suggested. The approach accounts for different scaling factors, namely the distribution of MAF, the distribution of pair-wise differences in MAF, and the physical extent of compared regions, reflected by the distribution of pair-wise physical distances. In the first step, genomic regions are matched based on similarity in these scaling factors. In the second step, chromosome- and genome-wide significance tests for differences in medians of LD measures in each pair are performed. The proposed framework was applied to test the hypothesis that the average LD is different in genic and non-genic regions. This was tested with a genome-wide approach with data sets for humans (Homo sapiens), a highly selected chicken line (Gallus gallus domesticus) and the model plant Arabidopsis thaliana. In all three data sets we found a significantly higher level of LD in genic regions compared to non-genic regions. About 31% more LD was detected genome-wide in genic compared to non-genic regions in Arabidopsis thaliana, followed by 13.6% in human and 6% chicken. Chromosome-wide comparison discovered significant differences on all 5 chromosomes in Arabidopsis thaliana and on one third of the human and of the chicken chromosomes.


Asunto(s)
Pollos/genética , Genómica/métodos , Desequilibrio de Ligamiento , Animales , Mapeo Cromosómico , Frecuencia de los Genes , Genoma Humano , Genoma de Planta , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA