Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Trends Immunol ; 43(5): 379-390, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35379580

RESUMEN

The cancer research community continues to search for additional biomarkers of response and resistance to immune checkpoint treatment (ICT). The ultimate goal is to direct the use of ICT in patients whose tumors are most likely to benefit to achieve a refinement that is equivalent to that of a genotype-matched targeted treatment. Dissecting the mechanisms of ICT resistance can help us characterize ICT nonresponders more efficiently. In this opinion, we argue that there may be additional knowledge gained about immune evasion in cancer by analyzing the loss of the human 9p21.3 locus; as an example, we highlight findings of 9p21.3 loss from the investigator-initiated, pan-cancer INSPIRE study, in which patients were treated with pembrolizumab (anti-PD-1 antibody) ICT.


Asunto(s)
Neoplasias , Humanos , Neoplasias/tratamiento farmacológico
2.
EMBO J ; 38(14): e100852, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31267556

RESUMEN

Breast cancer prevention is daunting, yet not an unsurmountable goal. Mammary stem and progenitors have been proposed as the cells-of-origin in breast cancer. Here, we present the concept of limiting these breast cancer precursors as a risk reduction approach in high-risk women. A wealth of information now exists for phenotypic and functional characterization of mammary stem and progenitor cells in mouse and human. Recent work has also revealed the hormonal regulation of stem/progenitor dynamics as well as intrinsic lineage distinctions between mammary epithelial populations. Leveraging these insights, molecular marker-guided chemoprevention is an achievable reality.


Asunto(s)
Neoplasias de la Mama/patología , Glándulas Mamarias Humanas/citología , Células Madre/citología , Animales , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/metabolismo , Femenino , Humanos , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/patología , Glándulas Mamarias Humanas/metabolismo , Glándulas Mamarias Humanas/patología , Ratones , Transducción de Señal , Células Madre/metabolismo , Células Madre/patología
3.
Anal Chem ; 95(38): 14430-14439, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37695851

RESUMEN

Rapid molecular profiling of biological tissues with picosecond infrared laser mass spectrometry (PIRL-MS) has enabled the detection of clinically important histologic types and molecular subtypes of human cancers in as little as 10 s of data collection and analysis time. Utilizing an engineered cell line model of actionable BRAF-V600E mutation, we observed statistically significant differences in 10 s PIRL-MS molecular profiles between BRAF-V600E and BRAF-wt cells. Multivariate statistical analyses revealed a list of mass-to-charge (m/z) values most significantly responsible for the identification of BRAF-V600E mutation status in this engineered cell line that provided a highly controlled testbed for this observation. These metabolites predicted BRAF-V600E expression in human melanoma cell lines with greater than 98% accuracy. Through chromatography and tandem mass spectrometry analysis of cell line extracts, a 30-member "metabolite array" was characterized for determination of BRAF-V600E expression levels in subcutaneous melanoma xenografts with an average sensitivity and specificity of 95.6% with 10 s PIRL-MS analysis. This proof-of-principle work warrants a future large-scale study to identify a metabolite array for 10 s determination of actionable BRAF-V600E mutation in human tissue to guide patient care.


Asunto(s)
Melanoma , Proteínas Proto-Oncogénicas B-raf , Humanos , Proteínas Proto-Oncogénicas B-raf/genética , Melanoma/genética , Espectrometría de Masas en Tándem , Extractos Celulares , Mutación , Lípidos
4.
Anal Chem ; 94(48): 16821-16830, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36395434

RESUMEN

Currently, a large number of skin biopsies are taken for each true skin cancer case detected, creating a need for a rapid, high sensitivity, and specificity skin cancer detection tool to reduce the number of unnecessary biopsies taken from benign tissue. Picosecond infrared laser mass spectrometry (PIRL-MS) using a hand-held sampling probe is reported to detect and classify melanoma, squamous cell carcinoma, and normal skin with average sensitivity and specificity values of 86-95% and 91-98%, respectively (at a 95% confidence level) solely requiring 10 s or less of total data collection and analysis time. Classifications are not adversely affected by specimen's quantity of melanin pigments and are mediated by a number of metabolic lipids, further identified herein as potential biomarkers for skin cancer-type differentiation, 19 of which were sufficient here (as a fully characterized metabolite array) to provide high specificity and sensitivity classification of skin cancer types. In situ detection was demonstrated in an intradermal melanoma mouse model wherein in vivo sampling did not cause significant discomfort. PIRL-MS sampling is further shown to be compatible with downstream gross histopathologic evaluations despite loss of tissue from the immediate laser sampling site(s) and can be configured using selective laser pulses to avoid thermal damage to normal skin. Therefore, PIRL-MS may be employed as a decision-support tool to reduce both the subjectivity of clinical diagnosis and the number of unnecessary biopsies currently required for skin cancer screening.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Ratones , Animales , Estudios de Factibilidad , Rayos Láser , Neoplasias Cutáneas/diagnóstico , Rayos Infrarrojos , Espectrometría de Masas , Melanoma/diagnóstico
5.
Breast Cancer Res Treat ; 168(1): 159-168, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29177603

RESUMEN

PURPOSE: Next-generation sequencing (NGS) has identified recurrent genomic alterations in metastatic breast cancer (MBC); however, the clinical utility of incorporating routine sequencing to guide treatment decisions in this setting is unclear. We examine the frequency of genomic alterations in MBC patients from academic and community hospitals and correlate with clinical outcomes. METHODS: MBC patients with good performance status were prospectively recruited at the Princess Margaret Cancer Centre (PM) in Canada. Molecular profiling on DNA extracted from FFPE archival tissues was performed on the Sequenom MassArray platform or the TruSeq Amplicon Cancer Panel (TSACP) on the MiSeq platform. Clinical trial outcomes by RECIST 1.1 and time on treatment were reviewed retrospectively. RESULTS: From January 2012 to November 2015, 483 MBC patients were enrolled and 440 were genotyped. At least one somatic mutation was identified in 46% of patients, most commonly in PIK3CA (28%) or TP53 (13%). Of 203 patients with ≥ 1 mutation(s), 15% were treated on genotype-matched and 9% on non-matched trials. There was no significant difference for median time on treatment for patients treated on matched vs. non-matched therapies (3.6 vs. 3.8 months; p = 0.89). CONCLUSIONS: This study provides real-world outcomes on hotspot genotyping and small targeted panel sequencing of MBC patients from academic and community settings. Few patients were matched to clinical trials with targeted therapies. More comprehensive profiling and improved access to clinical trials may increase therapeutic options for patients with actionable mutations. Further studies are needed to evaluate if this approach leads to improved clinical outcomes.


Asunto(s)
Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Técnicas de Genotipaje/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Adulto , Anciano , Anciano de 80 o más Años , Mama/patología , Mama/cirugía , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Ensayos Clínicos como Asunto , Análisis Mutacional de ADN/métodos , Femenino , Genómica/métodos , Humanos , Mastectomía , Persona de Mediana Edad , Mutación , Fosfohidrolasa PTEN/genética , Estudios Prospectivos , Criterios de Evaluación de Respuesta en Tumores Sólidos , Estudios Retrospectivos , Análisis de Supervivencia , Adulto Joven
6.
Proc Natl Acad Sci U S A ; 110(5): 1714-9, 2013 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-23319603

RESUMEN

Expression of the Notch ligand Jagged 1 (JAG1) and Notch activation promote poor-prognosis in breast cancer. We used high throughput screens to identify elements responsible for Notch activation in this context. Chemical kinase inhibitor and kinase-specific small interfering RNA libraries were screened in a breast cancer cell line engineered to report Notch. Pathway analyses revealed MAPK-ERK signaling to be the predominant JAG1/Notch regulator and this was supported by gene set enrichment analyses in 51 breast cancer cell lines. In accordance with the chemical screen, kinome small interfering RNA high throughput screens identified Tribbles homolog 3 (TRB3), a known regulator of MAPK-ERK, among the most significant hits. We demonstrate that TRB3 is a master regulator of Notch through the MAPK-ERK and TGFß pathways. Complementary in vitro and in vivo studies underscore the importance of TRB3 for tumor growth. These data demonstrate a dominant role for TRB3 and MAPK-ERK/TGFß pathways as Notch regulators in breast cancer, establishing TRB3 as a potential therapeutic target.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Receptor Notch1/metabolismo , Proteínas Represoras/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Western Blotting , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular , Línea Celular Tumoral , Femenino , Células Hep G2 , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Subunidad gamma Común de Receptores de Interleucina/deficiencia , Subunidad gamma Común de Receptores de Interleucina/genética , Proteína Jagged-1 , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Inhibidores de Proteínas Quinasas/aislamiento & purificación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , Receptor Notch1/genética , Proteínas Represoras/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Serrate-Jagged , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/genética , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Cancer Cell ; 12(5): 479-91, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17996651

RESUMEN

Approximately 15%-30% of women diagnosed with ductal carcinoma in situ (DCIS) develop a subsequent tumor event within 10 years after surgical lumpectomy. To date, little is known about the molecular pathways that confer this differential risk for developing subsequent disease. In this study, we demonstrate that expression of biomarkers indicative of an abrogated response to cellular stress predicts DCIS with worse outcome and is a defining characteristic of basal-like invasive tumors. Mechanistic studies identify the Rb pathway as a key regulator of this response. Conversely, biomarkers indicative of an intact response to cellular stress are strongly associated with a disease-free prognosis. Assessment of these biomarkers in DCIS begins to allow prediction of tumor formation years before it actually occurs.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Carcinoma Intraductal no Infiltrante/metabolismo , Carcinoma Intraductal no Infiltrante/patología , Ciclo Celular , Proliferación Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Ciclooxigenasa 2/metabolismo , Femenino , Humanos , Modelos Biológicos , Pronóstico , ARN Mensajero/metabolismo , Proteína de Retinoblastoma/metabolismo , Riesgo , Resultado del Tratamiento
8.
Mod Pathol ; 27(7): 991-1001, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24336157

RESUMEN

Alterations in the retinoblastoma pathway are frequent in ovarian/tubal high-grade serous cancers, but the mechanism of deregulation and the impact on patient outcome are poorly understood. A cohort of 334 high-grade serous carcinomas was studied by immunohistochemical analysis of RB1, p16, cyclin D1, cyclin E1, and Ki67. Additional detailed analyses including RB1 allelic deletion (n=42), mutation (n=75), methylation (n=31), and SNP array analyses (n=75) were performed on cases with clinical parameters, including age, debulking status, treatment, and clinical outcome. p16/RB1 expression results yielded three distinct clinically relevant subgroups upon multivariable analysis controlling for stage, debulking status, and treatment types: p16 homogeneous/RB1+ with the shortest progression-free survival (median 15 months (95% CI: 13-18); P=0.016) compared with the p16 heterogeneous/RB1+ subgroup (median 22 months (95% CI: 16-32)) and the p16 homogeneous/RB1- subgroup (median 20 months (95% CI: 15-24)). Patients in the p16 homo/RB1- subgroup showed a significant increase in overall survival (>60 months; P=0.013), which suggests an increase in sensitivity to cytotoxic agents. Analyses of Rb pathway mechanistic differences among these groups revealed frequent RB1 genomic alterations such as RB1 allelic loss and/or large spanning deletions (83%) in the p16 homo/RB1- subgroups, also indicating that RB1 deletions are frequent in high-grade serous carcinoma. CCNE1 gene gains/amplifications were frequent in the p16 homogeneous/RB1+ subgroup (68%) and cyclin D1 protein overexpression was predominantly characteristic of the p16 heterogeneous/RB1+ subgroup. These subcategories occur early in tumor progression and are seen with similar frequency in the cancer precursor lesion, serous tubal intra-epithelial carcinoma. Overall, this study uniquely identifies multiple non-synonymous mechanisms of retinoblastoma pathway deregulation that correlate with significantly different clinical outcomes. Furthermore, deregulations identified in precursor lesions suggest a key role of this pathway in serous tumor development. Recognition of these categories may identify patients with increased sensitivity to chemotherapy and new opportunities for novel therapeutics.


Asunto(s)
Cistadenocarcinoma Seroso/metabolismo , Neoplasias Ováricas/metabolismo , Proteína de Retinoblastoma/metabolismo , Alelos , Biomarcadores de Tumor/metabolismo , Ciclina D1/metabolismo , Ciclina E/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/mortalidad , Supervivencia sin Enfermedad , Femenino , Humanos , Inmunohistoquímica , Persona de Mediana Edad , Mutación , Proteínas Oncogénicas/metabolismo , Neoplasias Ováricas/genética , Neoplasias Ováricas/mortalidad , Pronóstico , Proteína de Retinoblastoma/genética
9.
Artículo en Inglés | MEDLINE | ID: mdl-38960798

RESUMEN

BACKGROUND: The use of immunotherapy in mismatch repair proficient colorectal cancer (pMMR-CRC) or pancreatic adenocarcinoma (PDAC) is associated with limited efficacy. DAPPER (NCT03851614) is a phase 2, basket study randomizing patients with pMMR CRC or PDAC to durvalumab with olaparib (durvalumab + olaparib) or durvalumab with cediranib (durvalumab + cediranib). METHODS: PDAC or pMMR-CRC patients were randomized to either durvalumab+olaparib (arm A), or durvalumab + cediranib (arm B). Co-primary endpoints included pharmacodynamic immune changes in the tumor microenvironment (TME) and safety. Objective response rate, progression-free survival (PFS) and overall survival (OS) were determined. Paired tumor samples were analyzed by multiplexed immunohistochemistry and RNA-sequencing. RESULTS: A total of 31 metastatic pMMR-CRC patients were randomized to arm A (n = 16) or B (n = 15). In 28 evaluable patients, 3 patients had stable disease (SD) (2 patients treated with durvalumab + olaparib and 1 patient treated with durvalumab + cediranib) while 25 had progressive disease (PD). Among patients with PDAC (n = 19), 9 patients were randomized to arm A and 10 patients were randomized to arm B. In 18 evaluable patients, 1 patient had a partial response (unconfirmed) with durvalumab + cediranib, 1 patient had SD with durvalumab + olaparib while 16 had PD. Safety profile was manageable and no grade 4-5 treatment-related adverse events were observed in either arm A or B. No significant changes were observed for CD3+/CD8+ immune infiltration in on-treatment biopsies as compared to baseline for pMMR-CRC and PDAC independent of treatment arms. Increased tumor-infiltrating lymphocytes at baseline, low baseline CD68+ cells and different immune gene expression signatures at baseline were associated with outcomes. CONCLUSIONS: In patients with pMMR-CRC or PDAC, durvalumab + olaparib and durvalumab + cediranib showed limited antitumor activity. Different immune components of the TME were associated with treatment outcomes.

10.
Cell Rep ; 42(10): 113256, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37847590

RESUMEN

It is widely assumed that all normal somatic cells can equally perform homologous recombination (HR) and non-homologous end joining in the DNA damage response (DDR). Here, we show that the DDR in normal mammary gland inherently depends on the epithelial cell lineage identity. Bioinformatics, post-irradiation DNA damage repair kinetics, and clonogenic assays demonstrated luminal lineage exhibiting a more pronounced DDR and HR repair compared to the basal lineage. Consequently, basal progenitors were far more sensitive to poly(ADP-ribose) polymerase inhibitors (PARPis) in both mouse and human mammary epithelium. Furthermore, PARPi sensitivity of murine and human breast cancer cell lines as well as patient-derived xenografts correlated with their molecular resemblance to the mammary progenitor lineages. Thus, mammary epithelial cells are intrinsically divergent in their DNA damage repair capacity and PARPi vulnerability, potentially influencing the clinical utility of this targeted therapy.


Asunto(s)
Antineoplásicos , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Humanos , Animales , Ratones , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Antineoplásicos/farmacología , Reparación del ADN , Recombinación Homóloga , Daño del ADN
11.
Clin Cancer Res ; 29(20): 4128-4138, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37566240

RESUMEN

PURPOSE: Non-inflamed (cold) tumors such as leiomyosarcoma do not benefit from immune checkpoint blockade (ICB) monotherapy. Combining ICB with angiogenesis or PARP inhibitors may increase tumor immunogenicity by altering the immune cell composition of the tumor microenvironment (TME). The DAPPER phase II study evaluated the safety, immunologic, and clinical activity of ICB-based combinations in pretreated patients with leiomyosarcoma. PATIENTS AND METHODS: Patients were randomized to receive durvalumab 1,500 mg IV every 4 weeks with either olaparib 300 mg twice a day orally (Arm A) or cediranib 20 mg every day orally 5 days/week (Arm B) until unacceptable toxicity or disease progression. Paired tumor biopsies, serial radiologic assessments and stool collections were performed. Primary endpoints were safety and immune cell changes in the TME. Objective responses and survival were correlated with transcriptomic, radiomic, and microbiome parameters. RESULTS: Among 30 heavily pretreated patients (15 on each arm), grade ≥ 3 toxicity occurred in 3 (20%) and 2 (13%) on Arms A and B, respectively. On Arm A, 1 patient achieved partial response (PR) with increase in CD8 T cells and macrophages in the TME during treatment, while 4 had stable disease (SD) ≥ 6 months. No patients on Arm B achieved PR or SD ≥ 6 months. Transcriptome analysis showed that baseline M1-macrophage and B-cell activity were associated with overall survival. CONCLUSIONS: Durvalumab plus olaparib increased immune cell infiltration of TME with clinical benefit in some patients with leiomyosarcoma. Baseline M1-macrophage and B-cell activity may identify patients with leiomyosarcoma with favorable outcomes on immunotherapy and should be further evaluated.

12.
Nat Commun ; 13(1): 1466, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35304464

RESUMEN

Patient-derived tumor organoids (PDOs) are a highly promising preclinical model that recapitulates the histology, gene expression, and drug response of the donor patient tumor. Currently, PDO culture relies on basement-membrane extract (BME), which suffers from batch-to-batch variability, the presence of xenogeneic compounds and residual growth factors, and poor control of mechanical properties. Additionally, for the development of new organoid lines from patient-derived xenografts, contamination of murine host cells poses a problem. We propose a nanofibrillar hydrogel (EKGel) for the initiation and growth of breast cancer PDOs. PDOs grown in EKGel have histopathologic features, gene expression, and drug response that are similar to those of their parental tumors and PDOs in BME. In addition, EKGel offers reduced batch-to-batch variability, a range of mechanical properties, and suppressed contamination from murine cells. These results show that EKGel is an improved alternative to BME matrices for the initiation, growth, and maintenance of breast cancer PDOs.


Asunto(s)
Neoplasias de la Mama , Organoides , Animales , Biomimética , Neoplasias de la Mama/patología , Femenino , Humanos , Hidrogeles/metabolismo , Hidrogeles/farmacología , Ratones , Organoides/metabolismo
13.
Nat Commun ; 12(1): 5137, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34446728

RESUMEN

Serial circulating tumor DNA (ctDNA) monitoring is emerging as a non-invasive strategy to predict and monitor immune checkpoint blockade (ICB) therapeutic efficacy across cancer types. Yet, limited data exist to show the relationship between ctDNA dynamics and tumor genome and immune microenvironment in patients receiving ICB. Here, we present an in-depth analysis of clinical, whole-exome, transcriptome, and ctDNA profiles of 73 patients with advanced solid tumors, across 30 cancer types, from a phase II basket clinical trial of pembrolizumab (NCT02644369) and report changes in genomic and immune landscapes (primary outcomes). Patients stratified by ctDNA and tumor burden dynamics correspond with survival and clinical benefit. High mutation burden, high expression of immune signatures, and mutations in BRCA2 are associated with pembrolizumab molecular sensitivity, while abundant copy-number alterations and B2M loss-of-heterozygosity corresponded with resistance. Upon treatment, induction of genes expressed by T cell, B cell, and myeloid cell populations are consistent with sensitivity and resistance. We identified the upregulated expression of PLA2G2D, an immune-regulating phospholipase, as a potential biomarker of adaptive resistance to ICB. Together, these findings provide insights into the diversity of immunogenomic mechanisms that underpin pembrolizumab outcomes.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Antineoplásicos/uso terapéutico , ADN Tumoral Circulante/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Proteína BRCA2/genética , Proteína BRCA2/inmunología , ADN Tumoral Circulante/metabolismo , Variaciones en el Número de Copia de ADN , Resistencia a Antineoplásicos , Fosfolipasas A2 Grupo II/genética , Fosfolipasas A2 Grupo II/inmunología , Humanos , Neoplasias/inmunología , Estudios Prospectivos , Carga Tumoral , Escape del Tumor/efectos de los fármacos , Secuenciación del Exoma
14.
J Clin Invest ; 131(3)2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33529165

RESUMEN

Germline mutations in BRCA1 and BRCA2 (BRCA1/2) genes considerably increase breast and ovarian cancer risk. Given that tumors with these mutations have elevated genomic instability, they exhibit relative vulnerability to certain chemotherapies and targeted treatments based on poly (ADP-ribose) polymerase (PARP) inhibition. However, the molecular mechanisms that influence cancer risk and therapeutic benefit or resistance remain only partially understood. BRCA1 and BRCA2 have also been implicated in the suppression of R-loops, triple-stranded nucleic acid structures composed of a DNA:RNA hybrid and a displaced ssDNA strand. Here, we report that loss of RNF168, an E3 ubiquitin ligase and DNA double-strand break (DSB) responder, remarkably protected Brca1-mutant mice against mammary tumorigenesis. We demonstrate that RNF168 deficiency resulted in accumulation of R-loops in BRCA1/2-mutant breast and ovarian cancer cells, leading to DSBs, senescence, and subsequent cell death. Using interactome assays, we identified RNF168 interaction with DHX9, a helicase involved in the resolution and removal of R-loops. Mechanistically, RNF168 directly ubiquitylated DHX9 to facilitate its recruitment to R-loop-prone genomic loci. Consequently, loss of RNF168 impaired DHX9 recruitment to R-loops, thereby abrogating its ability to resolve R-loops. The data presented in this study highlight a dependence of BRCA1/2-defective tumors on factors that suppress R-loops and reveal a fundamental RNF168-mediated molecular mechanism that governs cancer development and vulnerability.


Asunto(s)
Proteína BRCA1/deficiencia , Proteína BRCA2/deficiencia , ADN de Neoplasias/metabolismo , Inestabilidad Genómica , Neoplasias Mamarias Animales/metabolismo , Neoplasias Ováricas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , ADN de Neoplasias/genética , Femenino , Sitios Genéticos , Humanos , Neoplasias Mamarias Animales/genética , Ratones , Ratones Noqueados , Neoplasias Ováricas/genética , Ubiquitina-Proteína Ligasas/genética
15.
J Clin Pathol ; 72(2): 120-132, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30670564

RESUMEN

Neoadjuvant systemic therapy is becoming more commonly used in patients with earlier stages of breast cancer. To assess tumour response to neoadjuvant chemotherapy, pathological evaluation is the gold standard. Depending on the treatment response, the pathological examination of these specimens can be quite challenging. However, a uniform approach to evaluate post-neoadjuvant-treated breast specimens has been lacking. Furthermore, there is no single universally accepted or endorsed classification system for assessing treatment response in this setting. Recent initiatives have attempted to create a standardised protocol for evaluation of post-neoadjuvant breast specimens. This review outlines the necessary information that should be collected prior to macroscopic examination of these specimens, the recommended and most pragmatic approach to tissue sampling for microscopic examination, describes the macroscopic and microscopic features of post-therapy breast specimens, summarises two commonly used systems for classifying treatment response and outlines the critical variables that should be included in the final pathology report.


Asunto(s)
Neoplasias de la Mama/clasificación , Neoplasias de la Mama/patología , Oncología Médica/métodos , Oncología Médica/normas , Neoplasias de la Mama/terapia , Femenino , Humanos , Terapia Neoadyuvante/métodos , Proyectos de Investigación/normas , Manejo de Especímenes/métodos , Manejo de Especímenes/normas , Resultado del Tratamiento
16.
Oncoimmunology ; 8(12): e1665460, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31741762

RESUMEN

B7-H4, an immune suppressive member of the B7 family, is highly expressed in a wide variety of human malignancies making it an attractive immunotherapeutic target. However, the association between B7-H4 expression in the tumor microenvironment and the immune infiltrate has not been comprehensively examined. To evaluate the immune tumor microenvironment, we analyzed epithelial ovarian tumors from 28 patients using flow cytometry, immunohistochemistry, functional, and genomic analyses. We determined B7-H4 expression patterns and compared the immune infiltrates of tumors with high and low surface expression of B7-H4. Frequencies and phenotypes of tumor and immune cells were determined using multiple flow cytometry panels. Immunohistochemistry was used to analyze cellular infiltration and location. Publicly available datasets were interrogated to determine intratumoral cytokine and chemokine expression. We found that B7-H4 was predominantly expressed by tumor cells in the epithelial ovarian tumor microenvironment. Surface expression of B7-H4 on tumor cells was correlated with higher levels of infiltrating mature antigen-presenting cells. Further, expression of CXCL17, a monocyte and dendritic cell chemoattractant, correlated strongly with B7-H4 expression. T cells expressed activation markers, but T cells expressing a combination of markers associated with T cell activation/exhaustion phenotype were not prevalent. Overall, our data suggest that B7-H4 is associated with a pro-inflammatory tumor microenvironment.

17.
JCO Precis Oncol ; 2: 1-20, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35135130

RESUMEN

PURPOSE: Fine-needle biopsy (FNB) and liquid biopsy are minimally invasive methods of tumor sampling that provide feasible means to assess tumor genotypes in real time. However, more data are needed to establish the strength of these methods by benchmarking against the current gold standard methods, core-needle biopsy (CNB) or surgical excision of the tumor. PATIENTS AND METHODS: Eligible patients with advanced solid tumors were prospectively recruited. We performed mutation profiling using matched tumor DNA obtained by CNB, FNB and liquid biopsy, and matrix-assisted laser desorption/ionization time-of-flight custom mass-spectrometry or targeted next-generation DNA sequencing. The actionability of detected mutations was determined using the OncoKB Web tool. Agreement between mutations detected in CNBs, FNBs, and circulating tumor DNA (ctDNA) was examined. RESULTS: Forty-one patients underwent tumor biopsy. Thirty CNBs (73%) and 34 FNBs (83%) had sufficient tumor and DNA for mutation profiling. Median DNA yield from CNB and FNB were 775 ng (interquartile range, 240 to 347 4ng) and 649 ng (interquartile range, 180 to1350 ng), respectively. Of 29 CNB/FNB pairs available for comparison, actionable mutation results were concordant in 28 (96%). Six of nine actionable mutations (67%) that were found by CNB, FNB, or both were detectable in ctDNA. Two additional actionable mutations were found exclusively in ctDNA. CONCLUSION: Optimally processed FNB and liquid biopsy can be used routinely for tumor mutation profiling to identify actionable mutations.

19.
Cancer Res ; 65(5): 1792-9, 2005 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-15753376

RESUMEN

The immediate-early gene, cyclooxygenase-2 (COX-2), is induced in a variety of inflammatory and neoplastic processes and is believed to play an important role in tumorigenesis. In this study, we identify an important upstream regulatory pathway of COX-2 expression in variant human mammary epithelial cells (vHMEC), which has been shown to exhibit phenotypes important for malignancy. We find that the stress-activated kinase, p38, is phosphorylated and activated in vHMEC compared with HMEC and is responsible for the expression of COX-2 in vHMEC as cells grow in culture. Furthermore in this capacity, p38 acts to stabilize the COX-2 transcript rather than activate COX-2 transcription. Inhibition of p38 kinase, using a chemical inhibitor, down-regulates COX-2 and decreases cell survival. Examination of archived tissue from women with ductal carcinoma in situ reveals epithelial cells that not only overexpress COX-2 but also have an abundance of activated phospho-p38 in the nucleus and cytoplasm, mirroring the expression observed in vitro. These epithelial cells are found within premalignant lesions as well as in fields of morphologically normal tissue that surround the lesions. In contrast, low phospho-p38 staining was observed in the majority of normal tissue obtained from reduction mammoplasty. These data help define the regulation of COX-2 expression in early carcinogenesis and provide alternative candidates for targeted prevention of COX-2-induced phenotypes and breast cancer.


Asunto(s)
Neoplasias de la Mama/enzimología , Carcinoma Intraductal no Infiltrante/enzimología , Células Epiteliales/enzimología , Regulación Enzimológica de la Expresión Génica , Prostaglandina-Endoperóxido Sintasas/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Apoptosis/efectos de los fármacos , Mama/enzimología , Mama/patología , Neoplasias de la Mama/patología , Carcinoma Intraductal no Infiltrante/patología , Núcleo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Ciclooxigenasa 2 , Citoplasma/metabolismo , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Femenino , Humanos , Proteínas de la Membrana , Persona de Mediana Edad , Fosforilación , Lesiones Precancerosas/enzimología , Lesiones Precancerosas/patología , Prostaglandina-Endoperóxido Sintasas/genética , Prostaglandinas/metabolismo , Transcripción Genética , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/genética
20.
Nat Med ; 23(3): 368-375, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28165478

RESUMEN

Antitumor T cells are subject to multiple mechanisms of negative regulation. Recent findings that innate lymphoid cells (ILCs) regulate adaptive T cell responses led us to examine the regulatory potential of ILCs in the context of cancer. We identified a unique ILC population that inhibits tumor-infiltrating lymphocytes (TILs) from high-grade serous tumors, defined their suppressive capacity in vitro, and performed a comprehensive analysis of their phenotype. Notably, the presence of this CD56+CD3- population in TIL cultures was associated with reduced T cell numbers, and further functional studies demonstrated that this population suppressed TIL expansion and altered TIL cytokine production. Transcriptome analysis and phenotypic characterization determined that regulatory CD56+CD3- cells exhibit low cytotoxic activity, produce IL-22, and have an expression profile that overlaps with those of natural killer (NK) cells and other ILCs. NKp46 was highly expressed by these cells, and addition of anti-NKp46 antibodies to TIL cultures abrogated the ability of these regulatory ILCs to suppress T cell expansion. Notably, the presence of these regulatory ILCs in TIL cultures corresponded with a striking reduction in the time to disease recurrence. These studies demonstrate that a previously uncharacterized ILC population regulates the activity and expansion of tumor-associated T cells.


Asunto(s)
Citocinas/inmunología , Inmunidad Innata/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos/inmunología , Neoplasias/inmunología , Linfocitos T/inmunología , Microambiente Tumoral/inmunología , Complejo CD3/metabolismo , Antígeno CD56/metabolismo , Proliferación Celular , Citometría de Flujo , Humanos , Tolerancia Inmunológica , Inmunoterapia , Interleucinas/inmunología , Células Asesinas Naturales/inmunología , Linfocitos/metabolismo , Linfocitos Infiltrantes de Tumor/metabolismo , Receptor 1 Gatillante de la Citotoxidad Natural/metabolismo , Neoplasias/terapia , Interleucina-22
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA