Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Alzheimers Dement ; 20(1): 549-562, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37740924

RESUMEN

INTRODUCTION: The National Institute on Aging - Alzheimer's Association (NIA-AA) ATN research framework proposes to use biomarkers for amyloid (A), tau (T), and neurodegeneration (N) to stage individuals with AD pathological features and track changes longitudinally. The overall aim was to utilize this framework to characterize pre-mortem ATN status longitudinally in a clinically diagnosed cohort of dementia with Lewy bodies (DLB) and to correlate it with the post mortem diagnosis. METHODS: The cohort was subtyped by cerebrospinal fluid (CSF) ATN category. A subcohort had longitudinal data, and a subgroup was neuropathologically evaluated. RESULTS: We observed a significant difference in Aß42/40 after 12 months in the A+T- group. Post mortem neuropathologic analyses indicated that most of the p-Tau 181 positive (T+) cases also had a high Braak stage. DISCUSSION: This suggests that DLB patients who are A+ but T- may need to be monitored to determine whether they remain A+ or ever progress to T positivity. HIGHLIGHTS: Some A+T- DLB subjects transition from A+ to negative after 12-months. Clinically diagnosed DLB with LBP-AD (A+T+) maintain their positivity. Clinically diagnosed DLB with LBP-AD (A+T+) maintain their positivity. Monitoring of the A+T- sub-type of DLB may be necessary.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad por Cuerpos de Lewy , Humanos , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad por Cuerpos de Lewy/diagnóstico , Enfermedad por Cuerpos de Lewy/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Fragmentos de Péptidos/líquido cefalorraquídeo
2.
Alzheimers Dement ; 20(1): 47-62, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37740921

RESUMEN

INTRODUCTION: Studies suggest distinct differences in the development, presentation, progression, and response to treatment of Alzheimer's disease (AD) between females and males. We investigated sex differences in cognition, neuroimaging, and fluid biomarkers in dominantly inherited AD (DIAD). METHODS: Three hundred twenty-five mutation carriers (55% female) and one hundred eighty-six non-carriers (58% female) of the Dominantly Inherited Alzheimer Network Observational Study were analyzed. Linear mixed models and Spearman's correlation explored cross-sectional sex differences in cognition, cerebrospinal fluid (CSF) biomarkers, Pittsburgh compound B positron emission tomography (11 C-PiB PET) and structural magnetic resonance imaging (MRI). RESULTS: Female carriers performed better than males on delayed recall and processing speed despite similar hippocampal volumes. As the disease progressed, symptomatic females revealed higher increases in MRI markers of neurodegeneration and memory impairment. PiB PET and established CSF AD markers revealed no sex differences. DISCUSSION: Our findings suggest an initial cognitive reserve in female carriers followed by a pronounced increase in neurodegeneration coupled with worse performance on delayed recall at later stages of DIAD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Femenino , Masculino , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Estudios Transversales , Caracteres Sexuales , Tomografía de Emisión de Positrones , Mutación/genética , Biomarcadores
3.
Alzheimers Dement ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39324510

RESUMEN

INTRODUCTION: We investigated longitudinal associations between self-reported exercise and Alzheimer's disease (AD)-related biomarkers in individuals with autosomal dominant AD (ADAD) mutations. METHODS: Participants were 308 ADAD mutation carriers aged 39.7 ± 10.8 years from the Dominantly Inherited Alzheimer's Network. Weekly exercise volume was measured via questionnaire and associations with brain volume (magnetic resonance imaging), cerebrospinal fluid biomarkers, and brain amyloid beta (Aß) measured by positron emission tomography were investigated. RESULTS: Greater volume of weekly exercise at baseline was associated with slower accumulation of brain Aß at preclinical disease stages ß = -0.16 [-0.23 to -0.08], and a slower decline in multiple brain regions including hippocampal volume ß = 0.06 [0.03 to 0.08]. DISCUSSION: Exercise is associated with more favorable profiles of AD-related biomarkers in individuals with ADAD mutations. Exercise may have therapeutic potential for delaying the onset of AD; however, randomized controlled trials are vital to determine a causal relationship before a clinical recommendation of exercise is implemented. HIGHLIGHTS: Greater self-reported weekly exercise predicts slower declines in brain volume in autosomal dominant Alzheimer's disease (ADAD). Greater self-reported weekly exercise predicts slower accumulation of brain amyloid beta in ADAD. Associations varied depending on closeness to estimated symptom onset.

4.
Alzheimers Dement ; 20(6): 4351-4365, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38666355

RESUMEN

INTRODUCTION: Amyloid beta and tau pathology are the hallmarks of sporadic Alzheimer's disease (AD) and autosomal dominant AD (ADAD). However, Lewy body pathology (LBP) is found in ≈ 50% of AD and ADAD brains. METHODS: Using an α-synuclein seed amplification assay (SAA) in cerebrospinal fluid (CSF) from asymptomatic (n = 26) and symptomatic (n = 27) ADAD mutation carriers, including 12 with known neuropathology, we investigated the timing of occurrence and prevalence of SAA positive reactivity in ADAD in vivo. RESULTS: No asymptomatic participant and only 11% (3/27) of the symptomatic patients tested SAA positive. Neuropathology revealed LBP in 10/12 cases, primarily affecting the amygdala or the olfactory areas. In the latter group, only the individual with diffuse LBP reaching the neocortex showed α-synuclein seeding activity in CSF in vivo. DISCUSSION: Results suggest that in ADAD LBP occurs later than AD pathology and often as amygdala- or olfactory-predominant LBP, for which CSF α-synuclein SAA has low sensitivity. HIGHLIGHTS: Cerebrospinal fluid (CSF) real-time quaking-induced conversion (RT-QuIC) detects misfolded α-synuclein in ≈ 10% of symptomatic autosomal dominant Alzheimer's disease (ADAD) patients. CSF RT-QuIC does not detect α-synuclein seeding activity in asymptomatic mutation carriers. Lewy body pathology (LBP) in ADAD mainly occurs as olfactory only or amygdala-predominant variants. LBP develops late in the disease course in ADAD. CSF α-synuclein RT-QuIC has low sensitivity for focal, low-burden LBP.


Asunto(s)
Enfermedad de Alzheimer , Cuerpos de Lewy , alfa-Sinucleína , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , alfa-Sinucleína/líquido cefalorraquídeo , alfa-Sinucleína/genética , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/líquido cefalorraquídeo , Péptidos beta-Amiloides/metabolismo , Encéfalo/patología , Progresión de la Enfermedad , Cuerpos de Lewy/patología , Mutación
5.
Alzheimers Dement ; 20(4): 2680-2697, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38380882

RESUMEN

INTRODUCTION: Amyloidosis, including cerebral amyloid angiopathy, and markers of small vessel disease (SVD) vary across dominantly inherited Alzheimer's disease (DIAD) presenilin-1 (PSEN1) mutation carriers. We investigated how mutation position relative to codon 200 (pre-/postcodon 200) influences these pathologic features and dementia at different stages. METHODS: Individuals from families with known PSEN1 mutations (n = 393) underwent neuroimaging and clinical assessments. We cross-sectionally evaluated regional Pittsburgh compound B-positron emission tomography uptake, magnetic resonance imaging markers of SVD (diffusion tensor imaging-based white matter injury, white matter hyperintensity volumes, and microhemorrhages), and cognition. RESULTS: Postcodon 200 carriers had lower amyloid burden in all regions but worse markers of SVD and worse Clinical Dementia Rating® scores compared to precodon 200 carriers as a function of estimated years to symptom onset. Markers of SVD partially mediated the mutation position effects on clinical measures. DISCUSSION: We demonstrated the genotypic variability behind spatiotemporal amyloidosis, SVD, and clinical presentation in DIAD, which may inform patient prognosis and clinical trials. HIGHLIGHTS: Mutation position influences Aß burden, SVD, and dementia. PSEN1 pre-200 group had stronger associations between Aß burden and disease stage. PSEN1 post-200 group had stronger associations between SVD markers and disease stage. PSEN1 post-200 group had worse dementia score than pre-200 in late disease stage. Diffusion tensor imaging-based SVD markers mediated mutation position effects on dementia in the late stage.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Enfermedades de los Pequeños Vasos Cerebrales , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Enfermedades de los Pequeños Vasos Cerebrales/genética , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Imagen de Difusión Tensora , Imagen por Resonancia Magnética , Mutación/genética , Presenilina-1/genética
6.
Ann Neurol ; 92(5): 729-744, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36151869

RESUMEN

OBJECTIVE: To determine the characteristics of participants with amyloid-related imaging abnormalities (ARIA) in a trial of gantenerumab or solanezumab in dominantly inherited Alzheimer disease (DIAD). METHODS: 142 DIAD mutation carriers received either gantenerumab SC (n = 52), solanezumab IV (n = 50), or placebo (n = 40). Participants underwent assessments with the Clinical Dementia Rating® (CDR®), neuropsychological testing, CSF biomarkers, ß-amyloid positron emission tomography (PET), and magnetic resonance imaging (MRI) to monitor ARIA. Cross-sectional and longitudinal analyses evaluated potential ARIA-related risk factors. RESULTS: Eleven participants developed ARIA-E, including 3 with mild symptoms. No ARIA-E was reported under solanezumab while gantenerumab was associated with ARIA-E compared to placebo (odds ratio [OR] = 9.1, confidence interval [CI][1.2, 412.3]; p = 0.021). Under gantenerumab, APOE-ɛ4 carriers were more likely to develop ARIA-E (OR = 5.0, CI[1.0, 30.4]; p = 0.055), as were individuals with microhemorrhage at baseline (OR = 13.7, CI[1.2, 163.2]; p = 0.039). No ARIA-E was observed at the initial 225 mg/month gantenerumab dose, and most cases were observed at doses >675 mg. At first ARIA-E occurrence, all ARIA-E participants were amyloid-PET+, 60% were CDR >0, 60% were past their estimated year to symptom onset, and 60% had also incident ARIA-H. Most ARIA-E radiologically resolved after dose adjustment and developing ARIA-E did not significantly increase odds of trial discontinuation. ARIA-E was more frequently observed in the occipital lobe (90%). ARIA-E severity was associated with age at time of ARIA-E. INTERPRETATION: In DIAD, solanezumab was not associated with ARIA. Gantenerumab dose over 225 mg increased ARIA-E risk, with additional risk for individuals APOE-ɛ4(+) or with microhemorrhage. ARIA-E was reversible on MRI in most cases, generally asymptomatic, without additional risk for trial discontinuation. ANN NEUROL 2022;92:729-744.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Estudios Transversales , Péptidos beta-Amiloides , Amiloide , Biomarcadores , Apolipoproteínas E
7.
Eur J Nucl Med Mol Imaging ; 50(9): 2669-2682, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37017737

RESUMEN

PURPOSE: Pittsburgh Compound-B (11C-PiB) and 18F-florbetapir are amyloid-ß (Aß) positron emission tomography (PET) radiotracers that have been used as endpoints in Alzheimer's disease (AD) clinical trials to evaluate the efficacy of anti-Aß monoclonal antibodies. However, comparing drug effects between and within trials may become complicated if different Aß radiotracers were used. To study the consequences of using different Aß radiotracers to measure Aß clearance, we performed a head-to-head comparison of 11C-PiB and 18F-florbetapir in a Phase 2/3 clinical trial of anti-Aß monoclonal antibodies. METHODS: Sixty-six mutation-positive participants enrolled in the gantenerumab and placebo arms of the first Dominantly Inherited Alzheimer Network Trials Unit clinical trial (DIAN-TU-001) underwent both 11C-PiB and 18F-florbetapir PET imaging at baseline and during at least one follow-up visit. For each PET scan, regional standardized uptake value ratios (SUVRs), regional Centiloids, a global cortical SUVR, and a global cortical Centiloid value were calculated. Longitudinal changes in SUVRs and Centiloids were estimated using linear mixed models. Differences in longitudinal change between PET radiotracers and between drug arms were estimated using paired and Welch two sample t-tests, respectively. Simulated clinical trials were conducted to evaluate the consequences of some research sites using 11C-PiB while other sites use 18F-florbetapir for Aß PET imaging. RESULTS: In the placebo arm, the absolute rate of longitudinal change measured by global cortical 11C-PiB SUVRs did not differ from that of global cortical 18F-florbetapir SUVRs. In the gantenerumab arm, global cortical 11C-PiB SUVRs decreased more rapidly than global cortical 18F-florbetapir SUVRs. Drug effects were statistically significant across both Aß radiotracers. In contrast, the rates of longitudinal change measured in global cortical Centiloids did not differ between Aß radiotracers in either the placebo or gantenerumab arms, and drug effects remained statistically significant. Regional analyses largely recapitulated these global cortical analyses. Across simulated clinical trials, type I error was higher in trials where both Aß radiotracers were used versus trials where only one Aß radiotracer was used. Power was lower in trials where 18F-florbetapir was primarily used versus trials where 11C-PiB was primarily used. CONCLUSION: Gantenerumab treatment induces longitudinal changes in Aß PET, and the absolute rates of these longitudinal changes differ significantly between Aß radiotracers. These differences were not seen in the placebo arm, suggesting that Aß-clearing treatments may pose unique challenges when attempting to compare longitudinal results across different Aß radiotracers. Our results suggest converting Aß PET SUVR measurements to Centiloids (both globally and regionally) can harmonize these differences without losing sensitivity to drug effects. Nonetheless, until consensus is achieved on how to harmonize drug effects across radiotracers, and since using multiple radiotracers in the same trial may increase type I error, multisite studies should consider potential variability due to different radiotracers when interpreting Aß PET biomarker data and, if feasible, use a single radiotracer for the best results. TRIAL REGISTRATION: ClinicalTrials.gov NCT01760005. Registered 31 December 2012. Retrospectively registered.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Tomografía de Emisión de Positrones/métodos , Compuestos de Anilina , Glicoles de Etileno , Encéfalo/metabolismo
8.
Brain ; 145(10): 3594-3607, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-35580594

RESUMEN

The extent to which the pathophysiology of autosomal dominant Alzheimer's disease corresponds to the pathophysiology of 'sporadic' late onset Alzheimer's disease is unknown, thus limiting the extrapolation of study findings and clinical trial results in autosomal dominant Alzheimer's disease to late onset Alzheimer's disease. We compared brain MRI and amyloid PET data, as well as CSF concentrations of amyloid-ß42, amyloid-ß40, tau and tau phosphorylated at position 181, in 292 carriers of pathogenic variants for Alzheimer's disease from the Dominantly Inherited Alzheimer Network, with corresponding data from 559 participants from the Alzheimer's Disease Neuroimaging Initiative. Imaging data and CSF samples were reprocessed as appropriate to guarantee uniform pipelines and assays. Data analyses yielded rates of change before and after symptomatic onset of Alzheimer's disease, allowing the alignment of the ∼30-year age difference between the cohorts on a clinically meaningful anchor point, namely the participant age at symptomatic onset. Biomarker profiles were similar for both autosomal dominant Alzheimer's disease and late onset Alzheimer's disease. Both groups demonstrated accelerated rates of decline in cognitive performance and in regional brain volume loss after symptomatic onset. Although amyloid burden accumulation as determined by PET was greater after symptomatic onset in autosomal dominant Alzheimer's disease than in late onset Alzheimer's disease participants, CSF assays of amyloid-ß42, amyloid-ß40, tau and p-tau181 were largely overlapping in both groups. Rates of change in cognitive performance and hippocampal volume loss after symptomatic onset were more aggressive for autosomal dominant Alzheimer's disease participants. These findings suggest a similar pathophysiology of autosomal dominant Alzheimer's disease and late onset Alzheimer's disease, supporting a shared pathobiological construct.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides , Imagen por Resonancia Magnética/métodos , Biomarcadores
9.
Alzheimers Dement ; 19(2): 632-645, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35609137

RESUMEN

INTRODUCTION: As knowledge about neurological examination findings in autosomal dominant Alzheimer disease (ADAD) is incomplete, we aimed to determine the frequency and significance of neurological examination findings in ADAD. METHODS: Frequencies of neurological examination findings were compared between symptomatic mutation carriers and non mutation carriers from the Dominantly Inherited Alzheimer Network (DIAN) to define AD neurological examination findings. AD neurological examination findings were analyzed regarding frequency, association with and predictive value regarding cognitive decline, and association with brain atrophy in symptomatic mutation carriers. RESULTS: AD neurological examination findings included abnormal deep tendon reflexes, gait disturbance, pathological cranial nerve examination findings, tremor, abnormal finger to nose and heel to shin testing, and compromised motor strength. The frequency of AD neurological examination findings was 65.1%. Cross-sectionally, mutation carriers with AD neurological examination findings showed a more than two-fold faster cognitive decline and had greater parieto-temporal atrophy, including hippocampal atrophy. Longitudinally, AD neurological examination findings predicted a significantly greater decline over time. DISCUSSION: ADAD features a distinct pattern of neurological examination findings that is useful to estimate prognosis and may inform clinical care and therapeutic trial designs.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/patología , Disfunción Cognitiva/genética , Examen Neurológico
10.
Alzheimers Dement ; 19(1): 274-284, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35362200

RESUMEN

INTRODUCTION: As the number of biomarkers used to study Alzheimer's disease (AD) continues to increase, it is important to understand the utility of any given biomarker, as well as what additional information a biomarker provides when compared to others. METHODS: We used hierarchical clustering to group 19 cross-sectional biomarkers in autosomal dominant AD. Feature selection identified biomarkers that were the strongest predictors of mutation status and estimated years from symptom onset (EYO). Biomarkers identified included clinical assessments, neuroimaging, cerebrospinal fluid amyloid, and tau, and emerging biomarkers of neuronal integrity and inflammation. RESULTS: Three primary clusters were identified: neurodegeneration, amyloid/tau, and emerging biomarkers. Feature selection identified amyloid and tau measures as the primary predictors of mutation status and EYO. Emerging biomarkers of neuronal integrity and inflammation were relatively weak predictors. DISCUSSION: These results provide novel insight into our understanding of the relationships among biomarkers and the staging of biomarkers based on disease progression.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico , Péptidos beta-Amiloides/líquido cefalorraquídeo , Proteínas Amiloidogénicas , Biomarcadores/líquido cefalorraquídeo , Estudios Transversales , Inflamación , Proteínas tau/genética , Proteínas tau/líquido cefalorraquídeo
11.
Neurobiol Dis ; 168: 105714, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35358703

RESUMEN

BACKGROUND: Hyperphosphorylation of tau leads to conformational changes that destabilize microtubules and hinder axonal transport in Alzheimer's disease (AD). However, it remains unknown whether white matter (WM) decline due to AD is associated with specific Tau phosphorylation site(s). METHODS: In autosomal dominant AD (ADAD) mutation carriers (MC) and non-carriers (NC) we compared cerebrospinal fluid (CSF) phosphorylation at tau sites (pT217, pT181, pS202, and pT205) and total tau with WM measures, as derived from diffusion tensor imaging (DTI), and cognition. A WM composite metric, derived from a principal component analysis, was used to identify spatial decline seen in ADAD. RESULTS: The WM composite explained over 70% of the variance in MC. WM regions that strongly contributed to the spatial topography were located in callosal and cingulate regions. Loss of integrity within the WM composite was strongly associated with AD progression in MC as defined by the estimated years to onset (EYO) and cognitive decline. A linear regression demonstrated that amyloid, gray matter atrophy and phosphorylation at CSF tau site pT205 each uniquely explained a reduction in the WM composite within MC that was independent of vascular changes (white matter hyperintensities), and age. Hyperphosphorylation of CSF tau at other sites and total tau did not significantly predict WM composite loss. CONCLUSIONS: We identified a site-specific relationship between CSF phosphorylated tau and WM decline within MC. The presence of both amyloid deposition and Tau phosphorylation at pT205 were associated with WM composite loss. These findings highlight a primary AD-specific mechanism for WM dysfunction that is tightly coupled to symptom manifestation and cognitive decline.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Sustancia Blanca , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Disfunción Cognitiva/diagnóstico por imagen , Imagen de Difusión Tensora , Humanos , Fosforilación , Sustancia Blanca/metabolismo , Proteínas tau/metabolismo
12.
Alzheimers Dement ; 18(10): 1754-1764, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34854530

RESUMEN

As prevention trials advance with autosomal dominant Alzheimer disease (ADAD) participants, understanding the similarities and differences between ADAD and "sporadic" late-onset AD (LOAD) is critical to determine generalizability of findings between these cohorts. Cognitive trajectories of ADAD mutation carriers (MCs) and autopsy-confirmed LOAD individuals were compared to address this question. Longitudinal rates of change on cognitive measures were compared in ADAD MCs (n = 310) and autopsy-confirmed LOAD participants (n = 163) before and after symptom onset (estimated/observed). LOAD participants declined more rapidly in the presymptomatic (preclinical) period and performed more poorly at symptom onset than ADAD participants on a cognitive composite. After symptom onset, however, the younger ADAD MCs declined more rapidly. The similar but not identical cognitive trajectories (declining but at different rates) for ADAD and LOAD suggest common AD pathologies but with some differences.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Disfunción Cognitiva/fisiopatología
13.
Alzheimer Dis Assoc Disord ; 35(1): 30-35, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32960854

RESUMEN

INTRODUCTION: Although exercise is associated with a lower risk for mild cognitive impairment (MCI), it is unclear whether its protective effect depends on the presence or absence of vascular factors. METHODS: In an exploratory study of data from a population-based cohort, 1254 participants aged 65+ years were followed for 10 years for incident MCI. The main effect of baseline total minutes of exercise per week (0 vs. 1 to 149 vs. 150+), and its interaction with several vascular factors, on risk for incident MCI was examined using Cox proportional hazards regression models, adjusting for demographics. RESULTS: Compared with no exercise, 1 to 149 minutes [hazard ratio (HR)=0.90; 95% confidence interval (95% CI), 0.69-1.16] and 150 or more minutes per week (HR=0.84; 95% CI, 0.66-1.07) of exercise lowered risk for incident MCI in a dose-dependent manner. The majority of interactions were not statistically significant, but risk reduction effect sizes of <0.75 suggested that exercise may have stronger effects among those without high cholesterol, never smoking, and not currently consuming alcohol; also, those with arrhythmia, coronary artery disease, and heart failure. Overall, there was a pattern of exercise being associated with lower MCI risk among those without vascular factors. CONCLUSIONS: Spending more time engaging in exercise each week may offer protection against MCI in late life, with some variation among those with different vascular conditions and risk factors. Our findings may help target subgroups for exercise recommendations and interventions, and also generate hypotheses to test regarding underlying mechanisms.


Asunto(s)
Disfunción Cognitiva/etiología , Ejercicio Físico/fisiología , Factores de Riesgo de Enfermedad Cardiaca , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Estudios Longitudinales , Masculino , Estudios Prospectivos
14.
Alzheimers Dement ; 17(6): 1005-1016, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33480178

RESUMEN

INTRODUCTION: Machine learning models were used to discover novel disease trajectories for autosomal dominant Alzheimer's disease. METHODS: Longitudinal structural magnetic resonance imaging, amyloid positron emission tomography (PET), and fluorodeoxyglucose PET were acquired in 131 mutation carriers and 74 non-carriers from the Dominantly Inherited Alzheimer Network; the groups were matched for age, education, sex, and apolipoprotein ε4 (APOE ε4). A deep neural network was trained to predict disease progression for each modality. Relief algorithms identified the strongest predictors of mutation status. RESULTS: The Relief algorithm identified the caudate, cingulate, and precuneus as the strongest predictors among all modalities. The model yielded accurate results for predicting future Pittsburgh compound B (R2  = 0.95), fluorodeoxyglucose (R2  = 0.93), and atrophy (R2  = 0.95) in mutation carriers compared to non-carriers. DISCUSSION: Results suggest a sigmoidal trajectory for amyloid, a biphasic response for metabolism, and a gradual decrease in volume, with disease progression primarily in subcortical, middle frontal, and posterior parietal regions.


Asunto(s)
Enfermedad de Alzheimer , Aprendizaje Automático , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Adulto , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Amiloide/metabolismo , Compuestos de Anilina , Atrofia/patología , Femenino , Fluorodesoxiglucosa F18/metabolismo , Humanos , Masculino , Mutación/genética , Tiazoles
15.
Neurobiol Dis ; 142: 104960, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32522711

RESUMEN

Neurofilament light chain (NfL) is a protein that is selectively expressed in neurons. Increased levels of NfL measured in either cerebrospinal fluid or blood is thought to be a biomarker of neuronal damage in neurodegenerative diseases. However, there have been limited investigations relating NfL to the concurrent measures of white matter (WM) decline that it should reflect. White matter damage is a common feature of Alzheimer's disease. We hypothesized that serum levels of NfL would associate with WM lesion volume and diffusion tensor imaging (DTI) metrics cross-sectionally in 117 autosomal dominant mutation carriers (MC) compared to 84 non-carrier (NC) familial controls as well as in a subset (N = 41) of MC with longitudinal NfL and MRI data. In MC, elevated cross-sectional NfL was positively associated with WM hyperintensity lesion volume, mean diffusivity, radial diffusivity, and axial diffusivity and negatively with fractional anisotropy. Greater change in NfL levels in MC was associated with larger changes in fractional anisotropy, mean diffusivity, and radial diffusivity, all indicative of reduced WM integrity. There were no relationships with NfL in NC. Our results demonstrate that blood-based NfL levels reflect WM integrity and supports the view that blood levels of NfL are predictive of WM damage in the brain. This is a critical result in improving the interpretability of NfL as a marker of brain integrity, and for validating this emerging biomarker for future use in clinical and research settings across multiple neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer/sangre , Encéfalo/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Adulto , Enfermedad de Alzheimer/diagnóstico por imagen , Biomarcadores/sangre , Imagen de Difusión Tensora , Femenino , Humanos , Masculino , Persona de Mediana Edad
16.
Alzheimer Dis Assoc Disord ; 34(4): 325-332, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32701513

RESUMEN

BACKGROUND: Incidence of dementia increases exponentially with age; little is known about its risk factors in the ninth and 10th decades of life. We identified predictors of dementia with onset after age 85 years in a longitudinal population-based cohort. METHODS: On the basis of annual assessments, incident cases of dementia were defined as those newly receiving Clinical Dementia Rating (CDR) ≥1. We used a machine learning method, Markov modeling with hybrid density-based and partition-based clustering, to identify variables associated with subsequent incident dementia. RESULTS: Of 1439 participants, 641 reached age 85 years during 10 years of follow-up and 45 of these became incident dementia cases. Using hybrid density-based and partition-based, among those aged 85+ years, probability of incident dementia was associated with worse self-rated health, more prescription drugs, subjective memory complaints, heart disease, cardiac arrhythmia, thyroid disease, arthritis, reported hypertension, higher systolic and diastolic blood pressure, and hearing impairment. In the subgroup aged 85 to 89 years, risk of dementia was also associated with depression symptoms, not currently smoking, and lacking confidantes. CONCLUSIONS: An atheoretical machine learning method revealed several factors associated with increased probability of dementia after age 85 years in a population-based cohort. If independently validated in other cohorts, these findings could help identify the oldest-old at the highest risk of dementia.


Asunto(s)
Demencia , Aprendizaje Automático , Pruebas de Estado Mental y Demencia/estadística & datos numéricos , Anciano , Demencia/diagnóstico , Demencia/epidemiología , Autoevaluación Diagnóstica , Femenino , Humanos , Hipertensión , Incidencia , Estudios Longitudinales , Masculino , Pennsylvania/epidemiología , Estudios Prospectivos , Factores de Riesgo
17.
Brain ; 142(4): 1063-1076, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30753379

RESUMEN

Tauopathy is a hallmark pathology of Alzheimer's disease with a strong relationship with cognitive impairment. As such, understanding tau may be a key to clinical interventions. In vivo tauopathy has been measured using cerebrospinal fluid assays, but these do not provide information about where pathology is in the brain. The introduction of PET ligands that bind to paired helical filaments provides the ability to measure the amount and distribution of tau pathology. The heritability of the age of dementia onset tied to the specific mutations found in autosomal dominant Alzheimer's disease families provides an elegant model to study the spread of tau across the course of the disease as well as the cross-modal relationship between tau and other biomarkers. To better understand the pathobiology of Alzheimer's disease we measured levels of tau PET binding in individuals with dominantly inherited Alzheimer's disease using data from the Dominantly Inherited Alzheimer Network (DIAN). We examined cross-sectional measures of amyloid-ß, tau, glucose metabolism, and grey matter degeneration in 15 cognitively normal mutation non-carriers, 20 asymptomatic carriers, and 15 symptomatic mutation carriers. Linear models examined the association of pathology with group, estimated years to symptom onset, as well as cross-modal relationships. For comparison, tau PET was acquired on 17 older adults with sporadic, late onset Alzheimer disease. Tau PET binding was starkly elevated in symptomatic DIAN individuals throughout the cortex. The brain areas demonstrating elevated tau PET binding overlapped with those seen in sporadic Alzheimer's disease, but with a greater cortical involvement and greater levels of binding despite similar cognitive impairment. Tau PET binding was elevated in the temporal lobe, but the most prominent loci of pathology were in the precuneus and lateral parietal regions. Symptomatic mutation carriers also demonstrated elevated tau PET binding in the basal ganglia, consistent with prior work with amyloid-ß. The degree of tau tracer binding in symptomatic individuals was correlated to other biomarkers, particularly markers of neurodegeneration. In addition to the differences seen with tau, amyloid-ß was increased in both asymptomatic and symptomatic groups relative to non-carriers. Glucose metabolism showed decline primarily in the symptomatic group. MRI indicated structural degeneration in both asymptomatic and symptomatic cohorts. We demonstrate that tau PET binding is elevated in symptomatic individuals with dominantly inherited Alzheimer's disease. Tau PET uptake was tied to the onset of cognitive dysfunction, and there was a higher amount, and different regional pattern of binding compared to late onset, non-familial Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Tauopatías/diagnóstico por imagen , Adulto , Anciano , Anciano de 80 o más Años , Péptidos beta-Amiloides/metabolismo , Biomarcadores/metabolismo , Encéfalo/metabolismo , Cognición/fisiología , Disfunción Cognitiva/metabolismo , Demencia/metabolismo , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Ovillos Neurofibrilares/metabolismo , Presenilina-1/genética , Proteínas tau/metabolismo
18.
Brain ; 142(5): 1429-1440, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30897203

RESUMEN

Owing to an early and marked deposition of amyloid-ß in the basal ganglia, autosomal dominant Alzheimer's disease could distinctly involve motor symptoms. Therefore, we aimed to assess the prevalence and characteristics of motor signs in autosomal dominant Alzheimer's disease. Baseline Unified Parkinson Disease Rating Scale part three scores (UPDRS-III) from 433 participants of the Dominantly Inherited Alzheimer's Network observational study were analysed. Motor symptoms were scrutinized with respect to associations with mutation carrier status, mutation site within PSEN1, basal ganglia amyloid-ß as measured by Pittsburgh compound B PET, estimated years to symptom onset and Clinical Dementia Rating Scale-Sum of Boxes. Motor findings in mutation carriers were compared to patients with sporadic Alzheimer's disease using data of the National Alzheimer's Coordination Center. Mutation carriers showed motor findings at a higher frequency (28.4% versus 12.8%; P < 0.001) and severity (mean UPDRS-III scores 2.0 versus 0.4; P < 0.001) compared to non-carriers. Eleven of the 27 UPDRS-III items were statistically more frequently affected in mutation carriers after adjustment for multiple comparisons. Ten of these 11 items were subscale components of bradykinesia. In cognitively asymptomatic mutation carriers, dysdiadochokinesia was more frequent compared to non-carriers (right hand: 3.8% versus 0%; adjusted P = 0.023; left: 4.4% versus 0.6%; adjusted P = 0.031). In this cohort, the positive predictive value for mutation carrier status in cognitively asymptomatic participants (50% a priori risk) of dysdiadochokinesia was 100% for the right and 87.5% for the left side. Mutation carriers with motor findings more frequently were basal ganglia amyloid-ß positive (84% versus 63.3%; P = 0.006) and showed more basal ganglia amyloid-ß deposition (Pittsburgh compound B-standardized uptake value ratio 2.472 versus 1.928; P = 0.002) than those without. Frequency and severity of motor findings were greater in post-codon 200 PSEN1 mutations (36%; mean UPDRS-III score 3.03) compared to mutations pre-codon 200 PSEN1 (19.3%, P = 0.022; 0.91, P = 0.013). In mutation carriers, motor symptom severity was significantly positively correlated with basal ganglia amyloid-ß deposition, Clinical Dementia Rating scores and estimated years to symptom onset. Mutation carriers with a Clinical Dementia Rating global score of 2 exhibited more pronounced motor symptoms than sporadic Alzheimer's disease patients with the same Clinical Dementia Rating global score (mean UPDRS-III scores 20.71 versus 5.96; P < 0.001). With a prevalence of approximately 30% and increasing severity with progression of dementia, motor symptoms are proven as a clinically relevant finding in autosomal dominant Alzheimer's disease, in particular in advanced dementia stages, that correlates with deposition of amyloid-ß in the basal ganglia. In a very small per cent of cognitively asymptomatic members of families with autosomal dominant Alzheimer's disease, dysdiadochokinesia may increase the chance of an individual's status as mutation carrier.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Heterocigoto , Trastornos Motores/genética , Trastornos Motores/fisiopatología , Mutación/genética , Adulto , Anciano , Enfermedad de Alzheimer/epidemiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Trastornos Motores/epidemiología
19.
Alzheimers Dement ; 16(1): 219-228, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914221

RESUMEN

INTRODUCTION: Although some members of families with autosomal dominant Alzheimer's disease mutations learn their mutation status, most do not. How knowledge of mutation status affects clinical disease progression is unknown. This study quantifies the influence of mutation awareness on clinical symptoms, cognition, and biomarkers. METHODS: Mutation carriers and non-carriers from the Dominantly Inherited Alzheimer Network (DIAN) were stratified based on knowledge of mutation status. Rates of change on standard clinical, cognitive, and neuroimaging outcomes were examined. RESULTS: Mutation knowledge had no associations with cognitive decline, clinical progression, amyloid deposition, hippocampal volume, or depression in either carriers or non-carriers. Carriers who learned their status mid-study had slightly higher levels of depression and lower cognitive scores. DISCUSSION: Knowledge of mutation status does not affect rates of change on any measured outcome. Learning of status mid-study may confer short-term changes in cognitive functioning, or changes in cognition may influence the determination of mutation status.


Asunto(s)
Enfermedad de Alzheimer/genética , Concienciación , Conocimientos, Actitudes y Práctica en Salud , Mutación/genética , Neuroimagen , Adulto , Enfermedad de Alzheimer/diagnóstico por imagen , Amiloide , Biomarcadores , Cognición , Progresión de la Enfermedad , Femenino , Hipocampo/metabolismo , Humanos , Estudios Longitudinales , Masculino , Pruebas de Estado Mental y Demencia , Factores de Riesgo
20.
J Neurosci ; 38(34): 7505-7515, 2018 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-30030401

RESUMEN

Dysregulation of mitochondrial biogenesis is implicated in the pathogenesis of neurodegenerative diseases such as Parkinson's disease (PD). However, it is not clear how mitochondrial biogenesis is regulated in neurons, with their unique compartmentalized anatomy and energetic demands. This is particularly relevant in PD because selectively vulnerable neurons feature long, highly arborized axons where degeneration initiates. We previously found that exposure of neurons to chronic, sublethal doses of rotenone, a complex I inhibitor linked to PD, causes early increases in mitochondrial density specifically in distal axons, suggesting possible upregulation of mitochondrial biogenesis within axons. Here, we directly evaluated for evidence of mitochondrial biogenesis in distal axons and examined whether PD-relevant stress causes compartmentalized alterations. Using BrdU labeling and imaging to quantify replicating mitochondrial DNA (mtDNA) in primary rat neurons (pooled from both sexes), we provide evidence of mtDNA replication in axons along with cell bodies and proximal dendrites. We found that exposure to chronic, sublethal rotenone increases mtDNA replication first in neurites and later extending to cell bodies, complementing our mitochondrial density data. Further, isolating axons from cell bodies and dendrites, we discovered that rotenone exposure upregulates mtDNA replication in distal axons. Utilizing superresolution stimulated emission depletion (STED) imaging, we identified mtDNA replication at sites of mitochondrial-endoplasmic reticulum contacts in axons. Our evidence suggests that mitochondrial biogenesis occurs not only in cell bodies, but also in distal axons, and is altered under PD-relevant stress conditions in an anatomically compartmentalized manner. We hypothesize that this contributes to vulnerability in neurodegenerative diseases.SIGNIFICANCE STATEMENT Mitochondrial biogenesis is crucial for maintaining mitochondrial and cellular health and has been linked to neurodegenerative disease pathogenesis. However, regulation of this process is poorly understood in CNS neurons, which rely on mitochondrial function for survival. Our findings offer fundamental insight into these regulatory mechanisms by demonstrating that replication of mitochondrial DNA, an essential precursor for biogenesis, can occur in distal regions of CNS neuron axons independent of the soma. Further, this process is upregulated specifically in axons as an early response to neurodegeneration-relevant stress. This is the first demonstration of the compartmentalized regulation of CNS neuronal mitochondrial biogenesis in response to stress and may prove a useful target in development of therapeutic strategies for neurodegenerative disease.


Asunto(s)
Axones/ultraestructura , Replicación del ADN , ADN Mitocondrial/biosíntesis , Mitocondrias/metabolismo , Biogénesis de Organelos , Enfermedad de Parkinson/metabolismo , Animales , Axones/efectos de los fármacos , Axones/metabolismo , Corteza Cerebral/citología , Replicación del ADN/efectos de los fármacos , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Complejo I de Transporte de Electrón/metabolismo , Complejo IV de Transporte de Electrones/análisis , Retículo Endoplásmico/ultraestructura , Femenino , Humanos , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura , Dinámicas Mitocondriales/efectos de los fármacos , ATPasas de Translocación de Protón Mitocondriales/análisis , Neuritas/efectos de los fármacos , Neuritas/ultraestructura , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Estrés Oxidativo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/análisis , Ratas , Ratas Sprague-Dawley , Rotenona/toxicidad , Desacopladores/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA