Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Rapid Commun Mass Spectrom ; 34(23): e8922, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32770575

RESUMEN

RATIONALE: Chloroform, a probable human carcinogen, is commonly detected in various concentration levels in many surface water and groundwater sources. Compound-specific chlorine stable isotope analysis (Cl-CSIA) is significant in investigating the fate of chlorinated contaminants in the environment. Analytical conditions should, however, be thoroughly examined for any isotopic fractionation. In this study, we simultaneously optimize three analytical parameters for a robust online Cl-CSIA of chloroform using the Taguchi design of experiments. METHODS: For Cl-CSIA, a purge-and-trap autosampler coupled to a gas chromatograph in tandem with a quadrupole mass spectrometer, with electron ionization in selected ion monitoring (SIM) mode, was used. Using the Taguchi method, the dominant parameter affecting the results of Cl-CSIA for chloroform was identified through concurrent investigation of the signal-to-noise ratios (S/N) of three parameters, each at three levels: purging time (5, 10, 15 min), transfer time (80, 120, 160 s), and dwell time (20, 60, 100 ms). Moreover, the optimum combination of the levels was identified. RESULTS: The purging time, with a maximum S/N, resulted in the highest influence on the isotope ratios determined. It was further refined through additional experiments to sufficiently extract chloroform from the aqueous phase. Accordingly, 8 min of purging time, 120 s transfer time and 100 ms dwell time were the optimum conditions for Cl-CSIA of chloroform. Post-optimization, a precision of ±0.28 ‰ was achieved for 8.4 nmol of chloroform (equivalent to 0.89 µg or approx. 25 nmol Cl-mass on column). CONCLUSIONS: A simple online method for Cl-CSIA of chloroform was optimized with the Taguchi design of experiments. The Taguchi method was very useful for the optimization of the analytical conditions. However, the purging conditions should be fine-tuned and selected so that sufficient extraction of a target compound is confirmed to acquire a stable and higher precision of the method.

2.
Anal Chem ; 91(19): 12290-12297, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31454232

RESUMEN

Increasing applications of compound-specific chlorine isotope analysis (CSIA) emphasize the need for chlorine isotope standards that bracket a wider range of isotope values in order to ensure accurate results. With one exception (USGS38), however, all international chlorine isotope reference materials (chloride and perchlorate salts) fall within the narrow range of one per mille. Furthermore, compound-specific working standards are required for chlorine CSIA but are not available for most organic substances. We took advantage of isotope effects in chemical dehalogenation reactions to generate (i) silver chloride (CT16) depleted in 37Cl/35Cl and (ii) compound-specific standards of the herbicides acetochlor and S-metolachlor (Aceto2, Metola2) enriched in 37Cl/35Cl. Calibration against the international reference standards USGS38 (-87.90 ‰) and ISL-354 (+0.05 ‰) by complementary methods (gas chromatography-isotope ratio mass spectrometry, GC-IRMS, versus gas chromatography-multicollector inductively coupled plasma mass spectrometry, GC-MC-ICPMS) gave a consensus value of δ37ClCT16 = -26.82 ± 0.18 ‰. Preliminary GC-MC-ICPMS characterization of commercial Aceto1 and Metola1 versus Aceto2 and Metola2 resulted in tentative values of δ37ClAceto1 = 0.29 ± 0.29 ‰, δ37ClAceto2 = 18.54 ± 0.20 ‰, δ37ClMetola1 = -4.28 ± 0.17 ‰ and δ37ClMetola2 = 5.12 ± 0.27 ‰. The possibility to generate chlorine isotope in-house standards with pronounced shifts in isotope values offers a much-needed basis for accurate chlorine CSIA.

3.
Rapid Commun Mass Spectrom ; 33(7): 667-677, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30512206

RESUMEN

RATIONALE: Compound-specific isotope analysis (CSIA) is a valuable tool in environmental chemistry and in other fields of science. Currently, hydrogen CSIA of polar compounds containing exchangeable hydrogen is uncommon. To extend the scope of CSIA applications, we present an alternative method of analysis, bypassing the typical step of derivatization. The method is demonstrated for two environmental contaminants, 4-bromophenol (4BP) and 2,4,6-tribromophenol (TBP). METHODS: Net isotope ratios obtained by CSIA combine the isotope composition of nonexchangeable, carbon-bound hydrogen and the exchangeable hydroxyl hydrogen. To constrain the isotope composition of the latter, an ethyl acetate solution of 4BP or TBP injected into the IRMS instrument was amended with excess water of known isotope composition. The results were calibrated using bracketing control samples analyzed in sequence with the unknown samples and the known isotope ratios of water present in ethyl acetate solution. RESULTS: The analytical precision was comparable to the precision for halogenated compounds without exchangeable hydrogen, analyzed using similar instrumentation. The isotope ratios of the bromophenols correlated with the isotope composition of the water in the sample matrix, suggesting that the hydroxyl group of the target compound remained close to the equilibrium with the sample water during the passage through the instrument. Based on this relationship, the signatures of the nonexchangeable hydrogen were obtained using the isotope composition of sample water as the proxy for the isotope composition of the target compound hydroxyl group. CONCLUSIONS: The developed method could be adopted to analysis of other low molecular weight compounds amenable to gas chromatography without the absolute need for derivatization. Currently, the method can be used for samples from laboratory experiments, with high concentrations of the target compound to provide mechanistic insight into the degradation mechanisms. Further work would be required to optimize the method to low concentration environmental samples.

4.
Biodegradation ; 30(1): 37-46, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30350250

RESUMEN

Anthropogenic activities have introduced elevated levels of brominated phenols to the environment. These compounds are associated with toxic and endocrine effects, and their environmental fate is of interest. An aerobic strain Ochrobactrum sp. HI1 was isolated from soils in the vicinity of a bromophenol production plant and tested for its ability to degrade 4-bromophenol (4-BP). A ring hydroxylation pathway of degradation was proposed, using the evidence from degradation intermediates analysis and multi-element (C, Br, H) compound-specific isotope analysis. Benzenetriol and 4-bromocatechol were detected during degradation of 4-bromophenol. Degradation resulted in a normal carbon isotope effect (εC = -1.11 ± 0.09‰), and in insignificant bromine and hydrogen isotope fractionation. The dual C-Br isotope trend for ring hydroxylation obtained in the present study differs from the trends expected for reductive debromination or photolysis. Thus, the isotope data reported herein can be applied in future field studies to delineate aerobic biodegradation processes and differentiate them from other natural attenuation processes.


Asunto(s)
Clima Desértico , Ochrobactrum/metabolismo , Fenoles/metabolismo , Microbiología del Suelo , Aerobiosis , Biodegradación Ambiental , Isótopos de Carbono/química , Fraccionamiento Químico , Fenoles/química , Filogenia , ARN Ribosómico 16S/genética
5.
Molecules ; 19(5): 6450-73, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24853618

RESUMEN

Chlorinated ethenes are prevalent groundwater contaminants. To better constrain (bio)chemical reaction mechanisms of reductive dechlorination, the position-specificity of reductive trichloroethene (TCE) dehalogenation was investigated. Selective biotransformation reactions (i) of tetrachloroethene (PCE) to TCE in cultures of Desulfitobacterium sp. strain Viet1; and (ii) of TCE to cis-1,2-dichloroethene (cis-DCE) in cultures of Geobacter lovleyi strain SZ were investigated. Compound-average carbon isotope effects were -19.0‰ ± 0.9‰ (PCE) and -12.2‰ ± 1.0‰ (TCE) (95% confidence intervals). Using instrumental advances in chlorine isotope analysis by continuous flow isotope ratio mass spectrometry, compound-average chorine isotope effects were measured for PCE (-5.0‰ ± 0.1‰) and TCE (-3.6‰ ± 0.2‰). In addition, position-specific kinetic chlorine isotope effects were determined from fits of reactant and product isotope ratios. In PCE biodegradation, primary chlorine isotope effects were substantially larger (by -16.3‰ ± 1.4‰ (standard error)) than secondary. In TCE biodegradation, in contrast, the product cis-DCE reflected an average isotope effect of -2.4‰ ± 0.3‰ and the product chloride an isotope effect of -6.5‰ ± 2.5‰, in the original positions of TCE from which the products were formed (95% confidence intervals). A greater difference would be expected for a position-specific reaction (chloride would exclusively reflect a primary isotope effect). These results therefore suggest that both vicinal chlorine substituents of TCE were reactive (intramolecular competition). This finding puts new constraints on mechanistic scenarios and favours either nucleophilic addition by Co(I) or single electron transfer as reductive dehalogenation mechanisms.


Asunto(s)
Cloro/química , Desulfitobacterium/metabolismo , Geobacter/metabolismo , Tricloroetileno/química , Biodegradación Ambiental , Isótopos de Carbono/química , Dicloroetilenos/química , Dicloroetilenos/metabolismo , Cinética , Espectrometría de Masas , Modelos Químicos , Modelos Teóricos , Tetracloroetileno/química , Tetracloroetileno/metabolismo , Tricloroetileno/metabolismo , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo
6.
Environ Sci Technol ; 47(1): 479-84, 2013 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-23215036

RESUMEN

The explosive Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is known to be degraded aerobically by various isolates of the Rhodococcus species, with denitration being the key step, mediated by Cytochrome P450. Our study aimed at gaining insight into the RDX degradation mechanism by Rhodococcus species and comparing isotope effects associated with RDX degradation by distinct Rhodococcus strains. For these purposes, enrichment in (13)C and (15)N isotopes throughout RDX denitration was studied for three distinct Rhodococcus strains, isolated from soil and groundwater in an RDX-contaminated site. The observable (15)N enrichment throughout the reaction, together with minor (13)C enrichment, suggests that N-N bond cleavage is likely to be the key rate-limiting step in the reaction. The similarity in the kinetic (15)N isotope effect between the three tested strains suggests that either isotope-masking effects are negligible, or are of a similar extent for all tested strains. The lack of variability in the kinetic (15)N isotope effect allows the interpretation of environmental studies with greater confidence.


Asunto(s)
Sustancias Explosivas/metabolismo , Rhodococcus/metabolismo , Contaminantes del Suelo/metabolismo , Triazinas/metabolismo , Contaminantes Químicos del Agua/metabolismo , Biodegradación Ambiental , Isótopos de Carbono , Cinética , Isótopos de Nitrógeno
7.
Environ Sci Technol ; 47(13): 6855-63, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23627862

RESUMEN

Chloroethenes like trichloroethene (TCE) are prevalent environmental contaminants, which may be degraded through reductive dechlorination. Chemical models such as cobalamine (vitamin B12) and its simplified analogue cobaloxime have served to mimic microbial reductive dechlorination. To test whether in vitro and in vivo mechanisms agree, we combined carbon and chlorine isotope measurements of TCE. Degradation-associated enrichment factors ε(carbon) and ε(chlorine) (i.e., molecular-average isotope effects) were -12.2‰ ± 0.5‰ and -3.6‰ ± 0.1‰ with Geobacter lovleyi strain SZ; -9.1‰ ± 0.6‰ and -2.7‰ ± 0.6‰ with Desulfitobacterium hafniense Y51; -16.1‰ ± 0.9‰ and -4.0‰ ± 0.2‰ with the enzymatic cofactor cobalamin; -21.3‰ ± 0.5‰ and -3.5‰ ± 0.1‰ with cobaloxime. Dual element isotope slopes m = Δδ(13)C/ Δδ(37)Cl ≈ ε(carbon)/ε(chlorine) of TCE showed strong agreement between biotransformations (3.4 to 3.8) and cobalamin (3.9), but differed markedly for cobaloxime (6.1). These results (i) suggest a similar biodegradation mechanism despite different microbial strains, (ii) indicate that transformation with isolated cobalamin resembles in vivo transformation and (iii) suggest a different mechanism with cobaloxime. This model reactant should therefore be used with caution. Our results demonstrate the power of two-dimensional isotope analyses to characterize and distinguish between reaction mechanisms in whole cell experiments and in vitro model systems.


Asunto(s)
Tricloroetileno/química , Tricloroetileno/metabolismo , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo , Biodegradación Ambiental , Isótopos de Carbono/química , Cloro/química , Cloro/metabolismo , Desulfitobacterium/metabolismo , Geobacter/metabolismo , Isótopos/química , Compuestos Organometálicos/química , Oxidación-Reducción , Vitamina B 12/química
8.
Anal Bioanal Chem ; 405(9): 2923-9, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23052885

RESUMEN

The increasing use of kinetic isotope effects for environmental studies has motivated the development of new compound-specific isotope analysis techniques for emerging pollutants. Recently, high-precision bromine isotope analysis in individual brominated organic compounds was proposed, by the coupling of gas chromatography to a multi-collector inductively coupled plasma mass spectrometer using strontium as an external spike for instrumental bias correction. The present study, for the first time, demonstrates an application of this technique for determining bromine kinetic isotope effects during biological reaction, focusing on the reductive debromination of brominated phenols under anaerobic conditions. Results show bromine isotope enrichment factors (ε) of -0.76 ± 0.08, -0.46 ± 0.19, and -0.20 ± 0.06 ‰ for the debromination of 4-bromophenol, 2,4-dibromophenol, and 2,4,6-tribromophenol, respectively. These values are rather low, yet still high enough to be obtained with satisfying certainty. This further implies that the analytical method may be also appropriate for future environmental applications.


Asunto(s)
Bromo/análisis , Fenoles/análisis , Biotransformación , Bromo/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Halogenación , Isótopos/análisis , Isótopos/metabolismo , Cinética , Fenoles/metabolismo
9.
Chemosphere ; 322: 138226, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36828114

RESUMEN

Degradation of the widespread herbicide atrazine has been intensively studied in soils, while its degradation in groundwater has received less attention. This work studied atrazine degradation in contaminated groundwater adjacent to its production plant. The degradation potential was first explored in groundwater enrichment cultures. A broad potential for microbial atrazine degradation was observed when atrazine served as the sole nitrogen source, even when incubated with nitrate. Hydroxyatrazine was formed by the cultures, while desethylatrazine and desisopropylatrazine were not detected. Both the atzA and the trzN genes were identified by quantitative PCR analysis, with a clear dominance of atzA. Carbon isotope enrichments throughout the degradation process varied between the different cultures, with ε values ranging from -0.6 to -5.5‰. This implies corresponding uncertainties when using compound-specific isotope analysis to estimate degradation extents. In the field samples, in-situ degradation was reflected by a high percentage of metabolites, with hydroxyatrazine accounting for >95% of the metabolites in most wells. Both atzA and trzN were detected in the groundwater at quantities of ≈102 to 106 copies mL-1, with a dominance of atzA over trzN. These results provide evidence of the high potential for atrazine hydrolysis in the contaminated groundwater.


Asunto(s)
Atrazina , Agua Subterránea , Herbicidas , Atrazina/análisis , Hidrólisis , Herbicidas/análisis , Isótopos de Carbono/análisis , Biodegradación Ambiental
10.
Anal Bioanal Chem ; 403(9): 2471-91, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22302163

RESUMEN

Compound-specific stable-isotope analysis (CSIA) has greatly facilitated assessment of sources and transformation processes of organic pollutants. Multielement isotope analysis is one of the most promising applications of CSIA because it even enables distinction of different transformation pathways. This review introduces the essential features of continuous-flow isotope-ratio mass spectrometry (IRMS) and highlights current challenges in environmental analysis as exemplified for the isotopes of nitrogen, hydrogen, chlorine, and oxygen. Strategies and recent advances to enable isotopic measurements of polar contaminants, for example pesticides or pharmaceuticals, are discussed with special emphasis on possible solutions for analysis of low concentrations of contaminants in environmental matrices. Finally, we discuss different levels of calibration and referencing and point out the urgent need for compound-specific isotope standards for gas chromatography-isotope-ratio mass spectrometry (GC-IRMS) of organic pollutants.

11.
Anal Chem ; 83(20): 7624-34, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21851081

RESUMEN

Chlorine isotope analysis of chlorinated hydrocarbons like trichloroethylene (TCE) is of emerging demand because these species are important environmental pollutants. Continuous flow analysis of noncombusted TCE molecules, either by gas chromatography/isotope ratio mass spectrometry (GC/IRMS) or by GC/quadrupole mass spectrometry (GC/qMS), was recently brought forward as innovative analytical solution. Despite early implementations, a benchmark for routine applications has been missing. This study systematically compared the performance of GC/qMS versus GC/IRMS in six laboratories involving eight different instruments (GC/IRMS, Isoprime and Thermo MAT-253; GC/qMS, Agilent 5973N, two Agilent 5975C, two Thermo DSQII, and one Thermo DSQI). Calibrations of (37)Cl/(35)Cl instrument data against the international SMOC scale (Standard Mean Ocean Chloride) deviated between instruments and over time. Therefore, at least two calibration standards are required to obtain true differences between samples. Amount dependency of δ(37)Cl was pronounced for some instruments, but could be eliminated by corrections, or by adjusting amplitudes of standards and samples. Precision decreased in the order GC/IRMS (1σ ≈ 0.1‰), to GC/qMS (1σ ≈ 0.2-0.5‰ for Agilent GC/qMS and 1σ ≈ 0.2-0.9‰ for Thermo GC/qMS). Nonetheless, δ(37)Cl values between laboratories showed good agreement when the same external standards were used. These results lend confidence to the methods and may serve as a benchmark for future applications.


Asunto(s)
Cloro/análisis , Contaminantes Ambientales/análisis , Cromatografía de Gases y Espectrometría de Masas , Isótopos/análisis , Calibración , Cloro/normas , Cromatografía de Gases y Espectrometría de Masas/instrumentación , Cromatografía de Gases y Espectrometría de Masas/normas , Marcaje Isotópico , Isótopos/normas , Tricloroetileno/análisis
12.
Biodegradation ; 22(5): 997-1005, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21327803

RESUMEN

Groundwater contamination by the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a global problem. Israel's coastal aquifer was contaminated with RDX. This aquifer is mostly aerobic and we therefore sought aerobic bacteria that might be involved in natural attenuation of the compound in the aquifer. RDX-degrading bacteria were captured by passively sampling the indigenous bacteria onto sterile sediments placed within sampling boreholes. Aerobic RDX biodegradation potential was detected in the sediments sampled from different locations along the plume. RDX degradation with the native sampled consortium was accompanied by 4-nitro-2,4-diazabutanal formation. Two bacterial strains of the genus Rhodococcus were isolated from the sediments and identified as aerobic RDX degraders. The xplA gene encoding the cytochrome P450 enzyme was partially (~500 bp) sequenced from both isolates. The obtained DNA sequences had 99% identity with corresponding gene fragments of previously isolated RDX-degrading Rhodococcus strains. RDX degradation by both strains was prevented by 200 µM of the cytochrome P450 inhibitor metyrapone, suggesting that cytochrome P450 indeed mediates the initial step in RDX degradation. RDX biodegradation activity by the T7 isolate was inhibited in the presence of nitrate or ammonium concentrations above 1.6 and 5.5 mM, respectively (100 mg l(-1)) while the T9N isolate's activity was retarded only by ammonium concentrations above 5.5 mM. This study shows that bacteria from the genus Rhodococcus, potentially degrade RDX in the saturated zone as well, following the same aerobic degradation pathway defined for other Rhodococcus species. RDX-degrading activity by the Rhodococcus species isolate T9N may have important implications for the bioremediation of nitrate-rich RDX-contaminated aquifers.


Asunto(s)
Agua Dulce/microbiología , Rhodococcus/aislamiento & purificación , Rhodococcus/metabolismo , Triazinas/metabolismo , Contaminantes Químicos del Agua/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biodegradación Ambiental , Sustancias Explosivas/metabolismo , Datos de Secuencia Molecular , Filogenia , Rhodococcus/clasificación , Rhodococcus/genética
13.
Anal Chem ; 82(5): 2013-9, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-20143836

RESUMEN

Negatively charged analytes must be derivatized prior to gas chromatography-isotope ratio mass spectrometry (GC-IRMS), with stringent control of isotope fractionation. Current methods require offline sample preparation. This study tests for the first time trimethylsulfonium hydroxide (TMSH) as online methylation agent prior to isotope analysis, addressing the herbicides bentazone and MCPA. Fully automated derivatization was achieved in a temperature-programmable GC injector, where reactants were injected into a packed liner, solvents were removed by split flow, and subsequent flash heating triggered the derivatization, thereby transferring derivatives onto the chromatographic column. Stoichiometric addition of TMSH resulted in complete conversion giving accurate and reproducible nitrogen isotope values of bentazone. In contrast, reproducible carbon isotope analysis required TMSH in > or = 250-fold excess. Contrary to expectations, delta(13)C values became more negative at smaller TMSH excess. This indicates that elevated methyl group concentrations in the pore space of the injection liner facilitated close-to-equilibrium rather than kinetic isotope fractionation resulting in reproducible derivatization conditions. delta(13)C results under these conditions compared favorably with liquid chromatography-IRMS: low standard deviations (0.3 per thousand for GC-IRMS, 0.1 per thousand for LC-IRMS) and a comparable offset of 1 per thousand compared to elemental analyzer-IRMS demonstrate that both methods represent expedient ways for online isotope analysis of anionic target compounds.

14.
J Hazard Mater ; 388: 122036, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31951995

RESUMEN

Bromoxynil is an increasingly applied nitrile herbicide used for post-emergent control of annual broadleaved weeds. Compound-specific isotope analysis (CSIA) of the compound is of interest for studying its environmental fate, yet is challenging following its polar nature. We present a CSIA method for bromoxynil that includes offline thin-layer chromatography purification followed by an elemental analyzer isotope ratio mass spectrometer (EA-IRMS). This method was shown to be accurate and precise for δ13C and δ15N analysis of the compound (standard deviation of replicate standards <0.5‰). The method was applied to photodegraded samples, either radiated under laboratory condition with a UV lamp, or exposed to sunlight under environmental conditions. Dominating degradation products were similar in both cases. Nevertheless, isotope effects differed, presenting a strong inverse carbon isotope effect (εC = 4.74 ±â€¯0.82‰) and a weak inverse nitrogen isotope effect (εN = 0.76 ±â€¯0.12‰) for the laboratory experiment, and an insignificant carbon isotope effect (εC = 0.34 ±â€¯0.44‰) and a normal nitrogen isotope effect (εN = -3.70 ±â€¯0.30‰) for the natural conditions experiment. The differences in δ13C vs. δ15N enrichment trends suggest different mechanism for the two processes. Finally, the obtained dual isotope trend for natural conditions provide the basis for studying the dominance of photodegradation as a degradation route in the environment.

15.
Water Res ; 171: 115431, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31893553

RESUMEN

Trichloroethylene (TCE) is a groundwater pollutant that is prevalent worldwide. In contaminated groundwater, TCE can be biodegraded following either reductive dechlorination or aerobic co-metabolic oxidation. However, since the co-metabolic process is not accompanied by indicative and easily detectable transformation products, little is known about its prominence in the environment. To estimate the environmental importance of the oxidative process, a regional groundwater survey was conducted. In this survey, polluted water from 100 wells along the Israeli Coastal Aquifer was sampled. Geochemical data indicated oxic conditions prevailing in most sites. The sampled groundwater was used for microcosm experiments, functional gene analysis, and TCE compound-specific isotope analysis (δ13C and δ37Cl). Enrichments of methane and toluene oxidizers in microcosms indicated the high potential of the indigenous microbial community to co-metabolically oxidize TCE. This was further reinforced by the high abundance of mmoX and PHE functional genes quantified in some of the sites (yet lower abundance of TOD functional gene was found). Finally, compound-specific isotope analysis was used to assess the magnitude of TCE oxidation in practice. Applying the isotopic tool for scattered points on a regional scale demanded the consideration of a wide δ13C range of source TCE, hampering the ability to detect small shifts of a single permil. Thus, despite the high potential for the oxidation process, no evidence was attained for the natural occurrence of the process, and significant isotopic shifts were restricted to actively treated sites only. This limitation should be considered in future regional scale studies, in which no single source is defined.


Asunto(s)
Agua Subterránea , Tricloroetileno , Contaminantes Químicos del Agua , Biodegradación Ambiental , Encuestas y Cuestionarios
16.
Chemosphere ; 242: 125130, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31669996

RESUMEN

Identifying co-metabolic TCE oxidation in polluted groundwater is challenging due to lack of indicative by-products. This challenge may theoretically be resolved if the oxidation process can be characterized by a distinct dual isotope enrichment. In this work, we aimed to explore the carbon and chlorine isotope effects associated with TCE oxidation by a variety of oxygenases. These included pure strains and enrichment cultures of methane, toluene and ammonia oxidizers, as well as experiments with crude extracts. Isotope effects determined for TCE oxidation by toluene and ammonia oxidizers were mostly in line with expected values for epoxidation mechanism (ϵ13C -11.0 ±â€¯0.7 to -24.8 ±â€¯0.2‰ and ϵ37Cl +0.9 ± 0.5 to +1.0 ± 0.4‰), whereas, the methanotrophs resulted in distinctively different isotope effects (ϵ13C -2.4 ±â€¯0.4 to -3.4 ±â€¯0.8‰ and ϵ37Cl -1.8 ±â€¯0.2 to -2.9 ±â€¯0.9‰). It is suggested that in TCE oxidation by methanotrophs, substrate binding rather than bond cleavage is rate limiting, leading to this unexpected isotope effect. On the environmental level, our results imply that the oxidative process can be differentiated if catalyzed by toluene and ammonia oxidizers or by methanotrophs. Additionally, the oxidative process can be distinguished from the reductive one. However, using dual isotope analysis in the field may result in an under-estimation of the overall co-metabolic process if methanotrophs are to be excluded due to low isotope effects.


Asunto(s)
Biodegradación Ambiental , Cloro/metabolismo , Tricloroetileno/metabolismo , Contaminantes Químicos del Agua/metabolismo , Carbono , Isótopos de Carbono/análisis , Respiración de la Célula , Fraccionamiento Químico , Cloro/química , Contaminación Ambiental/análisis , Agua Subterránea/química , Metano , Tricloroetileno/química , Contaminantes Químicos del Agua/química
17.
J Agric Food Chem ; 68(6): 1546-1554, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31986047

RESUMEN

Bromoxynil is an increasingly applied nitrile herbicide. Under aerobic conditions, hydration, nitrilation, or hydroxylation of the nitrile group commonly occurs, whereas under anaerobic conditions reductive dehalogenation is common. This work studied the isotope effects associated with these processes by soil cultures. The aerobic soil enrichment culture presented a significant increase in Stenotrophomonas, Pseudomonas, Chryseobacterium, Achromobacter, Azospirillum, and Arcticibacter, and degradation products indicated that nitrile hydratase was the dominant degradation route. The anaerobic culture was dominated by Proteobacteria and Firmicutes phyla with a significant increase in Dethiosulfatibacter, and degradation products indicated reductive debromination as a major degradation route. Distinct dual-isotope trends (δ13C, δ15N) were determined for the two routes: a strong inverse nitrogen isotope effect (εN = 10.56 ± 0.36‰) and an insignificant carbon isotope effect (εC = 0.37 ± 0.36‰) for the aerobic process versus a negligible effect for both elements in the anaerobic process. These trends differ from formerly reported trends for the photodegradation of bromoxynil and enable one to distinguish between the processes in the field.


Asunto(s)
Bacterias/metabolismo , Herbicidas/química , Nitrilos/química , Contaminantes del Suelo/química , Aerobiosis , Anaerobiosis , Biodegradación Ambiental , Isótopos de Carbono/química , Isótopos de Nitrógeno/química , Suelo/química , Microbiología del Suelo
18.
Environ Sci Pollut Res Int ; 27(18): 22749-22757, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32323238

RESUMEN

Multi-elemental C-Br-Cl compound-specific isotope analysis was applied for characterizing abiotic and biotic degradation of the environmental pollutant 1-bromo-2-chloroethane (BCE). Isotope effects were determined in the model processes following hydrolytic dehalogenation and dihaloelimination pathways as well as in a microcosm experiment by the microbial culture from the contaminated site. Hydrolytic dehalogenation of BCE under alkaline conditions and by DhaA enzyme resulted in similar dual isotope slopes (ɅC/Br 21.9 ± 4.7 and 19.4 ± 1.8, respectively, and ɅC/Cl ~ ∞). BCE transformation by cyanocobalamin (B12) and by Sulfurospirillum multivorans followed dihaloelimination and was accompanied by identical, within the uncertainty range, dual isotope slopes (ɅC/Br 8.4 ± 1.7 and 7.9 ± 4.2, respectively, and ɅC/Cl 2.4 ± 0.3 and 1.5 ± 0.6, respectively). Changes over time in the isotope composition of BCE from the contaminated groundwater showed only a slight variation in δ13C values and were not sufficient for the elucidation of the BCE degradation pathway in situ. However, an anaerobic microcosm experiment with the enrichment cultures from the contaminated groundwater presented dual isotope slopes similar to the hydrolytic pathway, suggesting that the potential for BCE degradation in situ by the hydrolytic dehalogenation pathway exists in the contaminated site.


Asunto(s)
Agua Subterránea , Hidrocarburos Halogenados , Biodegradación Ambiental , Campylobacteraceae , Isótopos de Carbono , Etano/análogos & derivados
19.
Chemosphere ; 72(3): 400-6, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18396315

RESUMEN

Excess boron is a growing environmental problem. It often affects agricultural yields, where reuse of wastewater for irrigation is practiced. This problem raises the need for reliable, simple and economical methods to monitor boron concentrations in wastewater and soil extracts. One such method, the commonly used azomethine-H spectrophotometric method, suffers from color interference, originating from high concentrations of dissolved organic matter, when applied to many wastewater and agricultural soil extracts. Moreover, this method only quantifies free dissolved boron and lacks the ability to quantify boron that is adsorbed to either the dissolved organic matter or suspended solids that are present in the sample. This work suggests a modification of the standard azomethine-H method, in which the solution is digested with potassium persulfate prior to the standard procedure. We show that this pretreatment can overcome the color interference and lead to highly accurate and precise boron analyses in wastewater. In soil extracts, the boron concentrations obtained using the suggested procedure were better correlated to inductively coupled plasma (ICP) spectrometry results than those measured by the standard method, because whereas the standard method quantifies the free dissolved boron only, the modified method, like the ICP method, quantifies the total dissolved boron in the sample. Thus, the suggested modification can be used to quantify the respective distributions of free dissolved boron, boron adsorbed to dissolved organic matter and boron adsorbed to suspended solids in soil extracts and water samples.


Asunto(s)
Boro/análisis , Naftalenosulfonatos/química , Contaminantes del Suelo/análisis , Suelo/análisis , Tiosemicarbazonas/química , Contaminantes Químicos del Agua/análisis , Adsorción , Boro/química , Monitoreo del Ambiente/métodos , Reproducibilidad de los Resultados
20.
Ground Water ; 45(2): 235-41, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17335487

RESUMEN

A point dilution test is commonly used in single-borehole tracer experiments designed to determine the Darcy velocity of a formation. This method is based on the concept that, in a borehole, a tracer's concentration declines as a consequence of the water flux. Based on theoretical simulations and field observations, this study indicates that for low-permeability, yet highly porous fractured formations, the common practice of excluding the effect of diffusive mass flux between the dissolved tracer within the borehole and the surrounding matrix may lead to significant errors in the assessment of the Darcy velocity. This conclusion was confirmed by a model adapted to simulate experimental data collected from a tracer test performed in a vertical, large-diameter (25-cm) borehole drilled along a subvertical fracture intersecting a chalk formation.


Asunto(s)
Agua , Difusión , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA