Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Blood ; 142(15): 1281-1296, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37478401

RESUMEN

Wiskott-Aldrich syndrome (WAS) is a rare X-linked disorder characterized by combined immunodeficiency, eczema, microthrombocytopenia, autoimmunity, and lymphoid malignancies. Gene therapy (GT) to modify autologous CD34+ cells is an emerging alternative treatment with advantages over standard allogeneic hematopoietic stem cell transplantation for patients who lack well-matched donors, avoiding graft-versus-host-disease. We report the outcomes of a phase 1/2 clinical trial in which 5 patients with severe WAS underwent GT using a self-inactivating lentiviral vector expressing the human WAS complementary DNA under the control of a 1.6-kB fragment of the autologous promoter after busulfan and fludarabine conditioning. All patients were alive and well with sustained multilineage vector gene marking (median follow-up: 7.6 years). Clinical improvement of eczema, infections, and bleeding diathesis was universal. Immune function was consistently improved despite subphysiologic levels of transgenic WAS protein expression. Improvements in platelet count and cytoskeletal function in myeloid cells were most prominent in patients with high vector copy number in the transduced product. Two patients with a history of autoimmunity had flares of autoimmunity after GT, despite similar percentages of WAS protein-expressing cells and gene marking to those without autoimmunity. Patients with flares of autoimmunity demonstrated poor numerical recovery of T cells and regulatory T cells (Tregs), interleukin-10-producing regulatory B cells (Bregs), and transitional B cells. Thus, recovery of the Breg compartment, along with Tregs appears to be protective against development of autoimmunity after GT. These results indicate that clinical and laboratory manifestations of WAS are improved with GT with an acceptable safety profile. This trial is registered at clinicaltrials.gov as #NCT01410825.


Asunto(s)
Eccema , Trasplante de Células Madre Hematopoyéticas , Síndrome de Wiskott-Aldrich , Humanos , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/terapia , Proteína del Síndrome de Wiskott-Aldrich/genética , Células Madre Hematopoyéticas/metabolismo , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Terapia Genética/métodos , Eccema/etiología , Eccema/metabolismo , Eccema/terapia
2.
Cell ; 133(3): 523-36, 2008 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-18423832

RESUMEN

Deciphering the multiple layers of epigenetic regulation that control transcription is critical to understanding how plants develop and respond to their environment. Using sequencing-by-synthesis technology we directly sequenced the cytosine methylome (methylC-seq), transcriptome (mRNA-seq), and small RNA transcriptome (smRNA-seq) to generate highly integrated epigenome maps for wild-type Arabidopsis thaliana and mutants defective in DNA methyltransferase or demethylase activity. At single-base resolution we discovered extensive, previously undetected DNA methylation, identified the context and level of methylation at each site, and observed local sequence effects upon methylation state. Deep sequencing of smRNAs revealed a direct relationship between the location of smRNAs and DNA methylation, perturbation of smRNA biogenesis upon loss of CpG DNA methylation, and a tendency for smRNAs to direct strand-specific DNA methylation in regions of RNA-DNA homology. Finally, strand-specific mRNA-seq revealed altered transcript abundance of hundreds of genes, transposons, and unannotated intergenic transcripts upon modification of the DNA methylation state.


Asunto(s)
Arabidopsis/genética , Metilación de ADN , Epigénesis Genética , Genoma de Planta , Islas de CpG , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Perfilación de la Expresión Génica , Mutación , ARN de Planta/metabolismo , ARN no Traducido/metabolismo , Análisis de Secuencia de ADN/métodos
3.
Catheter Cardiovasc Interv ; 98(5): 904-913, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34398509

RESUMEN

The Society for Cardiovascular Angiography and Interventions (SCAI) Think Tank is a collaborative venture that brings together interventional cardiologists, administrative partners, and select members of the cardiovascular industry community annually for high-level field-wide discussions. The 2021 Think Tank was organized into four parallel sessions reflective of the field of interventional cardiology: (a) coronary intervention, (b) endovascular medicine, (c) structural heart disease, and (d) congenital heart disease. Each session was moderated by a senior content expert and co-moderated by a member of SCAI's Emerging Leader Mentorship program. This document presents the proceedings to the wider cardiovascular community in order to enhance participation in this discussion, create additional dialog from a broader base, and thereby aid SCAI, the industry community and external stakeholders in developing specific action items to move these areas forward.


Asunto(s)
Cardiólogos , Cardiología , Cardiopatías Congénitas , Angiografía , Humanos , Resultado del Tratamiento
4.
N Engl J Med ; 371(15): 1407-17, 2014 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-25295500

RESUMEN

BACKGROUND: In previous clinical trials involving children with X-linked severe combined immunodeficiency (SCID-X1), a Moloney murine leukemia virus-based γ-retrovirus vector expressing interleukin-2 receptor γ-chain (γc) complementary DNA successfully restored immunity in most patients but resulted in vector-induced leukemia through enhancer-mediated mutagenesis in 25% of patients. We assessed the efficacy and safety of a self-inactivating retrovirus for the treatment of SCID-X1. METHODS: We enrolled nine boys with SCID-X1 in parallel trials in Europe and the United States to evaluate treatment with a self-inactivating (SIN) γ-retrovirus vector containing deletions in viral enhancer sequences expressing γc (SIN-γc). RESULTS: All patients received bone marrow-derived CD34+ cells transduced with the SIN-γc vector, without preparative conditioning. After 12.1 to 38.7 months of follow-up, eight of the nine children were still alive. One patient died from an overwhelming adenoviral infection before reconstitution with genetically modified T cells. Of the remaining eight patients, seven had recovery of peripheral-blood T cells that were functional and led to resolution of infections. The patients remained healthy thereafter. The kinetics of CD3+ T-cell recovery was not significantly different from that observed in previous trials. Assessment of insertion sites in peripheral blood from patients in the current trial as compared with those in previous trials revealed significantly less clustering of insertion sites within LMO2, MECOM, and other lymphoid proto-oncogenes in our patients. CONCLUSIONS: This modified γ-retrovirus vector was found to retain efficacy in the treatment of SCID-X1. The long-term effect of this therapy on leukemogenesis remains unknown. (Funded by the National Institutes of Health and others; ClinicalTrials.gov numbers, NCT01410019, NCT01175239, and NCT01129544.).


Asunto(s)
Gammaretrovirus/genética , Terapia Genética , Vectores Genéticos , Enfermedades por Inmunodeficiencia Combinada Ligada al Cromosoma X/terapia , Animales , Antígenos CD34 , ADN Complementario/uso terapéutico , Expresión Génica , Silenciador del Gen , Terapia Genética/efectos adversos , Humanos , Lactante , Subunidad gamma Común de Receptores de Interleucina/genética , Masculino , Ratones , Mutación , Linfocitos T/inmunología , Transducción Genética , Transgenes/fisiología , Enfermedades por Inmunodeficiencia Combinada Ligada al Cromosoma X/genética , Enfermedades por Inmunodeficiencia Combinada Ligada al Cromosoma X/inmunología
6.
Genes Dev ; 23(5): 633-42, 2009 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-19270161

RESUMEN

At least 8% of the human genome was formed by integration of retroviral DNA sequences. Here we analyze the forces directing the accumulation of human endogenous retroviruses (HERVs) by comparing de novo HERV integration targeting with the distribution of fixed HERV elements in the human genome. All known genomic HERVs are inactive due to mutation, but we were able to study integration targeting using a reconstituted consensus HERV-K (designated HERV-K(Con)). We found that HERV-K(Con) integrated preferentially in transcription units, in gene-rich regions, and near features associated with active transcription units and associated regulatory regions. In contrast, genomic HERV-K proviruses are found preferentially outside transcription units. The minority of genomic HERVKs present inside transcription units are in opposite transcriptional orientation relative to the host gene, the orientation predicted to be minimally disruptive to host mRNA synthesis, but de novo HERV-K(Con) integration within transcription units showed no orientation bias. We also found that the youngest HERV-K elements in the human genome showed a distribution intermediate between de novo HERV-K(Con) integration sites and older fixed HERV-Ks. These findings indicate that accumulation of HERVs in the human germline is a two-step process: integration targeting biases direct initial accumulation, then purifying selection leads to loss of proviruses disrupting gene function.


Asunto(s)
Retrovirus Endógenos/metabolismo , Genoma Humano/genética , Integración Viral/fisiología , Células/virología , Cromatina/metabolismo , Mapeo Cromosómico , Retrovirus Endógenos/genética , Histonas/metabolismo , Humanos , Metilación , Integración Viral/genética
7.
Bioinformatics ; 30(11): 1493-500, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24489369

RESUMEN

MOTIVATION: Gene therapy with retroviral vectors can induce adverse effects when those vectors integrate in sensitive genomic regions. Retroviral vectors are preferred that target sensitive regions less frequently, motivating the search for localized clusters of integration sites and comparison of the clusters formed by integration of different vectors. Scan statistics allow the discovery of spatial differences in clustering and calculation of false discovery rates providing statistical methods for comparing retroviral vectors. RESULTS: A scan statistic for comparing two vectors using multiple window widths is proposed with software to detect clustering differentials and compute false discovery rates. Application to several sets of experimentally determined HIV integration sites demonstrates the software. Simulated datasets of various sizes and signal strengths are used to determine the power to discover clusters and evaluate a convenient lower bound. This provides a toolkit for planning evaluations of new gene therapy vectors. AVAILABILITY AND IMPLEMENTATION: The geneRxCluster R package containing a simple tutorial and usage hints is available from http://www.bioconductor.org.


Asunto(s)
Vectores Genéticos , VIH/genética , Integración Viral , Algoritmos , Inteligencia Artificial , ADN/química , Interpretación Estadística de Datos , Genómica , Humanos , Células Jurkat , Programas Informáticos
8.
JAMA ; 313(15): 1550-63, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25898053

RESUMEN

IMPORTANCE: Wiskott-Aldrich syndrome is a rare primary immunodeficiency associated with severe microthrombocytopenia. Partially HLA antigen-matched allogeneic hematopoietic stem cell (HSC) transplantation is often curative but is associated with significant comorbidity. OBJECTIVE: To assess the outcomes and safety of autologous HSC gene therapy in Wiskott-Aldrich syndrome. DESIGN, SETTING, AND PARTICIPANTS: Gene-corrected autologous HSCs were infused in 7 consecutive patients with severe Wiskott-Aldrich syndrome lacking HLA antigen-matched related or unrelated HSC donors (age range, 0.8-15.5 years; mean, 7 years) following myeloablative conditioning. Patients were enrolled in France and England and treated between December 2010 and January 2014. Follow-up of patients in this intermediate analysis ranged from 9 to 42 months. INTERVENTION: A single infusion of gene-modified CD34+ cells with an advanced lentiviral vector. MAIN OUTCOMES AND MEASURES: Primary outcomes were improvement at 24 months in eczema, frequency and severity of infections, bleeding tendency, and autoimmunity and reduction in disease-related days of hospitalization. Secondary outcomes were improvement in immunological and hematological characteristics and evidence of safety through vector integration analysis. RESULTS: Six of the 7 patients were alive at the time of last follow-up (mean and median follow-up, 28 months and 27 months, respectively) and showed sustained clinical benefit. One patient died 7 months after treatment of preexisting drug-resistant herpes virus infection. Eczema and susceptibility to infections resolved in all 6 patients. Autoimmunity improved in 5 of 5 patients. No severe bleeding episodes were recorded after treatment, and at last follow-up, all 6 surviving patients were free of blood product support and thrombopoietic agonists. Hospitalization days were reduced from a median of 25 days during the 2 years before treatment to a median of 0 days during the 2 years after treatment. All 6 surviving patients exhibited high-level, stable engraftment of functionally corrected lymphoid cells. The degree of myeloid cell engraftment and of platelet reconstitution correlated with the dose of gene-corrected cells administered. No evidence of vector-related toxicity was observed clinically or by molecular analysis. CONCLUSIONS AND RELEVANCE: This study demonstrated the feasibility of the use of gene therapy in patients with Wiskott-Aldrich syndrome. Controlled trials with larger numbers of patients are necessary to assess long-term outcomes and safety.


Asunto(s)
Terapia Genética , Vectores Genéticos , Trasplante de Células Madre Hematopoyéticas , Lentivirus , Familia de Proteínas del Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/terapia , Adolescente , Niño , Preescolar , Estudios de Factibilidad , Expresión Génica , Terapia Genética/efectos adversos , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Lactante , Recién Nacido , Masculino , Índice de Severidad de la Enfermedad , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/inmunología
9.
Retrovirology ; 10: 90, 2013 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-23953889

RESUMEN

BACKGROUND: HIV infection can be treated effectively with antiretroviral agents, but the persistence of a latent reservoir of integrated proviruses prevents eradication of HIV from infected individuals. The chromosomal environment of integrated proviruses has been proposed to influence HIV latency, but the determinants of transcriptional repression have not been fully clarified, and it is unclear whether the same molecular mechanisms drive latency in different cell culture models. RESULTS: Here we compare data from five different in vitro models of latency based on primary human T cells or a T cell line. Cells were infected in vitro and separated into fractions containing proviruses that were either expressed or silent/inducible, and integration site populations sequenced from each. We compared the locations of 6,252 expressed proviruses to those of 6,184 silent/inducible proviruses with respect to 140 forms of genomic annotation, many analyzed over chromosomal intervals of multiple lengths. A regularized logistic regression model linking proviral expression status to genomic features revealed no predictors of latency that performed better than chance, though several genomic features were significantly associated with proviral expression in individual models. Proviruses in the same chromosomal region did tend to share the same expressed or silent/inducible status if they were from the same cell culture model, but not if they were from different models. CONCLUSIONS: The silent/inducible phenotype appears to be associated with chromosomal position, but the molecular basis is not fully clarified and may differ among in vitro models of latency.


Asunto(s)
Linfocitos T CD4-Positivos/virología , VIH/fisiología , Integración Viral , Latencia del Virus , Células Cultivadas , VIH/genética , Humanos , Provirus/genética , Provirus/fisiología
10.
N Engl J Med ; 363(4): 355-64, 2010 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-20660403

RESUMEN

BACKGROUND: The outcomes of gene therapy to correct congenital immunodeficiencies are unknown. We reviewed long-term outcomes after gene therapy in nine patients with X-linked severe combined immunodeficiency (SCID-X1), which is characterized by the absence of the cytokine receptor common gamma chain. METHODS: The nine patients, who lacked an HLA-identical donor, underwent ex vivo retrovirus-mediated transfer of gamma chain to autologous CD34+ bone marrow cells between 1999 and 2002. We assessed clinical events and immune function on long-term follow-up. RESULTS: Eight patients were alive after a median follow-up period of 9 years (range, 8 to 11). Gene therapy was initially successful at correcting immune dysfunction in eight of the nine patients. However, acute leukemia developed in four patients, and one died. Transduced T cells were detected for up to 10.7 years after gene therapy. Seven patients, including the three survivors of leukemia, had sustained immune reconstitution; three patients required immunoglobulin-replacement therapy. Sustained thymopoiesis was established by the persistent presence of naive T cells, even after chemotherapy in three patients. The T-cell-receptor repertoire was diverse in all patients. Transduced B cells were not detected. Correction of the immunodeficiency improved the patients' health. CONCLUSIONS: After nearly 10 years of follow-up, gene therapy was shown to have corrected the immunodeficiency associated with SCID-X1. Gene therapy may be an option for patients who do not have an HLA-identical donor for hematopoietic stem-cell transplantation and for whom the risks are deemed acceptable. This treatment is associated with a risk of acute leukemia. (Funded by INSERM and others.)


Asunto(s)
Terapia Genética , Subunidad gamma Común de Receptores de Interleucina/genética , Inmunodeficiencia Combinada Grave/terapia , Antígenos CD34 , Linfocitos B/inmunología , Estudios de Seguimiento , Terapia Genética/efectos adversos , Humanos , Inmunoglobulinas/sangre , Lactante , Subunidad gamma Común de Receptores de Interleucina/deficiencia , Células Asesinas Naturales/fisiología , Recuento de Linfocitos , Leucemia-Linfoma Linfoblástico de Células Precursoras/etiología , Inmunodeficiencia Combinada Grave/inmunología , Linfocitos T/inmunología
11.
Bioinformatics ; 28(6): 755-62, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22238265

RESUMEN

MOTIVATION: The relative abundance of retroviral insertions in a host genome is important in understanding the persistence and pathogenesis of both natural retroviral infections and retroviral gene therapy vectors. It could be estimated from a sample of cells if only the host genomic sites of retroviral insertions could be directly counted. When host genomic DNA is randomly broken via sonication and then amplified, amplicons of varying lengths are produced. The number of unique lengths of amplicons of an insertion site tends to increase according to its abundance, providing a basis for estimating relative abundance. However, as abundance increases amplicons of the same length arise by chance leading to a non-linear relation between the number of unique lengths and relative abundance. The difficulty in calibrating this relation is compounded by sample-specific variations in the relative frequencies of clones of each length. RESULTS: A likelihood function is proposed for the discrete lengths observed in each of a collection of insertion sites and is maximized with a hybrid expectation-maximization algorithm. Patient data illustrate the method and simulations show that relative abundance can be estimated with little bias, but that variation in highly abundant sites can be large. In replicated patient samples, variation exceeds what the model implies-requiring adjustment as in Efron (2004) or using jackknife standard errors. Consequently, it is advantageous to collect replicate samples to strengthen inferences about relative abundance.


Asunto(s)
Algoritmos , Infecciones por HTLV-I/virología , Virus Linfotrópico T Tipo 1 Humano , Integración Viral , Infecciones por HTLV-I/genética , Humanos
12.
PLoS Pathog ; 7(3): e1001313, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21423673

RESUMEN

Genome-wide siRNA screens have identified host cell factors important for efficient HIV infection, among which are nuclear pore proteins such as RanBP2/Nup358 and the karyopherin Transportin-3/TNPO3. Analysis of the roles of these proteins in the HIV replication cycle suggested that correct trafficking through the pore may facilitate the subsequent integration step. Here we present data for coupling between these steps by demonstrating that depletion of Transportin-3 or RanBP2 altered the terminal step in early HIV replication, the selection of chromosomal sites for integration. We found that depletion of Transportin-3 and RanBP2 altered integration targeting for HIV. These knockdowns reduced HIV integration frequency in gene-dense regions and near gene-associated features, a pattern that differed from that reported for depletion of the HIV integrase binding cofactor Psip1/Ledgf/p75. MLV integration was not affected by the Transportin-3 knockdown. Using siRNA knockdowns and integration targeting analysis, we also implicated several additional nuclear proteins in proper target site selection. To map viral determinants of integration targeting, we analyzed a chimeric HIV derivative containing MLV gag, and found that the gag replacement phenocopied the Transportin-3 and RanBP2 knockdowns. Thus, our data support a model in which Gag-dependent engagement of the proper transport and nuclear pore machinery mediate trafficking of HIV complexes to sites of integration.


Asunto(s)
VIH/fisiología , Interacciones Huésped-Patógeno/fisiología , Chaperonas Moleculares/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , beta Carioferinas/metabolismo , Regulación Viral de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Chaperonas Moleculares/genética , Proteínas de Complejo Poro Nuclear/genética , ARN Interferente Pequeño/genética , Replicación Viral , beta Carioferinas/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
13.
Blood ; 117(11): 3113-22, 2011 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-21228324

RESUMEN

Human T-lymphotropic virus type 1 (HTLV-1) persists by driving clonal proliferation of infected T lymphocytes. A high proviral load predisposes to HTLV-1-associated diseases. Yet the reasons for the variation within and between persons in the abundance of HTLV-1-infected clones remain unknown. We devised a high-throughput protocol to map the genomic location and quantify the abundance of > 91,000 unique insertion sites of the provirus from 61 HTLV-1(+) persons and > 2100 sites from in vitro infection. We show that a typical HTLV-1-infected host carries between 500 and 5000 unique insertion sites. We demonstrate that negative selection dominates during chronic infection, favoring establishment of proviruses integrated in transcriptionally silenced DNA: this selection is significantly stronger in asymptomatic carriers. We define a parameter, the oligoclonality index, to quantify clonality. The high proviral load characteristic of HTLV-1-associated inflammatory disease results from a larger number of unique insertion sites than in asymptomatic carriers and not, as previously thought, from a difference in clonality. The abundance of established HTLV-1 clones is determined by genomic features of the host DNA flanking the provirus. HTLV-1 clonal expansion in vivo is favored by orientation of the provirus in the same sense as the nearest host gene.


Asunto(s)
Genoma Humano/genética , Infecciones por HTLV-I/genética , Infecciones por HTLV-I/virología , Interacciones Huésped-Patógeno/genética , Virus Linfotrópico T Tipo 1 Humano/fisiología , Provirus/genética , Linfocitos T/virología , Proliferación Celular , Células Clonales , Epigénesis Genética , Infecciones por HTLV-I/inmunología , Humanos , Persona de Mediana Edad , Mutagénesis Insercional/genética , Reacción en Cadena de la Polimerasa , Linfocitos T/patología , Factores de Tiempo , Transcripción Genética , Integración Viral/genética
14.
Nucleic Acids Res ; 39(11): e72, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21415009

RESUMEN

Human genetic diseases have been successfully corrected by integration of functional copies of the defective genes into human cells, but in some cases integration of therapeutic vectors has activated proto-oncogenes and contributed to leukemia. For this reason, extensive efforts have focused on analyzing integration site populations from patient samples, but the most commonly used methods for recovering newly integrated DNA suffer from severe recovery biases. Here, we show that a new method based on phage Mu transposition in vitro allows convenient and consistent recovery of integration site sequences in a form that can be analyzed directly using DNA barcoding and pyrosequencing. The method also allows simple estimation of the relative abundance of gene-modified cells from human gene therapy subjects, which has previously been lacking but is crucial for detecting expansion of cell clones that may be a prelude to adverse events.


Asunto(s)
Marcación de Gen , Terapia Genética , Análisis de Secuencia de ADN/métodos , Bacteriófago mu/genética , Línea Celular , Humanos , Reacción en Cadena de la Polimerasa
15.
Nat Genet ; 30(2): 190-3, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11780140

RESUMEN

Linkage disequilibrium (LD), the nonrandom occurrence of alleles in haplotypes, has long been of interest to population geneticists. Recently, the rapidly increasing availability of genomic polymorphism data has fueled interest in LD as a tool for fine-scale mapping, in particular for human disease loci. The chromosomal extent of LD is crucial in this context, because it determines how dense a map must be for associations to be detected and, conversely, limits how finely loci may be mapped. Arabidopsis thaliana is expected to harbor unusually extensive LD because of its high degree of selfing. Several polymorphism studies have found very strong LD within individual loci, but also evidence of some recombination. Here we investigate the pattern of LD on a genomic scale and show that in global samples, LD decays within approximately 1 cM, or 250 kb. We also show that LD in local populations may be much stronger than that of global populations, presumably as a result of founder events. The combination of a relatively high level of polymorphism and extensive haplotype structure bodes well for developing a genome-wide LD map in A. thaliana.


Asunto(s)
Arabidopsis/genética , Desequilibrio de Ligamiento , Mapeo Cromosómico , Genoma de Planta , Haplotipos , Humanos , Endogamia , Polimorfismo Genético , Polimorfismo de Nucleótido Simple
16.
Blood ; 115(22): 4356-66, 2010 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-20228274

RESUMEN

X-linked severe-combined immunodeficiency (SCID-X1) has been treated by therapeutic gene transfer using gammaretroviral vectors, but insertional activation of proto-oncogenes contributed to leukemia in some patients. Here we report a longitudinal study of gene-corrected progenitor cell populations from 8 patients using 454 pyrosequencing to map vector integration sites, and extensive resampling to allow quantification of clonal abundance. The number of transduced cells infused into patients initially predicted the subsequent diversity of circulating cells. A capture-recapture analysis was used to estimate the size of the gene-corrected cell pool, revealing that less than 1/100th of the infused cells had long-term repopulating activity. Integration sites were clustered even at early time points, often near genes involved in growth control, and several patients harbored expanded cell clones with vectors integrated near the cancer-implicated genes CCND2 and HMGA2, but remain healthy. Integration site tracking also documented that chemotherapy for adverse events resulted in successful control. The longitudinal analysis emphasizes that key features of transduced cell populations--including diversity, integration site clustering, and expansion of some clones--were established early after transplantation. The approaches to sequencing and bioinformatics analysis reported here should be widely useful in assessing the outcome of gene therapy trials.


Asunto(s)
Terapia Genética/métodos , Enfermedades por Inmunodeficiencia Combinada Ligada al Cromosoma X/genética , Enfermedades por Inmunodeficiencia Combinada Ligada al Cromosoma X/terapia , Epigénesis Genética , Terapia Genética/efectos adversos , Vectores Genéticos , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/virología , Humanos , Estudios Longitudinales , Mutagénesis Insercional , Proto-Oncogenes , Retroviridae/genética , Transducción Genética , Resultado del Tratamiento , Integración Viral/genética
17.
Viruses ; 14(11)2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36423103

RESUMEN

The integration of the HIV-1 genome into the host genome is an essential step in the life cycle of the virus and it plays a critical role in the expression, long-term persistence, and reactivation of HIV expression. To better understand the local genomic environment surrounding HIV-1 proviruses, we assessed the influence of non-canonical B-form DNA (non-B DNA) on the HIV-1 integration site selection. We showed that productively and latently infected cells exhibit different integration site biases towards non-B DNA motifs. We identified a correlation between the integration sites of the latent proviruses and non-B DNA features known to potently influence gene expression (e.g., cruciform, guanine-quadruplex (G4), triplex, and Z-DNA). The reactivation potential of latent proviruses with latency reversal agents also correlated with their proximity to specific non-B DNA motifs. The perturbation of G4 structures in vitro using G4 structure-destabilizing or -stabilizing ligands resulted in a significant reduction in integration within 100 base pairs of G4 motifs. The stabilization of G4 structures increased the integration within 300-500 base pairs from G4 motifs, increased integration near transcription start sites, and increased the proportion of latently infected cells. Moreover, we showed that host lens epithelium-derived growth factor (LEDGF)/p75 and cleavage and polyadenylation specificity factor 6 (CPSF6) influenced the distribution of integration sites near several non-B DNA motifs, especially G4 DNA. Our findings identify non-B DNA motifs as important factors that influence productive and latent HIV-1 integration and the reactivation potential of latent proviruses.


Asunto(s)
ADN Forma B , G-Cuádruplex , Infecciones por VIH , Seropositividad para VIH , VIH-1 , Humanos , VIH-1/genética , Motivos de Nucleótidos , Latencia del Virus , ADN , Provirus/genética
18.
Methods ; 47(4): 261-8, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19038346

RESUMEN

The question of where retroviral DNA becomes integrated in chromosomes is important for understanding (i) the mechanisms of viral growth, (ii) devising new anti-retroviral therapy, (iii) understanding how genomes evolve, and (iv) developing safer methods for gene therapy. With the completion of genome sequences for many organisms, it has become possible to study integration targeting by cloning and sequencing large numbers of host-virus DNA junctions, then mapping the host DNA segments back onto the genomic sequence. This allows statistical analysis of the distribution of integration sites relative to the myriad types of genomic features that are also being mapped onto the sequence scaffold. Here we present methods for recovering and analyzing integration site sequences.


Asunto(s)
Marcación de Gen/métodos , Genoma Viral/genética , Espacio Intracelular/virología , Integración Viral/genética , Animales , Cromosomas/genética , ADN Viral/genética , Humanos
19.
Mol Ther ; 17(5): 844-50, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19259065

RESUMEN

Lentiviral vector-based gene therapy has been used to target the human immunodeficiency virus (HIV) using an antisense env payload. We have analyzed lentiviral-vector integration sites from three treated individuals. We compared integration sites from the ex vivo vector-transduced CD4+ cell products to sites from cells recovered at several times after infusion. Integration sites were analyzed using 454 pyrosequencing, yielding a total of 7,782 unique integration sites from the ex vivo product and 237 unique sites from cells recovered after infusion. Integrated vector copies in both data sets were found to be strongly enriched within active genes and near epigenetic marks associated with active transcription units. Analysis of integration relative to nucleosome structure on target DNA indicated favoring of integration in outward facing DNA major grooves on the nucleosome surface. There was no indication that growth of transduced cells after infusion resulted in enrichment for integration sites near proto-oncogene 5'-ends or within tumor suppressor genes. Thus, this first look at the longitudinal evolution of cells transduced with a lentiviral vector after infusion of gene modified CD4+ cells provided no evidence for abnormal expansions of cells due to vector-mediated insertional activation of proto-oncogenes.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Vectores Genéticos/genética , Infecciones por VIH/genética , Infecciones por VIH/terapia , Lentivirus/genética , Integración Viral/genética , Ensayos Clínicos Fase I como Asunto , Ensayos Clínicos Fase II como Asunto , Biología Computacional , Humanos , Proto-Oncogenes Mas , Análisis de Secuencia de ADN
20.
Nucleic Acids Res ; 36(22): e148, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18953026

RESUMEN

Genomic parasites have evolved distinctive lifestyles to optimize replication in the context of the genomes they inhabit. Here, we introduced new DNA into eukaryotic cells using bacteriophage Mu DNA transposition complexes, termed 'transpososomes'. Following electroporation of transpososomes and selection for marker gene expression, efficient integration was verified in yeast, mouse and human genomes. Although Mu has evolved in prokaryotes, strong biases were seen in the target site distributions in eukaryotic genomes, and these biases differed between yeast and mammals. In Saccharomyces cerevisiae transposons accumulated outside of genes, consistent with selection against gene disruption. In mouse and human cells, transposons accumulated within genes, which previous work suggests is a favorable location for efficient expression of selectable markers. Naturally occurring transposons and viruses in yeast and mammals show related, but more extreme, targeting biases, suggesting that they are responding to the same pressures. These data help clarify the constraints exerted by genome structure on genomic parasites, and illustrate the wide utility of the Mu transpososome technology for gene transfer in eukaryotic cells.


Asunto(s)
Bacteriófago mu/genética , Elementos Transponibles de ADN , Técnicas de Transferencia de Gen , Animales , Línea Celular , Mapeo Cromosómico , Electroporación , Células Madre Embrionarias/metabolismo , Marcadores Genéticos , Genoma Fúngico , Genoma Humano , Genómica , Células HeLa , Humanos , Ratones , Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA