Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Hear Res ; 385: 107845, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31760262

RESUMEN

The effects of noise-induced hearing loss have yet to be studied for the Dutch-belted strain of rabbits, which is the only strain that has been used in studies of the central auditory system. We measured auditory brainstem responses (ABRs), 2f1-f2 distortion product otoacoustic emissions (DPOAEs), and counts of cochlear inner and outer hair cells (IHCs and OHCs, respectively) from confocal images of Myo7a-stained cochlear whole-mounts in unexposed and noise-overexposed, Dutch-belted, male and female rabbits in order to characterize cochlear function and structure under normal-hearing and hearing-loss conditions. Using an octave-band noise exposure centered at 750 Hz presented under isoflurane anesthesia, we found that a sound level of 133 dB SPL for 60 min was minimally sufficient to produce permanent ABR threshold shifts. Overexposure durations of 60 and 90 min caused median click-evoked ABR threshold shifts of 10 and 50 dB, respectively. Susceptibility to overexposure was highly variable across ears, but less variable across test frequencies within the same ear. ABR and DPOAE threshold shifts were smaller, on average, and more variable in male than female ears. Similarly, post-exposure survival of OHCs was higher, on average, and more variable in male than female ears. We paired post-exposure ABR and DPOAE threshold shift data with hair cell count data measured in the same ear at the same frequency and cochlear frequency location. ABR and DPOAE threshold shifts exhibited critical values of 46 and 18 dB, respectively, below which the majority of OHCs and IHCs survived and above which OHCs were wiped out while IHC survival was variable. Our data may be of use to researchers who wish to use Dutch-belted rabbits as a model for the effects of noise-induced hearing loss on the central auditory system.


Asunto(s)
Umbral Auditivo , Cóclea/patología , Cóclea/fisiopatología , Células Ciliadas Auditivas Externas/patología , Pérdida Auditiva Provocada por Ruido/patología , Pérdida Auditiva Provocada por Ruido/fisiopatología , Animales , Fatiga Auditiva , Recuento de Células , Modelos Animales de Enfermedad , Potenciales Evocados Auditivos del Tronco Encefálico , Femenino , Masculino , Emisiones Otoacústicas Espontáneas , Conejos , Factores Sexuales
2.
Proteins ; 71(1): 364-78, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17985355

RESUMEN

The crystal structures of two CLIC family members DmCLIC and EXC-4 from the invertebrates Drosophila melanogaster and Caenorhabditis elegans, respectively, have been determined. The proteins adopt a glutathione S-transferase (GST) fold. The structures are highly homologous to each other and more closely related to the known structures of the human CLIC1 and CLIC4 than to GSTs. The invertebrate CLICs show several unique features including an elongated C-terminal extension and a divalent metal binding site. The latter appears to alter the ancestral glutathione binding site, and thus, the invertebrate CLICs are unlikely to bind glutathione in the same manner as the GST proteins. Purified recombinant DmCLIC and EXC-4 both bind to lipid bilayers and can form ion channels in artificial lipid bilayers, albeit at low pH. EXC-4 differs from other CLIC proteins in that the conserved redox-active cysteine at the N-terminus of helix 1 is replaced by an aspartic acid residue. Other key distinguishing features of EXC-4 include the fact that it binds to artificial bilayers at neutral pH and this binding is not sensitive to oxidation. These differences with other CLIC family members are likely to be due to the substitution of the conserved cysteine by aspartic acid.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Canales de Cloruro/química , Proteínas de Drosophila/química , Animales , Sitios de Unión , Cationes Bivalentes , Cristalografía por Rayos X , Drosophila melanogaster/química , Glutatión , Membrana Dobles de Lípidos , Metales , Estructura Terciaria de Proteína
3.
Data Brief ; 7: 1038-44, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27104215

RESUMEN

Chloride intracellular channel (CLICs) proteins show 60-70% sequence identity to each other, and exclusively localize to the intracellular organelle membranes and cytosol. In support of our recent publication, "Molecular identity of cardiac mitochondrial chloride intracellular channel proteins" (Ponnalagu et al., 2016) [1], it was important to characterize the specificity of different CLIC paralogs/ortholog (CLIC1, CLIC4, CLIC5 and DmCLIC) antibodies used to decipher their localization in cardiac cells. In addition, localization of CLICs in the other organelles such as endoplasmic reticulum (ER) of cardiomyocytes was established. This article also provides data on the different primers used to show the relative abundance of CLIC paralogs in cardiac tissue and the specificity of the various CLIC antibodies used. We demonstrate that the predominant CLICs in the heart, namely CLIC1, CLIC4 and CLIC5, show differential distribution in endoplasmic reticulum. CLIC1 and CLIC4 both show co-localization to the endoplasmic reticulum whereas CLIC5 does not.

4.
FEBS J ; 272(19): 4996-5007, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16176272

RESUMEN

The structure of CLIC4, a member of the CLIC family of putative intracellular chloride ion channel proteins, has been determined at 1.8 Angstroms resolution by X-ray crystallography. The protein is monomeric and it is structurally similar to CLIC1, belonging to the GST fold class. Differences between the structures of CLIC1 and CLIC4 are localized to helix 2 in the glutaredoxin-like N-terminal domain, which has previously been shown to undergo a dramatic structural change in CLIC1 upon oxidation. The structural differences in this region correlate with the sequence differences, where the CLIC1 sequence appears to be atypical of the family. Purified, recombinant, wild-type CLIC4 is shown to bind to artificial lipid bilayers, induce a chloride efflux current when associated with artificial liposomes and produce an ion channel in artificial bilayers with a conductance of 30 pS. Membrane binding is enhanced by oxidation of CLIC4 while no channels were observed via tip-dip electrophysiology in the presence of a reducing agent. Thus, recombinant CLIC4 appears to be able to form a redox-regulated ion channel in the absence of any partner proteins.


Asunto(s)
Canales de Cloruro/química , Canales de Cloruro/metabolismo , Secuencia de Aminoácidos , Cloruros/metabolismo , Cristalografía por Rayos X , Electrofisiología , Humanos , Liposomas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Oxidación-Reducción , Técnicas de Placa-Clamp , Estructura Terciaria de Proteína , Alineación de Secuencia , Solubilidad , Homología Estructural de Proteína
5.
Cytoskeleton (Hoboken) ; 71(1): 61-78, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24285636

RESUMEN

Chloride intracellular channel 5 protein (CLIC5) was originally isolated from microvilli in complex with actin binding proteins including ezrin, a member of the Ezrin-Radixin-Moesin (ERM) family of membrane-cytoskeletal linkers. CLIC5 concentrates at the base of hair cell stereocilia and is required for normal hearing and balance in mice, but its functional significance is poorly understood. This study investigated the role of CLIC5 in postnatal development and maintenance of hair bundles. Confocal and scanning electron microscopy of CLIC5-deficient jitterbug (jbg) mice revealed progressive fusion of stereocilia as early as postnatal day 10. Radixin (RDX), protein tyrosine phosphatase receptor Q (PTPRQ), and taperin (TPRN), deafness-associated proteins that also concentrate at the base of stereocilia, were mislocalized in fused stereocilia of jbg mice. TPRQ and RDX were dispersed even prior to stereocilia fusion. Biochemical assays showed interaction of CLIC5 with ERM proteins, TPRN, and possibly myosin VI (MYO6). In addition, CLIC5 and RDX failed to localize normally in fused stereocilia of MYO6 mutant mice. Based on these findings, we propose a model in which these proteins work together as a complex to stabilize linkages between the plasma membrane and subjacent actin cytoskeleton at the base of stereocilia.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Canales de Cloruro/metabolismo , Proteínas del Citoesqueleto/metabolismo , Células Ciliadas Auditivas/metabolismo , Proteínas de la Membrana/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Proteínas/metabolismo , Estereocilios/metabolismo , Animales , Canales de Cloruro/genética , Citoesqueleto/metabolismo , Células Ciliadas Auditivas/citología , Ratones , Proteínas/genética
6.
Cell Motil Cytoskeleton ; 56(3): 159-72, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14569596

RESUMEN

CLIC4 is a member of the chloride intracellular channel (CLIC) protein family whose principal cellular functions are poorly understood. Recently, we demonstrated that several CLIC proteins, including CLIC4, interact with AKAP350. AKAP350 is concentrated at the Golgi apparatus, centrosome, and midbody and acts as a scaffolding protein for several protein kinases and phosphatases. In this report, we show that endogenous CLIC4 and AKAP350 colocalize at the centrosome and midbody of cultured cells by immunofluorescence microscopy. Unlike AKAP350, CLIC4 is not enriched in the Golgi apparatus but is enriched in mitochondria, actin-based structures at the cell cortex, and the nuclear matrix, indicating that CLIC4-AKAP350 interactions are regulated at specific subcellular sites in vivo. In addition to the centrosome and midbody, CLIC4 colocalizes with AKAP350 and the tight junction protein ZO-1 in the apical region of polarized epithelial cells, suggesting that CLIC4 may play a role in maintaining apical-basolateral membrane polarity during mitosis and cytokinesis. Biochemical studies show that CLIC4 behaves mainly as a soluble cytosolic protein and can associate with proteins of the microtubule cytoskeleton. The localization of CLIC4 to the cortical actin cytoskeleton and its association with AKAP350 at the centrosome and midbody suggests that CLIC4 may be important for regulating cytoskeletal organization during the cell cycle. These findings lead to the conclusion that CLIC4 and possibly other CLIC proteins have alternate cellular functions that are distinct from their proposed roles as chloride channels.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Portadoras/ultraestructura , Centrosoma/ultraestructura , Canales de Cloruro/ultraestructura , Proteínas del Citoesqueleto/ultraestructura , Uniones Intercelulares/ultraestructura , Proteínas de Anclaje a la Quinasa A , Animales , Células COS , Proteínas Portadoras/fisiología , Centrosoma/fisiología , Canales de Cloruro/fisiología , Chlorocebus aethiops , Proteínas del Citoesqueleto/fisiología , Citoesqueleto/fisiología , Citoesqueleto/ultraestructura , Células HeLa , Humanos , Microscopía Fluorescente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA