Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
2.
FASEB J ; 37(12): e23283, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37983957

RESUMEN

Activation of the endoplasmic reticulum (ER) stress sensor inositol-requiring enzyme-1α (IRE1α) contributes to neuronal development and is known to induce neuronal remodeling in vitro and in vivo. On the contrary, excessive IRE1 activity is often detrimental and may contribute to neurodegeneration. To determine the consequences of increased activation of IRE1α, we used a mouse model expressing a C148S variant of IRE1α with increased and sustained activation. Surprisingly, the mutation did not affect the differentiation of highly secretory antibody-producing cells but exhibited a beneficial effect in a mouse model of experimental autoimmune encephalomyelitis (EAE). Although mechanical allodynia was unaffected, significant improvement in motor function was found in IRE1C148S mice with EAE relative to wild type (WT) mice. Coincident with this improvement, there was reduced microgliosis in the spinal cord of IRE1C148S mice, with reduced expression of proinflammatory cytokine genes. This was accompanied by reduced axonal degeneration and enhanced 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) levels, suggesting improved myelin integrity. Interestingly, while the IRE1C148S mutation is expressed in all cells, the reduction in proinflammatory cytokines and in the microglial activation marker ionized calcium-binding adapter molecule (IBA1), along with preservation of phagocytic gene expression, all point to microglia as the cell type contributing to the clinical improvement in IRE1C148S animals. Our data suggest that sustained increase in IRE1α activity can be beneficial in vivo, and that this protection is cell type and context dependent. Considering the overwhelming but conflicting evidence for the role of ER stress in neurological diseases, a better understanding of the function of ER stress sensors in physiological contexts is clearly needed.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Ratones , Animales , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Estrés del Retículo Endoplásmico/genética , Microglía/metabolismo
3.
Brain Behav Immun ; 119: 261-271, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38570102

RESUMEN

Upregulation of soluble tumor necrosis factor (sTNF) cytokine signaling through TNF receptor 1 (TNFR1) and subsequent neuronal hyperexcitability are observed in both animal models and human chronic neuropathic pain (CNP). Previously, we have shown that estrogen modulates sTNF/TNFR1 signaling in CNP, which may contribute to female prevalence of CNP. The estrogen-dependent role of TNFR1-mediated supraspinal neuronal circuitry in CNP remains unknown. In this study, we interrogated the intersect between supraspinal TNFR1 mediated neuronal signaling and sex specificity by selectively removing TNFR1 in Nex + neurons in adult mice (NexCreERT2::TNFR1f/f). We determined that mechanical hypersensitivity induced by chronic constriction injury (CCI) decreases over time in males, but not in females. Subsequently, we investigated two downstream pathways, p38MAPK and NF-κB, important in TNFR1 signaling and injury response. We detected p38MAPK and NF-κB activation in male cortical tissue; however, p38MAPK phosphorylation was reduced in NexCreERT2::TNFR1f/f males. We observed a similar recovery from acute pain in male mice following CCI when p38αMAPK was knocked out of supraspinal Nex + neurons (NexCreERT2::p38αMAPKf/f), while chronic pain developed in female mice. To explore the intersection between estrogen and inflammation in CNP we used a combination therapy of an estrogen receptor ß (ER ß) inhibitor with a sTNF/TNFR1 or general p38MAPK inhibitor. We determined both combination therapies lends therapeutic relief to females following CCI comparable to the response evaluated in male mice. These data suggest that TNFR1/p38αMAPK signaling in Nex + neurons in CNP is male-specific and lack of therapeutic efficacy following sTNF inhibition in females is due to ER ß interference. These studies highlight sex-specific differences in pathways important to pain chronification and elucidate potential therapeutic strategies that would be effective in both sexes.


Asunto(s)
Dolor Crónico , Estrógenos , Neuralgia , Neuronas , Receptores Tipo I de Factores de Necrosis Tumoral , Transducción de Señal , Animales , Neuralgia/metabolismo , Masculino , Femenino , Ratones , Estrógenos/metabolismo , Estrógenos/farmacología , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Neuronas/metabolismo , Dolor Crónico/metabolismo , Transducción de Señal/fisiología , FN-kappa B/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Hiperalgesia/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Factor de Necrosis Tumoral alfa/metabolismo
4.
Proc Natl Acad Sci U S A ; 116(34): 17045-17050, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31391309

RESUMEN

Tumor necrosis factor receptor 2 (TNFR2) is a transmembrane receptor that is linked to immune modulation and tissue regeneration. Here, we show that TNFR2 essentially promotes long-term pain resolution independently of sex. Genetic deletion of TNFR2 resulted in impaired neuronal regeneration and chronic nonresolving pain after chronic constriction injury (CCI). Further, pharmacological activation of TNFR2 using the TNFR2 agonist EHD2-sc-mTNFR2 in mice with chronic neuropathic pain promoted long-lasting pain recovery. TNFR2 agonist treatment reduced neuronal injury, alleviated peripheral and central inflammation, and promoted repolarization of central nervous system (CNS)-infiltrating myeloid cells into an antiinflammatory/reparative phenotype. Depletion of regulatory T cells (Tregs) delayed spontaneous pain recovery and abolished the therapeutic effect of EHD2-sc-mTNFR2 This study therefore reveals a function of TNFR2 in neuropathic pain recovery and demonstrates that both TNFR2 signaling and Tregs are essential for pain recovery after CCI. Therefore, therapeutic strategies based on the concept of enhancing TNFR2 signaling could be developed into a nonopioid therapy for the treatment of chronic neuropathic pain.


Asunto(s)
Dolor Crónico/inmunología , Neuralgia/inmunología , Receptores Tipo II del Factor de Necrosis Tumoral/inmunología , Transducción de Señal/inmunología , Linfocitos T Reguladores/inmunología , Animales , Dolor Crónico/genética , Dolor Crónico/patología , Dolor Crónico/terapia , Femenino , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Depleción Linfocítica , Masculino , Ratones , Ratones Noqueados , Neuralgia/genética , Neuralgia/patología , Neuralgia/terapia , Receptores Tipo II del Factor de Necrosis Tumoral/genética , Transducción de Señal/genética , Linfocitos T Reguladores/patología
5.
J Neurosci ; 40(2): 478-492, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31754014

RESUMEN

Spinal cord injury (SCI) disrupts critical physiological systems, including the cardiovascular and immune system. Plasticity of spinal circuits below the injury results in abnormal, heightened sympathetic responses, such as extreme, sudden hypertension that hallmarks life-threatening autonomic dysreflexia. Moreover, such sympathetic hyperreflexia detrimentally impacts other effector organs, including the spleen, resulting in spinal cord injury-induced immunodeficiency. Consequently, infection is a leading cause of mortality after SCI. Unfortunately, there are no current treatments that prophylactically limit sympathetic hyperreflexia to prevent subsequent effector organ dysfunction. The cytokine soluble tumor necrosis factor α (sTNFα) is upregulated in the CNS within minutes after SCI and remains elevated. Here, we report that commencing intrathecal administration of XPro1595, an inhibitor of sTNFα, at a clinically feasible, postinjury time point (i.e., 3 d after complete SCI) sufficiently diminishes maladaptive plasticity within the spinal sympathetic reflex circuit. This results in less severe autonomic dysreflexia, a real-time gauge of sympathetic hyperreflexia, for months postinjury. Remarkably, delayed delivery of the sTNFα inhibitor prevents sympathetic hyperreflexia-associated splenic atrophy and loss of leukocytes to dramatically improve the endogenous ability of chronic SCI rats to fight off pneumonia, a common cause of hospitalization after injury. The improved immune function with XPro1595 correlates with less noradrenergic fiber sprouting and normalized norepinephrine levels in the spleen, indicating that heightened, central sTNFα signaling drives peripheral, norepinephrine-mediated organ dysfunction, a novel mechanism of action. Thus, our preclinical study supports intrathecally targeting sTNFα as a viable strategy to broadly attenuate sympathetic dysregulation, thereby improving cardiovascular regulation and immunity long after SCI.SIGNIFICANCE STATEMENT Spinal cord injury (SCI) significantly disrupts immunity, thus increasing susceptibility to infection, a leading cause of morbidity in those living with SCI. Here, we report that commencing intrathecal administration of an inhibitor of the proinflammatory cytokine soluble tumor necrosis factor α days after an injury sufficiently diminishes autonomic dysreflexia, a real time gauge of sympathetic hyperreflexia, to prevent associated splenic atrophy. This dramatically improves the endogenous ability of chronically injured rats to fight off pneumonia, a common cause of hospitalization. This preclinical study could have a significant impact for broadly improving quality of life of SCI individuals.


Asunto(s)
Disreflexia Autónoma/etiología , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/inmunología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Animales , Femenino , Inyecciones Espinales , Neumonía Bacteriana/etiología , Neumonía Bacteriana/prevención & control , Ratas , Ratas Wistar , Bazo/efectos de los fármacos , Bazo/inmunología , Factor de Necrosis Tumoral alfa/farmacología
6.
J Neurosci ; 38(17): 4146-4162, 2018 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-29610439

RESUMEN

Cardiovascular disease and susceptibility to infection are leading causes of morbidity and mortality for individuals with spinal cord injury (SCI). A major contributor to these is autonomic dysreflexia (AD), an amplified reaction of the autonomic nervous system (hallmarked by severe hypertension) in response to sensory stimuli below the injury. Maladaptive plasticity of the spinal sympathetic reflex circuit below the SCI results in AD intensification over time. Mechanisms underlying this maladaptive plasticity are poorly understood, restricting the identification of treatments. Thus, no preventative treatments are currently available. Neuroinflammation has been implicated in other pathologies associated with hyperexcitable neural circuits. Specifically, the soluble form of TNFα (sTNFα) is known to play a role in neuroplasticity. We hypothesize that persistent expression of sTNFα in spinal cord underlies AD exacerbation. To test this, we intrathecally administered XPro1595, a biologic that renders sTNFα nonfunctional, after complete, high-level SCI in female rats. This dramatically attenuated the intensification of colorectal distension-induced and naturally occurring AD events. This improvement is mediated via decreased sprouting of nociceptive primary afferents and activation of the spinal sympathetic reflex circuit. We also examined peripheral vascular function using ex vivo pressurized arterial preparations and immune function via flow cytometric analysis of splenocytes. Diminishing AD via pharmacological inhibition of sTNFα mitigated ensuing vascular hypersensitivity and immune dysfunction. This is the first demonstration that neuroinflammation-induced sTNFα is critical for altering the spinal sympathetic reflex circuit, elucidating a novel mechanism for AD. Importantly, we identify the first potential pharmacological, prophylactic treatment for this life-threatening syndrome.SIGNIFICANCE STATEMENT Autonomic dysreflexia (AD), a disorder that develops after spinal cord injury (SCI) and is hallmarked by sudden, extreme hypertension, contributes to cardiovascular disease and susceptibility to infection, respectively, two leading causes of mortality and morbidity in SCI patients. We demonstrate that neuroinflammation-induced expression of soluble TNFα plays a critical role in AD, elucidating a novel underlying mechanism. We found that intrathecal administration after SCI of a biologic that inhibits soluble TNFα signaling dramatically attenuates AD and significantly reduces AD-associated peripheral vascular and immune dysfunction. We identified mechanisms behind diminished plasticity of neuronal populations within the spinal sympathetic reflex circuit. This study is the first to pinpoint a potential pharmacological, prophylactic strategy to attenuate AD and ensuing cardiovascular and immune dysfunction.


Asunto(s)
Disreflexia Autónoma/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Disreflexia Autónoma/fisiopatología , Células Cultivadas , Femenino , Arterias Mesentéricas/fisiopatología , Ratas , Ratas Wistar , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Médula Espinal/fisiopatología , Bazo/inmunología , Bazo/fisiopatología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/farmacología
7.
Brain Behav Immun ; 81: 247-259, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31220564

RESUMEN

Tumor necrosis factor receptor 2 (TNFR2) is a transmembrane receptor that promotes immune modulation and tissue regeneration and is recognized as a potential therapeutic target for multiple sclerosis (MS). However, TNFR2 also contributes to T effector cell function and macrophage-TNFR2 recently was shown to promote disease development in the experimental autoimmune encephalomyelitis (EAE) model of MS. We here demonstrate that systemic administration of a TNFR2 agonist alleviates peripheral and central inflammation, and reduces demyelination and neurodegeneration, indicating that protective signals induced by TNFR2 exceed potential pathogenic TNFR2-dependent responses. Our behavioral data show that systemic treatment of female EAE mice with a TNFR2 agonist is therapeutic on motor symptoms and promotes long-term recovery from neuropathic pain. Mechanistically, our data indicate that TNFR2 agonist treatment follows a dual mode of action and promotes both suppression of CNS autoimmunity and remyelination. Strategies based on the concept of exogenous activation of TNFR2 therefore hold great promise as a new therapeutic approach to treat motor and sensory disease in MS as well as other inflammatory diseases or neuropathic pain conditions.


Asunto(s)
Esclerosis Múltiple/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/agonistas , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Animales , Autoinmunidad/inmunología , Enfermedades Desmielinizantes/metabolismo , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Femenino , Inflamación/patología , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/patología , Neuralgia/patología , Enfermedades Neurodegenerativas/metabolismo , Médula Espinal/patología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Factor de Necrosis Tumoral alfa/inmunología
8.
J Neuroinflammation ; 15(1): 149, 2018 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-29776424

RESUMEN

BACKGROUND: Spinal cord injury (SCI) disrupts essential neuroimmune communication, leading to severe immune depression. Previous studies confirmed immune dysfunction in mice with chronic SCI and following high thoracic level injury where sympathetic innervation of the spleen is disrupted. Here, we induced a mid-thoracic injury where integrity of the sympathetic response is maintained and investigated the antiviral T cell response to influenza virus after acute SCI. METHODS: One week following a contusion SCI at thoracic level T9, mice were infected intranasally with influenza virus. Profiles of immune cell populations were analyzed before infection, and virus-specific CD8 T cell response was analyzed 7 days post-infection. RESULTS: Following intranasal infection, injured mice had prolonged recovery and significant weight loss. Importantly, expansion and effector functions of virus-specific CD8 T cells were decreased in injured mice. The compromised CD8 T cell response was associated with inflammation and stress responses initiated after injury. Regulatory mechanisms, including increased regulatory T cells (Tregs) and upregulated PD-1/PD-L1, were induced following SCI. Furthermore, we show that increased corticosterone (CORT) levels can inhibit CD8 T cells and that blocking CORT in vivo following SCI enhances CD8 T cell antiviral responses. CONCLUSIONS: Our results show that mice with mid-thoracic SCI have impaired CD8 T cell function during the acute stage of injury, indicating that impaired antiviral responses occur rapidly following SCI and is not dependent on injury level.


Asunto(s)
Antivirales/farmacología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/patología , Inflamación , Infecciones por Orthomyxoviridae/patología , Traumatismos de la Médula Espinal/complicaciones , Enfermedad Aguda , Animales , Peso Corporal/efectos de los fármacos , Células Cultivadas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Antagonistas de Hormonas/uso terapéutico , Inflamación/etiología , Inflamación/inmunología , Inflamación/patología , Pulmón/patología , Pulmón/virología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mifepristona/uso terapéutico , Infecciones por Orthomyxoviridae/fisiopatología , Bazo/patología , Bazo/virología
9.
J Neuroinflammation ; 15(1): 49, 2018 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-29463313

RESUMEN

BACKGROUND: Lymphotoxin (LT) is a lymphokine mainly expressed in lymphocytes. LTα binds one or two membrane-associated LTß to form LTα2ß1 or LTα1ß2 heterotrimers. The predominant LTα1ß2 binds to LTß receptor (LTßR) primarily expressed in epithelial and stromal cells. Most studies on LTßR signaling have focused on the organization, development, and maintenance of lymphoid tissues. However, the roles of LTßR signaling in the nervous system, particularly in neurogenesis, remain unknown. Here, we investigated the role of LTßR-mediated NFκB signaling in regulating neural lineage differentiation. METHODS: The C57BL/6J wild-type and GFAP-dnIκBα transgenic mice were used. Serum-free embryoid bodies were cultured from mouse embryonic stem cells and further induced into neural stem/progenitor cells (NSCs/NPCs). Primary neurospheres were cultured from embryonic and adult mouse brains followed by monolayer culture for amplification/passage. NFκB activation was determined by adenovirus-mediated NFκB-firefly-luciferase reporter assay and p65/RelB/p52 nuclear translocation assay. LTßR mRNA expression was evaluated by quantitative RT-PCR and LTßR protein expression was determined by immunohistochemistry and Western blot analysis. Multilabeled immunocytochemistry or immunohistochemistry followed by fluorescent confocal microscopy and quantitative analysis of neural lineage differentiation were performed. Graphing and statistical analysis were performed with GraphPad Prism software. RESULTS: In cultured NSCs/NPCs, LTα1ß2 stimulation induced an activation of classical and non-classical NFκB signaling. The expression of LTßR-like immunoreactivity in GFAP+/Sox2+ NSCs was identified in well-established neurogenic zones of adult mouse brain. Quantitative RT-PCR and Western blot analysis validated the expression of LTßR in cultured NSCs/NPCs and brain neurogenic regions. LTßR expression was significantly increased during neural induction. LTα1ß2 stimulation in cultured NSCs/NPCs promoted astroglial and oligodendrocytic lineage differentiation, but inhibited neuronal lineage differentiation. Astroglial NFκB inactivation in GFAP-dnIκBα transgenic mice rescued LTßR-mediated abnormal phenotypes of cultured NSCs/NPCs. CONCLUSION: This study provides the first evidence for the expression and function of LTßR signaling in NSCs/NPCs. Activation of LTßR signaling promotes glial lineage differentiation. Our results suggest that neurogenesis is regulated by the adaptive immunity and inflammatory responses.


Asunto(s)
Encéfalo/metabolismo , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Receptor beta de Linfotoxina/metabolismo , FN-kappa B/metabolismo , Células-Madre Neurales/metabolismo , Animales , Encéfalo/citología , Encéfalo/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Células Cultivadas , Heterotrímero de Linfotoxina alfa1 y beta2/metabolismo , Heterotrímero de Linfotoxina alfa1 y beta2/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células-Madre Neurales/efectos de los fármacos , Neuroglía/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo
10.
Chin J Traumatol ; 21(3): 125-136, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29759918

RESUMEN

Traumatic injury of the central nervous system (CNS) including brain and spinal cord remains a leading cause of morbidity and disability in the world. Delineating the mechanisms underlying the secondary and persistent injury versus the primary and transient injury has been drawing extensive attention for study during the past few decades. The sterile neuroinflammation during the secondary phase of injury has been frequently identified substrate underlying CNS injury, but as of now, no conclusive studies have determined whether this is a beneficial or detrimental role in the context of repair. Recent pioneering studies have demonstrated the key roles for the innate and adaptive immune responses in regulating sterile neuroinflammation and CNS repair. Some promising immunotherapeutic strategies have been recently developed for the treatment of CNS injury. This review updates the recent progress on elucidating the roles of the innate and adaptive immune responses in the context of CNS injury, the development and characterization of potential immunotherapeutics, as well as outstanding questions in this field.


Asunto(s)
Lesiones Traumáticas del Encéfalo/terapia , Inmunoterapia/métodos , Traumatismos de la Médula Espinal/terapia , Inmunidad Adaptativa , Astrocitos/fisiología , Lesiones Traumáticas del Encéfalo/inmunología , Histona Desacetilasas/uso terapéutico , Humanos , Inmunidad Innata/inmunología , Inflamasomas/efectos de los fármacos , Inflamasomas/fisiología , Activación de Macrófagos , Traumatismos de la Médula Espinal/inmunología
11.
J Neurosci ; 36(18): 5128-43, 2016 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-27147664

RESUMEN

UNLABELLED: Tumor necrosis factor (TNF) is associated with the pathophysiology of various neurological disorders, including multiple sclerosis. It exists as a transmembrane form tmTNF, signaling via TNF receptor 2 (TNFR2) and TNFR1, and a soluble form, solTNF, signaling via TNFR1. Multiple sclerosis is associated with the detrimental effects of solTNF acting through TNFR1, while tmTNF promotes repair and remyelination. Here we demonstrate that oligodendroglial TNFR2 is a key mediator of tmTNF-dependent protection in experimental autoimmune encephalomyelitis (EAE). CNP-cre:TNFR2(fl/fl) mice with TNFR2 ablation in oligodendrocytes show exacerbation of the disease with increased axon and myelin pathology, reduced remyelination, and increased loss of oligodendrocyte precursor cells and mature oligodendrocytes. The clinical course of EAE is not improved by the solTNF inhibitor XPro1595 in CNP-cre:TNFR2(fl/fl) mice, indicating that for tmTNF to promote recovery TNFR2 in oligodendrocytes is required. We show that TNFR2 drives differentiation of oligodendrocyte precursor cells, but not proliferation or survival. TNFR2 ablation leads to dysregulated expression of microRNAs, among which are regulators of oligodendrocyte differentiation and inflammation, including miR-7a. Our data provide the first direct in vivo evidence that TNFR2 in oligodendrocytes is important for oligodendrocyte differentiation, thereby sustaining tmTNF-dependent repair in neuroimmune disease. Our studies identify TNFR2 in the CNS as a molecular target for the development of remyelinating agents, addressing the most pressing need in multiple sclerosis therapy nowadays. SIGNIFICANCE STATEMENT: Our study, using novel TNF receptor 2 (TNFR2) conditional KO mice with selective TNFR2 ablation in oligodendrocytes, provides the first direct evidence that TNFR2 is an important signal for oligodendrocyte differentiation. Following activation by transmembrane TNF, TNFR2 initiates pathways that drive oligodendrocytes into a reparative mode contributing to remyelination following disease. This identifies TNFR2 as a new molecular target for the development of therapeutic agents in multiple sclerosis.


Asunto(s)
Diferenciación Celular/genética , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/metabolismo , Vaina de Mielina , Neuroglía/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/genética , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Animales , Axones/patología , Conducta Animal , Supervivencia Celular/genética , Encefalomielitis Autoinmune Experimental/psicología , Femenino , Regulación de la Expresión Génica/genética , Masculino , Ratones , Ratones Noqueados , Regeneración Nerviosa/genética , Células-Madre Neurales , Factor de Necrosis Tumoral alfa/metabolismo
12.
J Neurochem ; 136 Suppl 1: 63-73, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26364732

RESUMEN

Although previous studies have shown that forced exercise modulates inflammation and is therapeutic acutely for experimental autoimmune encephalomyelitis (EAE), the long-term benefits have not been evaluated. In this study, we investigated the effects of preconditioning exercise on the clinical and pathological progression of EAE. Female C57BL/6 mice were randomly assigned to either an exercised (Ex) or unexercised (UEx) group and all of them were induced for EAE. Mice in the Ex group had an attenuated clinical score relative to UEx mice throughout the study. At 42 dpi, flow cytometry analysis showed a significant reduction in B cells, CD4(+) T cells, and CD8(+) T cells infiltrating into the spinal cord in the Ex group compared to UEx. Ex mice also had a significant reduction in myelin damage with a corresponding increase in proteolipid protein expression. Finally, Ex mice had a significant reduction in axonal damage. Collectively, our study demonstrates for the first time that a prolonged and forced preconditioning protocol of exercise improves clinical outcome and attenuates pathological hallmarks of EAE at chronic disease. In this study, we show that a program of 6 weeks of preconditioning exercise promoted a significant reduction of cells infiltrating into the spinal cord, a significant reduction in myelin damage and a significant reduction in axonal damage in experimental autoimmune encephalomyelitis (EAE) mice at 42 dpi. Collectively, our study demonstrates for the first time that a preconditioning protocol of exercise improves clinical outcome and attenuates pathological hallmarks of EAE at chronic disease.


Asunto(s)
Axones/patología , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/prevención & control , Condicionamiento Físico Animal/fisiología , Natación/fisiología , Animales , Enfermedades Autoinmunes Desmielinizantes SNC/patología , Enfermedades Autoinmunes Desmielinizantes SNC/prevención & control , Femenino , Ratones , Ratones Endogámicos C57BL , Condicionamiento Físico Animal/métodos , Resultado del Tratamiento
13.
J Neuroinflammation ; 13(1): 125, 2016 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-27245318

RESUMEN

BACKGROUND: Individuals suffering from spinal cord injury (SCI) are at higher risk for respiratory-related viral infections such as influenza. In a previous study (Zha et al., J Neuroinflammation 11:65, 2014), we demonstrated that chronic spinal cord injury caused impairment in CD8(+)T cell function with increased expression of the immunosuppressive protein, programmed cell death 1 (PD-1). The present study was undertaken to establish whether chronic SCI-induced immune deficits would affect antiviral immunity directed against primary and secondary infections. METHODS: Six to seven weeks following a SCI contusion at thoracic level T9, mice were infected intranasally with influenza virus. Virus-specific immunity was analyzed at various time points post-infection and compared to uninjured controls. RESULTS: We report that chronic thoracic SCI impairs the ability of the animals to mount an adequate antiviral immune response. While all uninjured control mice cleared the virus from their lungs by day 10 post-infection, a significant number (approximately 70 %) of chronic SCI mice did not clear the virus and succumbed to infection-induced mortality. This was attributed to severe deficits in both virus-specific antibody production and CD8(+) T cell response in injured mice after primary infection. We also determined that previously acquired humoral immunity was maintained after spinal cord injury as vaccination against influenza A prior to injury-protected mice from a homologous viral challenge. In contrast, prior immunization did not protect mice from a heterotypic challenge with a different strain of influenza virus. CONCLUSIONS: Taken together, our data demonstrate that chronic SCI attenuates virus-specific humoral and cellular immunity during the establishment of primary response and impairs the development of memory CD8(+) T cells. In contrast, B cell memory acquired through vaccination prior to SCI is preserved after injury which demonstrates that antigen-specific memory cells are refractory following injury. Our study defines important parameters of the deficits of chronic SCI-induced immune depression during a viral respiratory infection. Our objective is to better understand the mechanisms of spinal cord injury-induced immune depression with the goal of developing more effective therapies and reduce mortality due to complications from influenza and other infections.


Asunto(s)
Anticuerpos Antivirales/inmunología , Linfocitos T CD8-positivos/inmunología , Inmunidad Celular/fisiología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Traumatismos de la Médula Espinal/inmunología , Animales , Anticuerpos Antivirales/metabolismo , Linfocitos T CD8-positivos/metabolismo , Células Cultivadas , Enfermedad Crónica , Perros , Femenino , Subtipo H3N2 del Virus de la Influenza A/metabolismo , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos C57BL , Orthomyxoviridae/inmunología , Orthomyxoviridae/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Vértebras Torácicas
14.
J Immunol ; 190(9): 4525-34, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23530149

RESUMEN

A mutation in the IL7Rα locus has been identified as a risk factor for multiple sclerosis (MS), a neurodegenerative autoimmune disease characterized by inflammation, demyelination, and axonal damage. IL7Rα has well documented roles in lymphocyte development and homeostasis, but its involvement in disease is largely understudied. In this study, we use the experimental autoimmune encephalomyelitis (EAE) model of MS to show that a less severe form of the disease results when IL7Rα expression is largely restricted to thymic tissue in IL7RTg(IL7R-/-) mice. Compared with wild-type (WT) mice, IL7RTg(IL7R-/-) mice exhibited reduced paralysis and myelin damage that correlated with dampened effector responses, namely decreased TNF production. Furthermore, treatment of diseased WT mice with neutralizing anti-IL7Rα Ab also resulted in significant improvement of EAE. In addition, chimeric mice were generated by bone marrow transplant to limit expression of IL7Rα to cells of either hematopoietic or nonhematopoietic origin. Mice lacking IL7Rα only on hematopoietic cells develop severe EAE, suggesting that IL7Rα expression in the nonhematopoietic compartment contributes to disease. Moreover, novel IL7Rα expression was identified on astrocytes and oligodendrocytes endogenous to the CNS. Chimeric mice that lack IL7Rα only on nonhematopoietic cells also develop severe EAE, which further supports the role of IL7Rα in T cell effector function. Conversely, mice that lack IL7Rα throughout both compartments are dramatically protected from disease. Taken together, these data indicate that multiple cell types use IL7Rα signaling in the development of EAE, and inhibition of this pathway should be considered as a new therapeutic avenue for MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , Activación de Linfocitos/inmunología , Receptores de Interleucina-7/inmunología , Linfocitos T/inmunología , Animales , Astrocitos/inmunología , Trasplante de Médula Ósea/inmunología , Linaje de la Célula , Sistema Nervioso Central/inmunología , Citocinas/inmunología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/inmunología , Mutación/inmunología , Vaina de Mielina/inmunología , Oligodendroglía/inmunología , Timo/inmunología , Factor de Necrosis Tumoral alfa/inmunología
15.
J Neurosci ; 33(24): 9932-6, 2013 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-23761888
16.
Glia ; 62(3): 452-67, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24357067

RESUMEN

Astrocytes respond to insult with a process of cellular activation known as reactive astrogliosis. One of the key signals regulating this phenomenon is the transcription factor nuclear factor-kappa B (NF-κB), which is responsible for modulating inflammation, cell survival, and cell death. In astrocytes, following trauma or disease, the expression of NF-κB-dependent genes is highly activated. We previously demonstrated that inactivation of astroglial NF-κB in vivo (GFAP-IκBα-dn mice) leads to improved functional outcome in experimental autoimmune encephalomyelitis (EAE), and this is accompanied by reduction of pro-inflammatory gene expression in the CNS. Here we extend our studies to show that recovery from EAE in GFAP-IκBα-dn mice is associated with reduction of peripheral immune cell infiltration into the CNS at the chronic phase of EAE. This is not dependent on a less permeable blood-brain barrier, but rather on a reduced immune cell mobilization from the periphery. Furthermore, once inside the CNS, the ability of T cells to produce pro-inflammatory cytokines is diminished during acute disease. In parallel, we found that the number of total and activated microglial cells is reduced, suggesting that functional improvement in GFAP-IκBα-dn mice is dependent upon reduction of the overall inflammatory response within the CNS sustained by both resident and infiltrating cells. This results in preservation of myelin compaction and enhanced remyelination, as shown by electron microscopy analysis of the spinal cord. Collectively our data indicate that astrocytes are key players in driving CNS inflammation and are directly implicated in the pathophysiology of EAE, since blocking their pro-inflammatory capability results in protection from the disease.


Asunto(s)
Astrocitos/fisiología , Sistema Nervioso Central/metabolismo , Encefalomielitis Autoinmune Experimental/fisiopatología , Regulación de la Expresión Génica/inmunología , Inflamación/etiología , Inflamación/patología , Animales , Astrocitos/ultraestructura , Sistema Nervioso Central/inmunología , Claudina-5/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/inmunología , Regulación de la Expresión Génica/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas I-kappa B/genética , Inmunoglobulina G/metabolismo , Leucocitos/inmunología , Leucocitos/metabolismo , Ratones , Ratones Transgénicos , Microscopía Electrónica , Vaina de Mielina/metabolismo , Glicoproteína Mielina-Oligodendrócito/toxicidad , Inhibidor NF-kappaB alfa , Fragmentos de Péptidos/toxicidad , Médula Espinal , Linfocitos T/metabolismo
17.
J Neuroinflammation ; 11: 65, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24690491

RESUMEN

BACKGROUND: Chronic spinal cord injury (SCI) induces immune depression in patients, which contributes to their higher risk of developing infections. While defects in humoral immunity have been reported, complications in T-cell immunity during the chronic phase of SCI have not yet been explored. METHODS: To assess the impact of chronic SCI on peripheral T-cell number and function we used a mouse model of severe spinal cord contusion at thoracic level T9 and performed flow cytometry analysis on the spleen for T-cell markers along with intracellular cytokine staining. Furthermore we identified alterations in sympathetic activity in the spleen of chronic SCI mice by measuring splenic levels of tyrosine hydroxylase (TH) and norepinephrine (NE). To gain insight into the neurogenic mechanism leading to T-cell dysfunction we performed in vitro NE stimulation of T-cells followed by flow cytometry analysis for T-cell exhaustion marker. RESULTS: Chronic SCI impaired both CD4+ and CD8+ T-cell cytokine production. The observed T-cell dysfunction correlated with increased expression of programmed cell death 1 (PD-1) exhaustion marker on these cells. Blocking PD-1 signaling in vitro restored the CD8+ T-cell functional defect. In addition, we showed that chronic SCI mice had higher levels of splenic NE, which contributed to the T-cell exhaustion phenotype, as PD-1 expression on both CD4+ and CD8+ T-cells was up-regulated following sustained exposure to NE in vitro. CONCLUSIONS: These studies indicate that alteration of sympathetic activity following chronic SCI induces CD8+ T-cell exhaustion, which in turn impairs T-cell function and contributes to immune depression. Inhibition of the exhaustion pathway should be considered as a new therapeutic strategy for chronic SCI-induced immune depression.


Asunto(s)
Apoptosis/fisiología , Linfocitos T CD8-positivos/fisiología , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología , Regulación hacia Arriba/fisiología , Animales , Apoptosis/efectos de los fármacos , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD8-positivos/efectos de los fármacos , Ionóforos de Calcio/farmacología , Proliferación Celular/efectos de los fármacos , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Ionomicina/farmacología , Ratones , Ratones Endogámicos C57BL , Norepinefrina/farmacología , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/metabolismo , Acetato de Tetradecanoilforbol/farmacología , Tirosina 3-Monooxigenasa/metabolismo , Regulación hacia Arriba/efectos de los fármacos
18.
J Neuroinflammation ; 11: 159, 2014 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-25204558

RESUMEN

BACKGROUND: Glial cell activation and overproduction of inflammatory mediators in the central nervous system (CNS) have been implicated in acute traumatic injuries to the CNS, including spinal cord injury (SCI). Elevated levels of the proinflammatory cytokine tumor necrosis factor (TNF), which exists in both a soluble (sol) and a transmembrane (tm) form, have been found in the lesioned cord early after injury. The contribution of solTNF versus tmTNF to the development of the lesion is, however, still unclear. METHODS: We tested the effect of systemically or centrally blocking solTNF alone, using XPro1595, versus using the drug etanercept to block both solTNF and tmTNF compared to a placebo vehicle following moderate SCI in mice. Functional outcomes were evaluated using the Basso Mouse Scale, rung walk test, and thermal hyperalgesia analysis. The inflammatory response in the lesioned cord was investigated using immunohistochemistry and western blotting analyses. RESULTS: We found that peripheral administration of anti-TNF therapies had no discernable effect on locomotor performances after SCI. In contrast, central administration of XPro1595 resulted in improved locomotor function, decreased anxiety-related behavior, and reduced damage to the lesioned spinal cord, whereas central administration of etanercept had no therapeutic effects. Improvements in XPro1595-treated mice were accompanied by increases in Toll-like receptor 4 and TNF receptor 2 (TNFR2) protein levels and changes in Iba1 protein expression in microglia/macrophages 7 and 28 days after SCI. CONCLUSIONS: These studies suggest that, by selectively blocking solTNF, XPro1595 is neuroprotective when applied directly to the lesioned cord. This protection may be mediated via alteration of the inflammatory environment without suppression of the neuroprotective effects of tmTNF signaling through TNFR2.


Asunto(s)
Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/patología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Animales , Femenino , Bombas de Infusión Implantables , Inyecciones Epidurales , Inyecciones Subcutáneas , Ratones , Traumatismos de la Médula Espinal/metabolismo , Factor de Necrosis Tumoral alfa/administración & dosificación , Factor de Necrosis Tumoral alfa/metabolismo
19.
Brain Behav Immun ; 41: 65-81, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24938671

RESUMEN

Patients suffering from neuropathic pain have a higher incidence of mood disorders such as depression. Increased expression of tumor necrosis factor (TNF) has been reported in neuropathic pain and depressive-like conditions and most of the pro-inflammatory effects of TNF are mediated by the TNF receptor 1 (TNFR1). Here we sought to investigate: (1) the occurrence of depressive-like behavior in chronic neuropathic pain and the associated forms of hippocampal plasticity, and (2) the involvement of TNFR1-mediated TNF signaling as a possible regulator of such events. Neuropathic pain was induced by chronic constriction injury of the sciatic nerve in wild-type and TNFR1(-/-) mice. Anhedonia, weight loss and physical state were measured as symptoms of depression. Hippocampal neurogenesis, neuroplasticity, myelin remodeling and TNF/TNFRs expression were analyzed by immunohistochemical analysis and western blot assay. We found that neuropathic pain resulted in the development of depressive symptoms in a time dependent manner and was associated with profound hippocampal alterations such as impaired neurogenesis, reduced expression of neuroplasticity markers and myelin proteins. The onset of depressive-like behavior also coincided with increased hippocampal levels of TNF, and decreased expression of TNF receptor 2 (TNFR2), which were all fully restored after mice spontaneously recovered from pain. Notably, TNFR1(-/-) mice did not develop depressive-like symptoms after injury, nor were there changes in hippocampal neurogenesis and plasticity. Our data show that neuropathic pain induces a cluster of depressive-like symptoms and profound hippocampal plasticity that are dependent on TNF signaling through TNFR1.


Asunto(s)
Depresión/etiología , Hipocampo/patología , Neuralgia/fisiopatología , Neurogénesis/fisiología , Plasticidad Neuronal/fisiología , Receptores Tipo I de Factores de Necrosis Tumoral/fisiología , Ciática/fisiopatología , Transducción de Señal/fisiología , Anhedonia/fisiología , Animales , Corticosterona/sangre , Depresión/fisiopatología , Conducta de Ingestión de Líquido/fisiología , Conducta Exploratoria/fisiología , Preferencias Alimentarias/fisiología , Calor/efectos adversos , Hiperalgesia/etiología , Hiperalgesia/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuralgia/patología , Neuralgia/psicología , Presión/efectos adversos , Receptores del Factor de Necrosis Tumoral/biosíntesis , Receptores del Factor de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/deficiencia , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Nervio Ciático/lesiones , Ciática/patología , Ciática/psicología , Método Simple Ciego , Factor de Necrosis Tumoral alfa/fisiología
20.
Brain Res Bull ; 207: 110885, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38246200

RESUMEN

Multiple sclerosis (MS), a demyelinating autoimmune disease of the central nervous system (CNS), predominately affects females compared to males. Tumor necrosis factor (TNF), a pro-inflammatory cytokine, signaling through TNF receptor 1 contributes to inflammatory disease pathogenesis. In contrast, TNF receptor 2 signaling is neuroprotective. Current anti-TNF MS therapies are shown to be detrimental to patients due to pleiotropic effects on both pro- and anti-inflammatory functions. Using a non-pertussis toxin (nPTX) experimental autoimmune encephalomyelitis (EAE) model in C57BL/6 mice, we systemically administered a TNFR2 agonist (p53-sc-mTNFR2) to investigate behavioral and pathophysiological changes in both female and male mice. Our data shows that TNFR2 activation alleviates motor and sensory symptoms in females. However, in males, the agonist only alleviates sensory symptoms and not motor. nPTX EAE induction in TNFR2 global knockout mice caused exacerbated motor symptoms in females along with an earlier day of onset, but not in males. Our data demonstrates that TNFR2 agonist efficacy is sex-specific for alleviation of motor symptoms, however, it effectively reduces mechanical hypersensitivity in both females and males. Altogether, these data support the therapeutic promise TNFR2 agonism holds as an MS therapeutic and, more broadly, to treat central neuropathic pain.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Humanos , Masculino , Femenino , Ratones , Animales , Receptores Tipo II del Factor de Necrosis Tumoral/agonistas , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/uso terapéutico , Inhibidores del Factor de Necrosis Tumoral/uso terapéutico , Ratones Endogámicos C57BL , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Proteínas de la Mielina , Factor de Necrosis Tumoral alfa/metabolismo , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA