Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Environ Microbiol ; 25(11): 2368-2387, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37431274

RESUMEN

Human and livestock sewage is one of the major causes of excess nutrients, leading to the eutrophication of aquatic ecosystems and potentially to the emergence or spread of pathogenic viruses. This study aimed to investigate the composition and diversity of aquatic viromes in a highly anthropized lagoon, to identify the presence of pathogenic taxa and to explore their use as possible viral indicators of faecal contamination. For this, water and sediment samples were collected in the Ebrié Lagoon (Ivory Coast) at seven stations with contrasting levels of eutrophication. The DNA viromes of the planktonic and the benthic compartments were highly divergent, but were not influenced by the level of eutrophication. Conversely, the RNA viromes in the water column were comparable to those found in sediment, but showed significant differences between the stations. We detected the presence of viral DNA and RNA sequences we had assigned as indicators of faecal contamination (smacovirus, pecovirus and pepper mild mottle virus) as well as human pathogens (human cyclovirus, coxsackie B virus and picobirnavirus), which were all enriched in the most eutrophicated sites. These findings suggest that the examination of viromes represents a promising tool for assessing the state of human-induced contamination of aquatic ecosystems.


Asunto(s)
Ecosistema , Virus , Humanos , Viroma , Virus/genética , Agua , ADN
2.
Microb Ecol ; 86(1): 742-755, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35962839

RESUMEN

Although tunas represent a significant part of the global fish economy and a major nutritional resource worldwide, their microbiome still remains poorly documented. Here, we conducted an analysis of the taxonomic composition of the bacterial communities inhabiting the gut, skin, and liver of two most consumed tropical tuna species (skipjack and yellowfin), from individuals caught in the Atlantic and Indian oceans. We hypothesized that each organ harbors a specific microbial assemblage whose composition might vary according to different biotic (sex, species) and/or abiotic (environmental) factors. Our results revealed that the composition of the tuna microbiome was totally independent of fish sex, regardless of the species and ocean considered. Instead, the main determinants of observed diversity were (i) tuna species for the gut and (ii) sampling site for the skin mucus layer and (iii) a combination of both parameters for the liver. Interestingly, 4.5% of all amplicon sequence variants (ASV) were shared by the three organs, highlighting the presence of a core-microbiota whose most abundant representatives belonged to the genera Mycoplasma, Cutibacterium, and Photobacterium. Our study also revealed the presence of a unique and diversified bacterial assemblage within the tuna liver, comprising a substantial proportion of potential histamine-producing bacteria, well known for their pathogenicity and their contribution to fish poisoning cases. These results indicate that this organ is an unexplored microbial niche whose role in the health of both the host and consumers remains to be elucidated.


Asunto(s)
Microbiota , Atún , Animales , Atún/microbiología , Caza , Histamina , Bacterias/genética
3.
Proc Biol Sci ; 287(1927): 20200642, 2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32396801

RESUMEN

Coral reefs host hundreds of thousands of animal species that are increasingly threatened by anthropogenic disturbances. These animals host microbial communities at their surface, playing crucial roles for their fitness. However, the diversity of such microbiomes is mostly described in a few coral species and still poorly defined in other invertebrates and vertebrates. Given the diversity of animal microbiomes, and the diversity of host species inhabiting coral reefs, the contribution of such microbiomes to the total microbial diversity of coral reefs could be important, yet potentially vulnerable to the loss of animal species. Analysis of the surface microbiome from 74 taxa, including teleost fishes, hard and soft corals, crustaceans, echinoderms, bivalves and sponges, revealed that more than 90% of their prokaryotic phylogenetic richness was specific and not recovered in surrounding plankton. Estimate of the total richness associated with coral reef animal surface microbiomes reached up to 2.5% of current estimates of Earth prokaryotic diversity. Therefore, coral reef animal surfaces should be recognized as a hotspot of marine microbial diversity. Loss of the most vulnerable reef animals expected under present-day scenarios of reef degradation would induce an erosion of 28% of the prokaryotic richness, with unknown consequences on coral reef ecosystem functioning.


Asunto(s)
Biodiversidad , Arrecifes de Coral , Microbiota , Microbiología del Agua , Animales , Filogenia
4.
Environ Microbiol ; 18(3): 889-903, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26472517

RESUMEN

Microbial communities from hypersaline ponds, dominated by halophilic archaea, are considered specific of such extreme conditions. The associated viral communities have accordingly been shown to display specific features, such as similar morphologies among different sites. However, little is known about the genetic diversity of these halophilic viral communities across the Earth. Here, we studied viral communities in hypersaline ponds sampled on the coast of Senegal (8-36% of salinity) using metagenomics approach, and compared them with hypersaline viromes from Australia and Spain. The specificity of hyperhalophilic viruses could first be demonstrated at a community scale, salinity being a strong discriminating factor between communities. For the major viral group detected in all samples (Caudovirales), only a limited number of halophilic Caudovirales clades were highlighted. These clades gather viruses from different continents and display consistent genetic composition, indicating that they represent related lineages with a worldwide distribution. Non-tailed hyperhalophilic viruses display a greater rate of gene transfer and recombination, with uncharacterized genes conserved across different kind of viruses and plasmids. Thus, hypersaline viral communities around the world appear to form a genetically consistent community that are likely to harbour new genes coding for enzymes specifically adapted to these environments.


Asunto(s)
Caudovirales/genética , Genoma Viral/genética , Estanques/virología , Salinidad , Australia , Caudovirales/aislamiento & purificación , Mapeo Cromosómico , Variación Genética , Metagenómica , Senegal , España
5.
Environ Microbiol ; 17(10): 3433-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25171444

RESUMEN

A recent hypothesis considers that many coral pathologies are the result of a sudden structural alteration of the epibiotic bacterial communities in response to environmental disturbances. However, the ecological mechanisms that lead to shifts in their composition are still unclear. In the ocean, viruses represent a major bactericidal agent but little is known on their occurrence within the coral holobiont. Recent reports have revealed that viruses are abundant and diversified within the coral mucus and therefore could be decisive for coral health. However, their mode of action is still unknown, and there is now an urgent need to shed light on the nature of the relationships they might have with the other prokaryotic and eukaryotic members of the holobiont. In this opinion letter, we are putting forward the hypothesis that coral-associated viruses (mostly bacterial and algal viruses), depending on the environmental conditions might either reinforce coral stability or conversely fasten their decline. We propose that these processes are presumably based on an environmentally driven shift in infection strategies allowing viruses to regulate, circumstantially, both coral symbionts (bacteria or Symbiodinium) and surrounding pathogens.


Asunto(s)
Antozoos/virología , Bacterias/virología , Dinoflagelados/virología , Phycodnaviridae/crecimiento & desarrollo , Animales , Antozoos/microbiología , Bacteriófagos/crecimiento & desarrollo , Arrecifes de Coral
6.
Appl Environ Microbiol ; 81(17): 5773-83, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26092456

RESUMEN

There is increasing suspicion that viral communities play a pivotal role in maintaining coral health, yet their main ecological traits still remain poorly characterized. In this study, we examined the seasonal distribution and reproduction pathways of viruses inhabiting the mucus of the scleractinians Fungia repanda and Acropora formosa collected in Nha Trang Bay (Vietnam) during an 11-month survey. The strong coupling between epibiotic viral and bacterial abundance suggested that phages are dominant among coral-associated viral communities. Mucosal viruses also exhibited significant differences in their main features between the two coral species and were also remarkably contrasted with their planktonic counterparts. For example, their abundance (inferred from epifluorescence counts), lytic production rates (KCN incubations), and the proportion of lysogenic cells (mitomycin C inductions) were, respectively, 2.6-, 9.5-, and 2.2-fold higher in mucus than in the surrounding water. Both lytic and lysogenic indicators were tightly coupled with temperature and salinity, suggesting that the life strategy of viral epibionts is strongly dependent upon environmental circumstances. Finally, our results suggest that coral mucus may represent a highly favorable habitat for viral proliferation, promoting the development of both temperate and virulent phages. Here, we discuss how such an optimized viral arsenal could be crucial for coral viability by presumably forging complex links with both symbiotic and adjacent nonsymbiotic microorganisms.


Asunto(s)
Antozoos/virología , Fenómenos Fisiológicos de los Virus , Animales , Antozoos/microbiología , Bacterias/genética , Bacterias/aislamiento & purificación , Moco/virología , Estaciones del Año , Vietnam , Virus/genética , Virus/aislamiento & purificación
7.
Int J Toxicol ; 34(1): 31-43, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25691521

RESUMEN

Yeast cells transformed with high-copy number plasmids comprising a green fluorescent protein (GFP)-encoding gene optimized for yeast under the control of the new DIN7 or PLM2 and the established RNR2 and RAD54 promoters were used to assess the genotoxic potential of chemical compounds. The activity of potential DNA-damaging agents was investigated by genotoxicity assays and by OxoPlate assay in the presence of various test compounds. The fluorescence signal generated by GFP in response to DNA damage was related to the different concentrations of analytes and the analyte-dependent GFP synthesis. The use of distinct DNA damage-inducible promoters presents alternative genotoxicity testing strategies by selective induction of promoters in response to DNA damage. The new DIN7 and PLM2 systems show higher sensitivity than the RNR2 and RAD54 systems in detecting 4-nitroquinoline-N-oxide and actinomycin D. Both DIN7 and PLM2 systems are able to detect camptothecin while RNR2 and RAD54 systems are not. Automated laboratory systems with assay performance on 384-well microplates provide for cost-effective high-throughput screening of DNA-damaging agents, reducing compound consumption to about 53% as compared with existing eukaryotic genotoxicity bioassays.


Asunto(s)
Exodesoxirribonucleasas/genética , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Mutágenos/toxicidad , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , ADN Helicasas/genética , Enzimas Reparadoras del ADN/genética , Proteínas Fluorescentes Verdes/metabolismo , Pruebas de Mutagenicidad , Plásmidos , Regiones Promotoras Genéticas , Ribonucleótido Reductasas/genética
8.
Environ Monit Assess ; 186(12): 8555-72, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25200992

RESUMEN

Phytoplankton diversity and abundance in estuarine systems are controlled by many factors. Salinity, turbidity, and inorganic nutrient concentrations and their respective ratios have all been proposed as principal factors that structure phytoplankton diversity and influence the emergence of potentially toxic species. Although much work has been conducted on temperate estuaries, less is known about how phytoplankton diversity is controlled in tropical, monsoonal systems that are subject to large, seasonal shifts in hydrology and to rapidly changing land use. Here, we present the results of an investigation into the factors controlling phytoplankton species composition and distribution in a tropical, monsoonal estuary (Bach Dang estuary, North Vietnam). A total of 245 taxa, 89 genera from six algal divisions were observed. Bacillariophyceae were the most diverse group contributing to 51.4 % of the microalgal assemblage, followed by Dinophyceae (29.8 %), Chlorophyceae (10.2 %), Cyanophyceae (3.7 %), Euglenophyceae (3.7 %) and Dictyochophyceae (1.2 %). The phytoplankton community was structured by inorganic nutrient ratios (DSi:DIP and DIN:DIP) as well as by salinity and turbidity. Evidence of a decrease in phytoplankton diversity concomitant with an increase in abundance and dominance of certain species (e.g., Skeletonema costatum) and the appearance of some potentially toxic species over the last two decades was also found. These changes in phytoplankton diversity are probably due to a combination of land use change resulting in changes in nutrient ratios and concentrations and global change as both rainfall and temperature have increased over the last two decades. It is therefore probable in the future that phytoplankton diversity will continue to change, potentially favoring the emergence of toxic species in this system.


Asunto(s)
Estuarios , Fitoplancton/crecimiento & desarrollo , Contaminantes del Agua/análisis , Diatomeas/clasificación , Diatomeas/crecimiento & desarrollo , Dinoflagelados/clasificación , Dinoflagelados/crecimiento & desarrollo , Monitoreo del Ambiente , Nitrógeno/análisis , Fósforo/análisis , Fitoplancton/clasificación , Salinidad , Estaciones del Año , Agua de Mar/química , Temperatura , Vietnam
9.
Microbiol Spectr ; 12(5): e0404823, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38606959

RESUMEN

Phytoplankton are important drivers of aquatic ecosystem function and environmental health. Their community compositions and distributions are directly impacted by environmental processes and human activities, including in the largest estuary in North America, the Chesapeake Bay. It is crucial to uncover how planktonic eukaryotes play fundamental roles as primary producers and trophic links and sustain estuarine ecosystems. In this study, we investigated the detailed community structure and spatiotemporal variations of planktonic eukaryotes in the Chesapeake Bay across space and time for three consecutive years. A clear seasonal and spatial shift of total, abundant, and rare planktonic eukaryotes was evident, and the pattern recurred interannually. Multiple harmful algal species have been identified in the Bay with varied distribution patterns, such as Karlodinium, Heterosigma akashiwo, Protoperidinium sp., etc. Compared to abundant taxa, rare subcommunities were more sensitive to environmental disturbance in terms of richness, diversity, and distribution. The combined effects of temporal variation (13.3%), nutrient availability (10.0%), and spatial gradients (8.8%) structured the distribution of eukaryotic microbial communities in the Bay. Similar spatiotemporal patterns between planktonic prokaryotes and eukaryotes suggest common mechanisms of adjustment, replacement, and species interaction for planktonic microbiomes under strong estuarine gradients. To our best knowledge, this work represents the first systematic study on planktonic eukaryotes in the Bay. A comprehensive view of the distribution of planktonic microbiomes and their interactions with environmental processes is critical in understanding the underlying microbial mechanisms involved in maintaining the stability, function, and environmental health of estuarine ecosystems. IMPORTANCE: Deep sequencing analysis of planktonic eukaryotes in the Chesapeake Bay reveals high community diversity with many newly recognized phytoplankton taxa. The Chesapeake Bay planktonic eukaryotes show distinct seasonal and spatial variability, with recurring annual patterns of total, abundant, and rare groups. Rare taxa mainly contribute to eukaryotic diversity compared to abundant groups, and they are more sensitive to spatiotemporal variations and environmental filtering. Temporal variations, nutrient availability, and spatial gradients significantly affect the distribution of eukaryotic microbial communities. Similar spatiotemporal patterns in prokaryotes and eukaryotes suggest common mechanisms of adjustment, substitution, and species interactions in planktonic microbiomes under strong estuarine gradients. Interannually recurring patterns demonstrate that diverse eukaryotic taxa have well adapted to the estuarine environment with a long residence time. Further investigations of how human activities impact estuarine planktonic eukaryotes are critical in understanding their essential ecosystem roles and in maintaining environmental safety and public health.


Asunto(s)
Bahías , Estuarios , Eucariontes , Fitoplancton , Bahías/microbiología , Eucariontes/clasificación , Eucariontes/genética , Fitoplancton/clasificación , Fitoplancton/genética , Plancton/clasificación , Plancton/genética , Ecosistema , Biodiversidad , Estaciones del Año
10.
J Microbiol ; 61(6): 589-602, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37261715

RESUMEN

The disposal of sewage in significant quantities poses a health hazard to aquatic ecosystems. These effluents can contain a wide range of pathogens, making faecal contamination a leading source of waterborne diseases around the world. Yet monitoring bacteria or viruses in aquatic environments is time consuming and expensive. The standard indicators of faecal pollution all have limitations, including difficulty in determining the source due to lack of host specificity, poor connection with the presence of non-bacterial pathogens, or low environmental persistence. Innovative monitoring techniques are sorely needed to provide more accurate and targeted solutions. Viruses are a promising alternative to faecal indicator bacteria for monitoring, as they are more persistent in ambient water, more abundant in faeces, and are extremely host-specific. Given the range of viruses found in diverse contexts, it is not easy to find one "ideal" viral indicator of faecal pollution; however, several are of interest. In parallel, the ongoing development of molecular techniques coupled with metagenomics and bioinformatics should enable improved ways to detect faecal contamination using viruses. This review examines the evolution of faecal contamination monitoring with the following aims (i) to identify the characteristics of the main viral indicators of faecal contamination, including human enteric viruses, bacteriophages, CRESS and plant viruses, (ii) to assess how these have been used to monitor water pollution in recent years, (iii) to evaluate the reliability of recent detection methods of such viruses, and (iv) to tentatively determine which viruses may be most effective as markers of faecal pollution.


Asunto(s)
Bacteriófagos , Virus , Humanos , Ecosistema , Reproducibilidad de los Resultados , Microbiología del Agua , Bacteriófagos/genética , Virus/genética , Bacterias , Heces/microbiología , Monitoreo del Ambiente/métodos
11.
Data Brief ; 47: 108977, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36860407

RESUMEN

Acropora is one of the most common coral genera found in Phu Quoc Islands, Vietnam. However, the presence of marine snails, such as the coralllivorous gastropod Drupella rugosa, was a potential threat to the survival of many scleractinian species, leading to changes in the health status and bacterial diversity of coral reefs in Phu Quoc Islands. Here, we describe the composition of bacterial communities associated with two species of Acropora (Acropora formosa and Acropora millepora) using the Illumina sequencing technology. This dataset includes 5 coral samples of each status (grazed or healthy), which were collected in Phu Quoc Islands (9°55'20.6″N 104°01'16.4″E) in May 2020. A total of 19 phyla, 34 classes, 98 orders, 216 families and 364 bacterial genera were detected from 10 coral samples. Overall, Proteobacteria and Firmicutes were the two most common bacterial phyla in all samples. Significant differences in the relative abundances of the genera Fusibacter, Halarcobacter, Malaciobacter, and Thalassotalea between grazed and healthy status were observed. However, there was no differences in alpha diversity indices between the two status. Furthermore, the dataset analysis also indicated that Vibrio and Fusibacter were core genera in the grazed samples, whereas Pseudomonas was the core genus in the healthy samples.

12.
Mar Pollut Bull ; 194(Pt B): 115267, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37487429

RESUMEN

Macroplastics are ubiquitous in aquaculture ecosystems. However, to date the potential role of plastics as a support for bacterial biofilm that can include potential human pathogenic bacteria (PHPB) and antibiotic-resistant bacteria (ARB) has been largely overlooked. In this study, we used a combination of metabarcoding and standard antibiotic susceptibility testing to study the pathobiome and resistome of macroplastics, fish guts and the environment in a marine aquaculture farm in Mauritius. Aquaculture macroplastics were found to be higher in PHPB, dominated by the Vibrionaceae family (0.34 % of the total community), compared with environmental samples. Moreover, isolates from aquaculture plastics showed higher significant multiple antibiotic resistance (MAR) compared to non-plastic samples of seawater, sediment and fish guts. These results suggest that plastics act as a reservoir and fomite of PHPB and ARB in aquaculture, potentially threatening the health of farmed fish and human consumers.


Asunto(s)
Antibacterianos , Explotaciones Pesqueras , Animales , Humanos , Antibacterianos/farmacología , Antagonistas de Receptores de Angiotensina , Ecosistema , Inhibidores de la Enzima Convertidora de Angiotensina , Farmacorresistencia Microbiana , Bacterias , Acuicultura , Peces
13.
Appl Environ Microbiol ; 78(17): 6377-9, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22729548

RESUMEN

The distribution of viruses inhabiting the coral mucus remains undetermined, as there is no suitable standardized procedure for their separation from this organic matrix, principally owing to its viscosity and autofluorescence. Seven protocols were tested, and the most efficient separations were obtained from a chemical treatment requiring potassium citrate.


Asunto(s)
Antozoos/virología , Sedimentos Geológicos/virología , Carga Viral , Virus/aislamiento & purificación , Animales
14.
BMC Microbiol ; 12: 202, 2012 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-22966751

RESUMEN

BACKGROUND: Small size eukaryotes play a fundamental role in the functioning of coastal ecosystems, however, the way in which these micro-organisms respond to combined effects of water temperature, UVB radiations (UVBR) and nutrient availability is still poorly investigated. RESULTS: We coupled molecular tools (18S rRNA gene sequencing and fingerprinting) with microscope-based identification and counting to experimentally investigate the short-term responses of small eukaryotes (<6 µm; from a coastal Mediterranean lagoon) to a warming treatment (+3°C) and UVB radiation increases (+20%) at two different nutrient levels. Interestingly, the increase in temperature resulted in higher pigmented eukaryotes abundances and in community structure changes clearly illustrated by molecular analyses. For most of the phylogenetic groups, some rearrangements occurred at the OTUs level even when their relative proportion (microscope counting) did not change significantly. Temperature explained almost 20% of the total variance of the small eukaryote community structure (while UVB explained only 8.4%). However, complex cumulative effects were detected. Some antagonistic or non additive effects were detected between temperature and nutrients, especially for Dinophyceae and Cryptophyceae. CONCLUSIONS: This multifactorial experiment highlights the potential impacts, over short time scales, of changing environmental factors on the structure of various functional groups like small primary producers, parasites and saprotrophs which, in response, can modify energy flow in the planktonic food webs.


Asunto(s)
Biodiversidad , Eucariontes/crecimiento & desarrollo , Eucariontes/efectos de la radiación , Rayos Ultravioleta , ADN Ribosómico/química , ADN Ribosómico/genética , Eucariontes/citología , Eucariontes/genética , Región Mediterránea , Microscopía , Datos de Secuencia Molecular , ARN Ribosómico 18S/genética , Agua de Mar/microbiología , Análisis de Secuencia de ADN , Temperatura
15.
FEMS Microbiol Lett ; 369(1)2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36104149

RESUMEN

Ecological traits of aquatic microorganisms have been poorly investigated in tropical latitudes, especially in lagoons, which are often subjected to strong anthropogenic influence, conducive to microbial development. In this study, we examined the abundance of both viral and bacterial communities, as well as their interactions (lytic and lysogenic infections) in the water and sediment of seven main stations of the Ebrié Lagoon (Ivory Coast) with contrasting levels of eutrophication. The highest bacterial and viral concentrations in both planktonic and benthic samples were found in the most eutrophicated stations, where viral lytic infections also exhibited their highest values. Conversely, the highest fractions of inducible lysogens were measured in the most oligotrophic stations, suggesting that these two main viral life strategies are mutually exclusive in this lagoon. Our findings also revealed the importance that nutrients (especially ammonium) play as drivers of the interactions between viruses and their bacterial hosts in tropical lagoons.


Asunto(s)
Compuestos de Amonio , Virus , Bacterias , Eutrofización , Agua
16.
Viruses ; 15(1)2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36680116

RESUMEN

Metagenomics studies have revealed tremendous viral diversity in aquatic environments. Yet, while the genomic data they have provided is extensive, it is unannotated. For example, most phage sequences lack accurate information about their bacterial host, which prevents reliable phage identification and the investigation of phage-host interactions. This study aimed to take this knowledge further, using a viral metagenomic framework to decipher the composition and diversity of phage communities and to predict their bacterial hosts. To this end, we used water and sediment samples collected from seven sites with varying contamination levels in the Ebrié Lagoon in Abidjan, Ivory Coast. The bacterial communities were characterized using the 16S rRNA metabarcoding approach, and a framework was developed to investigate the virome datasets that: (1) identified phage contigs with VirSorter and VIBRANT; (2) classified these contigs with MetaPhinder using the phage database (taxonomic annotation); and (3) predicted the phages' bacterial hosts with a machine learning-based tool: the Prokaryotic Virus-Host Predictor. The findings showed that the taxonomic profiles of phages and bacteria were specific to sediment or water samples. Phage sequences assigned to the Microviridae family were widespread in sediment samples, whereas phage sequences assigned to the Siphoviridae, Myoviridae and Podoviridae families were predominant in water samples. In terms of bacterial communities, the phyla Latescibacteria, Zixibacteria, Bacteroidetes, Acidobacteria, Calditrichaeota, Gemmatimonadetes, Cyanobacteria and Patescibacteria were most widespread in sediment samples, while the phyla Epsilonbacteraeota, Tenericutes, Margulisbacteria, Proteobacteria, Actinobacteria, Planctomycetes and Marinimicrobia were most prevalent in water samples. Significantly, the relative abundance of bacterial communities (at major phylum level) estimated by 16S rRNA metabarcoding and phage-host prediction were significantly similar. These results demonstrate the reliability of this novel approach for predicting the bacterial hosts of phages from shotgun metagenomic sequencing data.


Asunto(s)
Bacterias , Bacteriófagos , Bacterias/genética , Bacterias/virología , Bacteriófagos/genética , Côte d'Ivoire , Genes de ARNr , Metagenómica/métodos , Reproducibilidad de los Resultados , ARN Ribosómico 16S/genética , Agua
17.
FEMS Microbiol Ecol ; 98(10)2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36124730

RESUMEN

Like other seafood products, tuna is highly perishable and sensitive to microbial spoilage. Its consumption, whether fresh or canned, can lead to severe food poisoning due to the activity of specific microorganisms, including histamine-producing bacteria. Yet, many grey areas persist regarding their ecology, conditions of emergence, and proliferation in fish. In this study, we used 16S rRNA barcoding to investigate postmortem changes in the bacteriome of fresh and brine-frozen yellowfin tuna (Thunnus albacares), until late stages of decomposition (i.e. 120 h). The results revealed that despite standard refrigeration storage conditions (i.e. 4°C), a diverse and complex spoilage bacteriome developed in the gut and liver. The relative abundance of spoilage bacterial taxa increased rapidly in both organs, representing 82% of the bacterial communities in fresh yellowfin tuna, and less than 30% in brine-frozen tuna. Photobacterium was identified as one of the dominant bacterial genera, and its temporal dynamics were positively correlated with histamine concentration in both gut and liver samples, which ultimately exceeded the recommended sanitary threshold of 50 ppm in edible parts of tuna. The results from this study show that the sanitary risks associated with the consumption of this widely eaten fish are strongly influenced by postcapture storage conditions.


Asunto(s)
Microbiota , Atún , Animales , Bacterias/genética , Microbiología de Alimentos , Histamina/análisis , Microbiota/genética , ARN Ribosómico 16S/genética , Sales (Química) , Atún/genética , Atún/microbiología
18.
Environ Microbiol ; 13(8): 1956-72, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20738373

RESUMEN

Remarkable morphological diversity of virus-like particles was observed by transmission electron microscopy in a hypersaline water sample from Lake Retba, Senegal. The majority of particles morphologically resembled hyperthermophilic archaeal DNA viruses isolated from extreme geothermal environments. Some hypersaline viral morphotypes have not been previously observed in nature, and less than 1% of observed particles had a head-and-tail morphology, which is typical for bacterial DNA viruses. Culture-independent analysis of the microbial diversity in the sample suggested the dominance of extremely halophilic archaea. Few of the 16S sequences corresponded to known archeal genera (Haloquadratum, Halorubrum and Natronomonas), whereas the majority represented novel archaeal clades. Three sequences corresponded to a new basal lineage of the haloarchaea. Bacteria belonged to four major phyla, consistent with the known diversity in saline environments. Metagenomic sequencing of DNA from the purified virus-like particles revealed very few similarities to the NCBI non-redundant database at either the nucleotide or amino acid level. Some of the identifiable virus sequences were most similar to previously described haloarchaeal viruses, but no sequence similarities were found to archaeal viruses from extreme geothermal environments. A large proportion of the sequences had similarity to previously sequenced viral metagenomes from solar salterns.


Asunto(s)
Archaea/virología , Virus de Archaea/clasificación , Virus de Archaea/fisiología , Bacterias/virología , Bacteriófagos/clasificación , Bacteriófagos/ultraestructura , Biodiversidad , Archaea/clasificación , Archaea/genética , Virus de Archaea/genética , Virus de Archaea/ultraestructura , Bacterias/clasificación , Bacterias/genética , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Microbiología Ambiental , Lagos/microbiología , Lagos/virología , Metagenoma , Microscopía Electrónica de Transmisión , Filogenia , ARN Ribosómico 16S/genética , Salinidad , Senegal
19.
Microb Ecol ; 62(1): 143-54, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21390531

RESUMEN

Although the structure and dynamics of planktonic viruses in freshwater and seawater environments are relatively well documented, little is known about the occurrence and activity of these viruses in estuaries, especially in the tropics. Viral abundance, life strategies, and morphotype distribution were examined in the Bach Dang Estuary (Vietnam) during the dry season in 2009. The abundance of both viruses and their prokaryotic hosts decreased significantly from upstream to downstream, probably as the result of nutrient dilution and osmotic stress faced by the freshwater communities. The antibiotic mitomycin-C revealed that the fraction of lysogenic cells was substantially higher in the lower seawater part of the estuary (max 27.1%) than in the upper freshwater area where no inducible lysogens were observed. The question of whether there is a massive, continuous induction of marine lysogens caused by the mixing with freshwater is considered. Conversely, the production of lytic viruses declined as salinity increased, indicating a spatial succession of viral life strategies in this tropical estuary. Icosahedral tailless viruses with capsids smaller than 60 nm dominated the viral assemblage throughout the estuary (63.0% to 72.1% of the total viral counts), and their distribution was positively correlated with that of viral lytic production. Interestingly, the gamma-proteobacteria explained a significant portion of the variance in the <60 nm and 60 to 90 nm tailless viruses (92% and 80%, respectively), and in the Myoviridae (73%). Also, 60% of the variance of the tailless larger viruses (>90 nm) was explained by the beta-proteobacteria. Overall, these results support the view that the environment, through selection mechanisms, probably shapes the structure of the prokaryotic community. This might be in turn a source of selection for the virioplankton community via specific affiliation favoring particular morphotypes and life strategies.


Asunto(s)
Agua Dulce/virología , Agua de Mar/virología , Fenómenos Fisiológicos de los Virus , Virus/aislamiento & purificación , Agua Dulce/análisis , Datos de Secuencia Molecular , Filogenia , Agua de Mar/análisis , Cloruro de Sodio/análisis , Vietnam , Latencia del Virus , Virus/clasificación , Virus/genética
20.
Viruses ; 13(7)2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34372497

RESUMEN

While planktonic viruses have received much attention in recent decades, knowledge of the virome of marine organisms, especially fish, still remains rudimentary. This is notably the case with tuna, which are among the most consumed fish worldwide and represent considerable economic, social and nutritional value. Yet the composition of the tuna virome and its biological and environmental determinants remain unknown. To begin to address this gap, we investigated the taxonomic diversity of viral communities inhabiting the skin mucus, gut and liver of two major tropical tuna species (skipjack and yellowfin) in individuals fished in the Atlantic and Indian Oceans. While we found significant differences in the virome composition between the organs, this was totally independent of the tuna species or sex. The tuna virome was mainly dominated by eukaryotic viruses in the digestive organs (gut and liver), while bacteriophages were predominant in the mucus. We observed the presence of specific viral families in each organ, some previously identified as fish or human pathogens (e.g., Iridoviridae, Parvoviridae, Alloherpesviridae, Papillomaviridae). Interestingly, we also detected a 'core virome' that was shared by all the organs and was mainly composed of Caudovirales, Microviridae and Circoviridae. These results show that tuna host a mosaic of viral niches, whose establishment, role and circulation remain to be elucidated.


Asunto(s)
Clima Tropical , Atún/virología , Viroma , Virus/clasificación , Virus/genética , Animales , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Femenino , Microbioma Gastrointestinal , Hígado/virología , Masculino , Microviridae/clasificación , Microviridae/genética , Microviridae/aislamiento & purificación , Virus/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA