Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Mol Phylogenet Evol ; 167: 107338, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34757168

RESUMEN

Africa is known for its rich legume diversity with a significant number of endemic species originating in South Africa. Many of these legumes associate with rhizobial symbionts of the genus Bradyrhizobium, of which most represent new species. Yet, none of the Bradyrhizobium species from South Africa have been described. In this study, phylogenetic analysis of 16S rRNA gene sequences of fourteen strains isolated in southern Africa from root nodules of diverse legumes (i.e., from the tribes Crotalarieae, Acacieae, Genisteae, Phaseoleae and Cassieae) revealed that they belong to the Bradyrhizobium elkanii supergroup. The taxonomic position and possible novelty of these strains were further interrogated using genealogical concordance of five housekeeping genes (atpD, dnaK, glnII, gyrB and rpoB). These phylogenies consistently recovered four monophyletic groups and one singleton within Bradyrhizobium. Of these groups, two were conspecific with Bradyrhizobium brasilense UFLA 03-321T and Bradyrhizobium ivorense CI-1BT, while the remaining three represented novel taxa. Their existence was further supported with genome data, as well as metabolic and physiological traits. Analysis of nodA gene sequences further showed that the evolution of these bacteria likely involved adapting to local legume hosts and environmental conditions through the acquisition, via horizontal gene transfer, of optimal symbiotic loci. We accordingly propose the following names Bradyrhizobium acaciae sp. nov. 10BBT (SARCC 730T = LMG 31409T), Bradyrhizobium oropedii sp. nov. Pear76T (SARCC 731T = LMG 31408T), and Bradyrhizobium altum sp. nov. Pear77T (SARCC 754T = LMG 31407T) to accommodate three novel species, all of which are symbionts of legumes in South Africa.


Asunto(s)
Bradyrhizobium , Fabaceae , ADN Bacteriano/genética , Fabaceae/genética , Fabaceae/microbiología , Fijación del Nitrógeno , Filogenia , ARN Ribosómico 16S/genética , Nódulos de las Raíces de las Plantas/microbiología , Análisis de Secuencia de ADN , Sudáfrica , Simbiosis/genética
2.
Antonie Van Leeuwenhoek ; 112(9): 1369-1385, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31053961

RESUMEN

Twelve nodulating Paraburkholderia strains isolated from indigenous South African fynbos legume Hypocalyptus sophoroides were investigated to determine their taxonomic status. Genealogical concordance analysis, based on six loci (16S rRNA, atpD, recA, rpoB, lepA and gltB), revealed that they separate into two consistent and exclusive groups. Average nucleotide identity and DNA-DNA hybridisation comparisons indicated that they were sufficiently divergent from their closest known phylogenetic relatives (Paraburkholderia caledonica and Paraburkholderia terrae, respectively) to be regarded as novel species. This was also supported by the results of fatty acid analysis and metabolic characterisation. For these two isolate groups, we accordingly propose the new species Paraburkholderia strydomiana sp. nov. with WK1.1fT (= LMG 28731T = SARCC1213T) as its type strain and Paraburkholderia steynii sp. nov. with HC1.1baT (= LMG 28730T = SARCC696T) as its type strain. Our data thus showed that H. sophoroides may be considered a promiscuous symbiotic partner due to its ability to associate with multiple species of Paraburkholderia.


Asunto(s)
Burkholderiaceae/clasificación , Burkholderiaceae/aislamiento & purificación , Fabaceae/microbiología , Raíces de Plantas/microbiología , Microbiología del Suelo , Proteínas Bacterianas/genética , Técnicas de Tipificación Bacteriana , Burkholderiaceae/genética , Burkholderiaceae/fisiología , Análisis por Conglomerados , Citosol/química , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Fabaceae/crecimiento & desarrollo , Ácidos Grasos/análisis , Hibridación de Ácido Nucleico , Filogenia , Nodulación de la Raíz de la Planta , ARN Ribosómico 16S/genética , Rizosfera , Análisis de Secuencia de ADN
3.
Antonie Van Leeuwenhoek ; 110(10): 1311-1325, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28393289

RESUMEN

Bacterial species are commonly defined by applying a set of predetermined criteria, including DNA-DNA hybridization values, 16S rRNA gene sequence similarity, phenotypic data as well as genome-based criteria such as average nucleotide identity or digital DNA-DNA hybridization. These criteria mostly allow for the delimitation of taxa that resemble typical bacterial species. Their application is often complicated when the objective is to delineate new species that are characterized by significant population-level diversity or recent speciation. However, we believe that these complexities and limitations can be easily circumvented by recognizing that bacterial species represent unique and exclusive assemblages of diversity. Within such a framework, methods that account for the population processes involved in species evolution are used to infer species boundaries. A method such as genealogical concordance analysis is well suited to delineate a putative species. The existence of the new taxon is then interrogated using an array of traditional and genome-based characters. By making use of taxa in the genera Pantoea, Paraburkholderia and Escherichia we demonstrate in a step-wise process how genealogical concordance can be used to delimit a bacterial species. Genetic, phenotypic and biological criteria were used to provide independent lines of evidence for the existence of that taxon. Our six-step approach to species recognition is straightforward and applicable to bacterial species especially in the post-genomic era, with increased availability of whole genome sequences. In fact, our results indicated that a combined genome-based comparative and evolutionary approach would be the preferred alternative for delineating coherent bacterial taxa.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Técnicas de Tipificación Bacteriana/métodos , Clasificación/métodos , Filogenia , Evolución Molecular , Genes Bacterianos/genética , Genómica , Tipificación de Secuencias Multilocus , Fenotipo
4.
Mol Phylogenet Evol ; 100: 206-218, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27068839

RESUMEN

The genus Bradyrhizobium contains predominantly nitrogen-fixing legume symbionts. Phylogenetic analysis of the genes responsible for their symbiotic abilities (i.e., those encoded on the nodulation [nod] and nitrogen-fixation [nif] loci) has facilitated the development of an extensive phylogeographic framework for the genus. This framework however contains only a few nodulating isolates from Africa. Here we focused on nodulating Bradyrhizobium isolates associated with native southern African legumes in the tribes Genisteae and Crotalarieae found along the Great Escarpment in the Mpumalanga Province of South Africa. The aims of this study were to: (1) obtain rhizobial isolates from legumes in the Genisteae and Crotalarieae; (2) verify their nodulation ability; (3) characterize them to species level based on phylogenetic analyses of several protein coding gene regions (atpD, dnaK, glnII, recA, rpoB and gyrB) and (4) determine their placement in the phylogeographic framework inferred from the sequences of the symbiotic loci nodA and nifD. Twenty of the 21 Bradyrhizobium isolates belonged to six novel species, while one was conspecific with the recently described B. arachidis. Among these isolates, the nodA phylogeny revealed several new clades, with 18 of our isolates found in Clades XIV and XV, and only three forming part of the cosmopolitan Clade III. These strains formed predominantly the same groups in the nifD phylogeny although with slight differences; indicating that both vertical and horizontal inheritance of the symbiotic loci occurred. These findings suggest that the largely unexplored diversity of indigenous African rhizobia are characterized by unique ancestries that might mirror the distribution of their hosts and the environmental factors driving their evolution.


Asunto(s)
Bradyrhizobium/clasificación , Fabaceae/microbiología , Simbiosis , Proteínas Bacterianas/genética , Bradyrhizobium/genética , Bradyrhizobium/aislamiento & purificación , ADN Bacteriano/química , ADN Bacteriano/aislamiento & purificación , ADN Bacteriano/metabolismo , Fabaceae/genética , Tipificación de Secuencias Multilocus , Fijación del Nitrógeno , Filogenia , ARN Ribosómico 16S/química , ARN Ribosómico 16S/aislamiento & purificación , ARN Ribosómico 16S/metabolismo , Análisis de Secuencia de ADN , Sudáfrica
5.
Syst Appl Microbiol ; 47(2-3): 126504, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593622

RESUMEN

South Africa is well-known for the diversity of its legumes and their nitrogen-fixing bacterial symbionts. However, in contrast to their plant partners, remarkably few of these microbes (collectively referred to as rhizobia) from South Africa have been characterised and formally described. This is because the rules of the International Code of Nomenclature of Prokaryotes (ICNP) are at odds with South Africa's National Environmental Management: Biodiversity Act and its associated regulations. The ICNP requires that a culture of the proposed type strain for a novel bacterial species be deposited in two international culture collections and be made available upon request without restrictions, which is not possible under South Africa's current national regulations. Here, we describe seven new Mesorhizobium species obtained from root nodules of Vachellia karroo, an iconic tree legume distributed across various biomes in southern Africa. For this purpose, 18 rhizobial isolates were delineated into putative species using genealogical concordance, after which their plausibility was explored with phenotypic characters and average genome relatedness. For naming these new species, we employed the rules of the recently published Code of Nomenclature of Prokaryotes described from Sequence Data (SeqCode), which utilizes genome sequences as nomenclatural types. The work presented in this study thus provides an illustrative example of how the SeqCode allows for a standardised approach for naming cultivated organisms for which the deposition of a type strain in international culture collections is currently problematic.


Asunto(s)
Fabaceae , Mesorhizobium , Filogenia , Nódulos de las Raíces de las Plantas , Sudáfrica , Nódulos de las Raíces de las Plantas/microbiología , Mesorhizobium/clasificación , Mesorhizobium/genética , Mesorhizobium/fisiología , Mesorhizobium/aislamiento & purificación , Fabaceae/microbiología , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Terminología como Asunto , Genoma Bacteriano/genética , ADN Bacteriano/genética , Simbiosis , Rhizobium/clasificación , Rhizobium/genética , Rhizobium/fisiología
6.
Syst Appl Microbiol ; 46(5): 126452, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37634485

RESUMEN

A genealogical concordance approach was used to delineate strains isolated from Acacia dealbata and Acacia mearnsii root nodules in South Africa. These isolates form part of Bradyrhizobium based on 16S rRNA sequence similarity. Phylogenetic analysis of six housekeeping genes (atpD, dnaK, glnII, gyrB, recA and rpoB) confirmed that these isolates represent a novel species, while pairwise average nucleotide identity (ANIb) calculations with the closest type strains (B. cosmicum 58S1T, B. betae PL7HG1T, B. ganzhouense CCBAU 51670 T, B. cytisi CTAW11T and B. rifense CTAW71T) resulted in values well below 95-96%. We further performed phenotypic tests which revealed that there are high levels of intraspecies variation, while an additional analysis of the nodA and nifD loci indicated that the symbiotic loci of the strains are closely related to those of Bradyrhizobium isolates with an Australian origin. Strain 14ABT (=LMG 31415 T = SARCC-753 T) is designated as the type strain of the novel species for which we propose the name Bradyrhizobium xenonodulans sp. nov.


Asunto(s)
Acacia , Bradyrhizobium , Acacia/genética , Genes Bacterianos/genética , Filogenia , ARN Ribosómico 16S/genética , Sudáfrica , Nódulos de las Raíces de las Plantas , ADN Bacteriano/genética , Hibridación de Ácido Nucleico , Australia , Análisis de Secuencia de ADN
7.
Microorganisms ; 10(12)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36557720

RESUMEN

The cultivation of chickpea (Cicer arietinum L.) in South Africa is dependent on the application of suitable Mesorhizobium inoculants. Therefore, we evaluated the symbiotic effectiveness of several Mesorhizobium strains with different chickpea genotypes under controlled conditions. The tested parameters included shoot dry weight (SDW), nodule fresh weight (NFW), plant height, relative symbiotic effectiveness (RSE) on the plant as well as indole acetic acid (IAA) production and phosphate solubilization on the rhizobia. Twenty-one Mesorhizobium strains and six desi chickpea genotypes were laid out in a completely randomized design (CRD) with three replicates in a glasshouse pot experiment. The factors, chickpea genotype and Mesorhizobium strain, had significant effects on the measured parameters (p < 0.001) but lacked significant interactions based on the analysis of variance (ANOVA). The light variety desi genotype outperformed the other chickpea genotypes on all tested parameters. In general, inoculation with strains LMG15046, CC1192, XAP4, XAP10, and LMG14989 performed best for all the tested parameters. All the strains were able to produce IAA and solubilize phosphate except the South African field isolates, which could not solubilize phosphate. Taken together, inoculation with compatible Mesorhizobium promoted chickpea growth. This is the first study to report on chickpea-compatible Mesorhizobium strains isolated from uninoculated South African soils with no history of chickpea production; although, their plant growth promotion ability was poorer compared to some of the globally sourced strains. Since this study was conducted under controlled conditions, we recommend field studies to assess the performance of the five highlighted strains under environmental conditions in South Africa.

8.
Syst Appl Microbiol ; 45(3): 126316, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35339818

RESUMEN

Since the discovery of Paraburkholderia tuberum, an indigenous South African species and one of the first beta-rhizobia described, several other South African rhizobial Paraburkholderia species have been recognized. Here, we investigate the taxonomic status of 31 rhizobial isolates from the root nodules of diverse South African legume hosts in the Core Cape Subregion, which were initially identified as P. tuberum. These isolates originate from the root nodules of genera in the Papilionoideae as well as Vachellia karroo, from the subfamily Caesalpinioideae. Genealogical concordance analysis of five loci allowed delineation of the isolates into two putative species clusters (A and B). Cluster A included P. tuberum STM678T, suggesting that this monophyletic group represents P. tuberum sensu stricto. Cluster B grouped sister to P. tuberum and included isolates from the Paarl Rock Nature Reserve in the Western Cape Province. Average Nucleotide Identity (ANI) analysis further confirmed that isolates of Cluster A shared high genome similarity with P. tuberum STM678T compared to Cluster B and other Paraburkholderia species. The members of Cluster B associated with a single species of Podalyria, P. calyptrata. For this new taxon we accordingly propose the name Paraburkholderia podalyriae sp. nov., with the type strain WC7.3bT (= LMG 31413T; SARCC 750T). Based on our nodA and nifH phylogenies, P. podalyriae sp. nov. and strains of P. tuberum sensu stricto (including one from V. karroo) belong to symbiovar africana, the symbiotic loci of which have a separate evolutionary origin to those of Central and South American Paraburkholderia strains.


Asunto(s)
Fabaceae , Rhizobium , Burkholderiaceae , ADN Bacteriano/genética , Filogenia , ARN Ribosómico 16S/genética , Rhizobium/genética , Análisis de Secuencia de ADN , Sudáfrica
9.
Syst Appl Microbiol ; 44(1): 126152, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33276286

RESUMEN

Previous studies have recognized South and Central/Latin American mimosoid legumes in the genera Mimosa, Piptadenia and Calliandra as hosts for various nodulating Paraburkholderia species. Several of these species have been validly named in the last two decades, e.g., P. nodosa, P. phymatum, P. diazotrophica, P. piptadeniae, P. ribeironis, P. sabiae and P. mimosarum. There are still, however, a number of diverse Paraburkholderia strains associated with these legumes that have an unclear taxonomic status. In this study, we focus on 30 of these strains which originate from the root nodules of Brazilian and Mexican Mimosa species. They were initially identified as P. tuberum and subsequently placed into a symbiovar (sv. mimosae) based on their host preferences. A polyphasic approach for the delineation of these strains was used, consisting of genealogical concordance analysis (using atpD, gyrB, acnA, pab and 16S rRNA gene sequences), together with comparisons of Average Nucleotide Identity (ANI), DNA G+C content ratios and phenotypic characteristics with those of the type strains of validly named Paraburkholderia species. Accordingly, these 30 strains were delineated into two distinct groups, of which one is conspecific with 'P. atlantica' CNPSo 3155T and the other new to Science. We propose the name Paraburkholderia youngii sp. nov. with type strain JPY169T (= LMG 31411T; SARCC751T) for this novel species.


Asunto(s)
Burkholderiaceae/clasificación , Mimosa/microbiología , Filogenia , Nódulos de las Raíces de las Plantas/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , Brasil , Burkholderiaceae/aislamiento & purificación , ADN Bacteriano/genética , Genes Bacterianos , México , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Simbiosis
10.
Front Microbiol ; 10: 1195, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31214140

RESUMEN

Vachellia karroo (formerly Acacia karroo) is a wide-spread legume species indigenous to southern Africa. Little is known regarding the identity or diversity of rhizobia that associate with this plant in its native range in South Africa. The aims of this study were therefore: (i) to gather a collection of rhizobia associated with V. karroo from a wide range of geographic locations and biomes; (ii) to identify the isolates and infer their evolutionary relationships with known rhizobia; (iii) to confirm their nodulation abilities by using them in inoculation assays to induce nodules under glasshouse conditions. To achieve these aims, soil samples were collected from 28 locations in seven biomes throughout South Africa, which were then used to grow V. karroo seedlings under nitrogen-free conditions. The resulting 88 bacterial isolates were identified to genus-level using 16S rRNA sequence analysis and to putative species-level using recA-based phylogenetic analyses. Our results showed that the rhizobial isolates represented members of several genera of Alphaproteobacteria (Bradyrhizobium, Ensifer, Mesorhizobium, and Rhizobium), as well as Paraburkholderia from the Betaproteobacteria. Our study therefore greatly increases the known number of Paraburkholderia isolates which can associate with this southern African mimosoid host. We also show for the first time that members of this genus can associate with legumes, not only in the Fynbos biome, but also in the Albany Thicket and Succulent Karoo biomes. Twenty-six putative species were delineated among the 88 isolates, many of which appeared to be new to Science with other likely being conspecific or closely related to E. alkalisoli, M. abyssinicae, M. shonense, and P. tropica. We encountered only a single isolate of Bradyrhizobium, which is in contrast to the dominant association of this genus with Australian Acacia. V. karroo also associates with diverse genera in the Grassland biome where it is quite invasive and involved in bush encroachment. Our findings therefore suggest that V. karroo is a promiscuous host capable of forming effective nodules with both alpha- and beta-rhizobia, which could be a driving force behind the ecological success of this tree species.

11.
Syst Appl Microbiol ; 42(4): 427-439, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31031014

RESUMEN

Bradyrhizobium is thought to be the largest and most diverse rhizobial genus, but this is not reflected in the number of described species. Although it was one of the first rhizobial genera recognised, its taxonomy remains complex. Various contemporary studies are showing that genome sequence information may simplify taxonomic decisions. Therefore, the growing availability of genomes for Bradyrhizobium will likely aid in the delineation and characterization of new species. In this study, we addressed two aims: first, we reviewed the availability and quality of available genomic resources for Bradyrhizobium. This was achieved by comparing genome sequences in terms of sequencing technologies used and estimated level of completeness for inclusion in genome-based phylogenetic analyses. Secondly, we utilized these genomes to investigate the taxonomic standing of Bradyrhizobium in light of its diverse lifestyles. Although genome sequences differed in terms of their quality and completeness, our data indicate that the use of these genome sequences is adequate for taxonomic purposes. By using these resources, we inferred a fully resolved, well-supported phylogeny. It separated Bradyrhizobium into seven lineages, three of which corresponded to the so-called supergroups known for the genus. Wide distribution of key lifestyle traits such as nodulation, nitrogen fixation and photosynthesis revealed that these traits have complicated evolutionary histories. We present the first robust Bradyrhizobium species phylogeny based on genome sequence information for investigating the evolution of this important assemblage of bacteria. Furthermore, this study provides the basis for using genome sequence information as a resource to make important taxonomic decisions, particularly at the species and genus levels.


Asunto(s)
Bradyrhizobium/clasificación , Clasificación/métodos , Genoma Bacteriano/genética , Filogenia , Secuencia de Bases , Bradyrhizobium/genética , ADN Bacteriano/genética , Bases de Datos Genéticas , Genes Bacterianos/genética , Fijación del Nitrógeno/genética , Fotosíntesis/genética , Nodulación de la Raíz de la Planta/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
12.
PeerJ ; 7: e6698, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31024760

RESUMEN

With the increased availability of genome sequences for bacteria, it has become routine practice to construct genome-based phylogenies. These phylogenies have formed the basis for various taxonomic decisions, especially for resolving problematic relationships between taxa. Despite the popularity of concatenating shared genes to obtain well-supported phylogenies, various issues regarding this combined-evidence approach have been raised. These include the introduction of phylogenetic error into datasets, as well as incongruence due to organism-level evolutionary processes, particularly horizontal gene transfer and incomplete lineage sorting. Because of the huge effect that this could have on phylogenies, we evaluated the impact of phylogenetic conflict caused by organism-level evolutionary processes on the established species phylogeny for Pantoea, a member of the Enterobacterales. We explored the presence and distribution of phylogenetic conflict at the gene partition and nucleotide levels, by identifying putative inter-lineage recombination events that might have contributed to such conflict. Furthermore, we determined whether smaller, randomly constructed datasets had sufficient signal to reconstruct the current species tree hypothesis or if they would be overshadowed by phylogenetic incongruence. We found that no individual gene tree was fully congruent with the species phylogeny of Pantoea, although many of the expected nodes were supported by various individual genes across the genome. Evidence of recombination was found across all lineages within Pantoea, and provides support for organism-level evolutionary processes as a potential source of phylogenetic conflict. The phylogenetic signal from at least 70 random genes recovered robust, well-supported phylogenies for the backbone and most species relationships of Pantoea, and was unaffected by phylogenetic conflict within the dataset. Furthermore, despite providing limited resolution among taxa at the level of single gene trees, concatenated analyses of genes that were identified as having no signal resulted in a phylogeny that resembled the species phylogeny of Pantoea. This distribution of signal and noise across the genome presents the ideal situation for phylogenetic inference, as the topology from a ≥70-gene concatenated species phylogeny is not driven by single genes, and our data suggests that this finding may also hold true for smaller datasets. We thus argue that, by using a concatenation-based approach in phylogenomics, one can obtain robust phylogenies due to the synergistic effect of the combined signal obtained from multiple genes.

14.
Front Microbiol ; 8: 1154, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28694797

RESUMEN

Although the taxonomy of Burkholderia has been extensively scrutinized, significant uncertainty remains regarding the generic boundaries and composition of this large and heterogeneous taxon. Here we used the amino acid and nucleotide sequences of 106 conserved proteins from 92 species to infer robust maximum likelihood phylogenies with which to investigate the generic structure of Burkholderia sensu lato. These data unambiguously supported five distinct lineages, of which four correspond to Burkholderia sensu stricto and the newly introduced genera Paraburkholderia, Caballeronia, and Robbsia. The fifth lineage was represented by P. rhizoxinica. Based on these findings, we propose 13 new combinations for those species previously described as members of Burkholderia but that form part of Caballeronia. These findings also suggest revision of the taxonomic status of P. rhizoxinica as it is does not form part of any of the genera currently recognized in Burkholderia sensu lato. From a phylogenetic point of view, Burkholderia sensu stricto has a sister relationship with the Caballeronia+Paraburkholderia clade. Also, the lineages represented by P. rhizoxinica and R. andropogonis, respectively, emerged prior to the radiation of the Burkholderia sensu stricto+Caballeronia+Paraburkholderia clade. Our findings therefore constitute a solid framework, not only for supporting current and future taxonomic decisions, but also for studying the evolution of this assemblage of medically, industrially and agriculturally important species.

15.
Syst Appl Microbiol ; 38(8): 545-54, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26472229

RESUMEN

Despite the diversity of Burkholderia species known to nodulate legumes in introduced and native regions, relatively few taxa have been formally described. For example, the Cape Floristic Region of South Africa is thought to represent one of the major centres of diversity for the rhizobial members of Burkholderia, yet only five species have been described from legumes occurring in this region and numerous are still awaiting taxonomic treatment. Here, we investigated the taxonomic status of 12 South African root-nodulating Burkholderia isolates from native papilionoid legumes (Hypocalyptus coluteoides, H. oxalidifolius, H. sophoroides and Virgilia oroboides). Analysis of four gene regions (16S rRNA, recA, atpD and rpoB) revealed that the isolates represent a genealogically unique and exclusive assemblage within the genus. Its distinctness was supported by all other aspects of the polyphasic approach utilized, including the genome-based criteria DNA-DNA hybridization (≥70.9%) and average nucleotide identities (≥96%). We accordingly propose the name B. kirstenboschensis sp. nov. for this taxon with isolate Kb15(T) (=LMG 28727(T); =SARC 695(T)) as its type strain. Our data showed that intraspecific genome size differences (≥0.81 Mb) and the occurrence of large DNA regions that are apparently unique to single individuals (16-23% of an isolate's genome) can significantly limit the value of data obtained from DNA-DNA hybridization experiments. Substitution of DNA-DNA hybridization with whole genome sequencing as a prerequisite for the description of Burkholderia species will undoubtedly speed up the pace at which their diversity are documented, especially in hyperdiverse regions such as the Cape Floristic Region.


Asunto(s)
Burkholderiaceae/clasificación , Burkholderiaceae/aislamiento & purificación , Fabaceae/microbiología , Nódulos de las Raíces de las Plantas/microbiología , Burkholderiaceae/genética , Burkholderiaceae/fisiología , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , ARN Polimerasas Dirigidas por ADN/genética , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Filogenia , ATPasas de Translocación de Protón/genética , ARN Ribosómico 16S/genética , Rec A Recombinasas/genética , Análisis de Secuencia de ADN , Sudáfrica
16.
PLoS One ; 8(7): e68406, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23874611

RESUMEN

The root-nodule bacteria of legumes endemic to the Cape Floristic Region are largely understudied, even though recent reports suggest the occurrence of nodulating Burkholderia species unique to the region. In this study, we considered the diversity and evolution of nodulating Burkholderia associated with the endemic papilionoid tribes Hypocalypteae and Podalyrieae. We identified distinct groups from verified rhizobial isolates by phylogenetic analyses of the 16S rRNA and recA housekeeping gene regions. In order to gain insight into the evolution of the nodulation and diazotrophy of these rhizobia we analysed the genes encoding NifH and NodA. The majority of these 69 isolates appeared to be unique, potentially representing novel species. Evidence of horizontal gene transfer determining the symbiotic ability of these Cape Floristic Region isolates indicate evolutionary origins distinct from those of nodulating Burkholderia from elsewhere in the world. Overall, our findings suggest that Burkholderia species associated with fynbos legumes are highly diverse and their symbiotic abilities have unique ancestries. It is therefore possible that the evolution of these bacteria is closely linked to the diversification and establishment of legumes characteristic of the Cape Floristic Region.


Asunto(s)
Burkholderia/genética , Fabaceae/genética , Fabaceae/microbiología , Sitios Genéticos , Fijación del Nitrógeno/genética , Aciltransferasas/genética , Aciltransferasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Evolución Biológica , Burkholderia/metabolismo , Fabaceae/metabolismo , Transferencia de Gen Horizontal , Nitrógeno/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Filogenia , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , ARN Ribosómico 16S/genética , Rhizobium/genética , Rhizobium/metabolismo , Sudáfrica , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA