Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 410(24): 6321-6330, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30027317

RESUMEN

The separation of the constituents of complex sample mixtures is a challenging task in analytical chemistry. Multidimensional separation systems are widely used to enhance the peak capacity. The comprehensive hyphenation of ion chromatography (IC) and capillary electrophoresis (CE) is promising because the two most important instrumental techniques in ion analysis are combined. In this report a new configuration for capillary anion chromatography is presented enabling the simultaneous IC×CE analysis of anions and cations using a switching valve. Electrospray ionization mass spectrometry (MS) was used for detection. A mixture of organic and inorganic arsenic species served as a model system. The coupling of anion chromatography to CE-MS was done via a modulator enabling periodical injections of the IC effluent into the CE. The injection parameters of the modulator were studied taking into account the complex transport situation. Graphical abstract ᅟ.

2.
Electrophoresis ; 37(7-8): 931-5, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27060023

RESUMEN

The hyphenation of two detectors in combination with separation techniques is a powerful tool to enhance the analytical information. In this work, we present for the first time the coupling of two important detectors for capillary electrophoresis (CE), namely capacitively coupled contactless conductivity detection (C(4) D) and electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS). The elaborated experimental protocol took into account the requirements of separation aspects and the compatibility with both detectors. ESI-TOF-MS requires background electrolytes (BGE) containing only volatile components such as ammonium acetate or formate. These, however, exhibit a rather high conductivity, which is disadvantageous for C(4) D. Thus, the selection of the BGE in an appropriate concentration was undertaken for the determination of various phenolic compounds serving as a model system. The chosen BGE was a 10 mM ammonium acetate/ammonia buffer with a pH of 9. This BGE was a compromise concerning the detection performance of both detectors. The LODs for m-cresol, m- and p-nitrophenol, and 2,4-dinitrophenol were 3.1 µM (C(4) D), 0.8 µM (MS), 0.8 µM (MS), and 1.5 µM (MS), respectively. Moreover, the overall separation efficiency was excellent illustrating that detector-induced band broadening can be neglected in the CE-C(4) D/MS system. The analytical characteristics for the determination of phenolic compounds show the suitability of this dual detection approach and demonstrate the complementary use of C(4) D and MS detection.


Asunto(s)
Electroforesis Capilar/métodos , Espectrometría de Masas/métodos , Límite de Detección , Fenoles/análisis , Reproducibilidad de los Resultados
3.
Anal Bioanal Chem ; 408(30): 8681-8689, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27866256

RESUMEN

Microemulsion electrokinetic chromatography (MEEKC) is a powerful tool to separate neutral species based on differences in their hydrophobic and hydrophilic properties. However, as a major drawback the conventionally used SDS based microemulsions are not compatible with electrospray ionization mass spectrometry (ESI-MS). In this work, a surfactant-free microemulsion (SFME) consisting of water, ethanol, and 1-octanol is used for surfactant-free microemulsion electrokinetic chromatography (SF-MEEKC). Ammonium acetate was added to the SFME enabling electrophoretic separations. The stability of SFMEs containing ammonium acetate was investigated using small-angle X-ray scattering and dynamic light scattering. A method for the separation of a model system of hydrophobic and hydrophilic neutral vitamins, namely the vitamins B2 and D3, and the cationic vitamin B1 was developed using UV/VIS detection. The influence of the ammonium acetate concentration on the separation performance was studied in detail. The method was characterized concerning reproducibility of migration times and peak areas and concerning the linearity of the calibration data. Furthermore, SF-MEEKC was coupled to ESI-MS investigating the compatibility between SFMEs and the ESI process. The signal intensities of ESI-MS measurements of the model analytes were comparable for SFMEs and aqueous systems. Finally, the vitamin D3 content of a drug treating vitamin D3 deficiency was determined by SF-MEEKC coupled to ESI-MS using 25-hydroxycholecalciferol as an internal standard. Graphical abstract The concept of surfactant-free microemulsion electrokinetic chromatography coupled to electrospray ionization mass spectrometry.


Asunto(s)
Colecalciferol/aislamiento & purificación , Cromatografía Capilar Electrocinética Micelar/métodos , Riboflavina/aislamiento & purificación , Espectrometría de Masa por Ionización de Electrospray/métodos , Tiamina/aislamiento & purificación , 1-Octanol/química , Acetatos/aislamiento & purificación , Calcifediol , Dispersión Dinámica de Luz , Emulsiones , Etanol/química , Interacciones Hidrofóbicas e Hidrofílicas , Estándares de Referencia , Reproducibilidad de los Resultados , Dispersión del Ángulo Pequeño , Soluciones/química , Agua/química
4.
Anal Chem ; 87(6): 3134-8, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25708415

RESUMEN

The separation of complex mixtures such as biological or environmental samples requires high peak capacities, which cannot be established with a single separation technique. Therefore, multidimensional systems are in demand. In this work, we present the hyphenation of the two most important (orthogonal) techniques in ion analysis, namely, ion chromatography (IC) and capillary electrophoresis (CE), in combination with mass spectrometry. A modulator was developed ensuring a well-controlled coupling of IC and CE separations. Proof-of-concept measurements were performed using a model system consisting of nucleotides and cyclic nucleotides. The data are presented in a multidimensional contour plot. Analyte stacking in the CE separation could be exploited on the basis of the fact that the suppressed IC effluent is pure water.


Asunto(s)
Electroforesis Capilar/métodos , Espectrometría de Masas/métodos , Iones/química , Iones/aislamiento & purificación , Agua/química
5.
Anal Bioanal Chem ; 407(24): 7443-52, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26253226

RESUMEN

Large arrays of femtoliter-sized chambers are important tools for single molecule research as well as bioanalytical applications. We have optimized the design and fabrication of two array types consisting of 250 × 250 (62 500) femtoliter chambers either by surface etching of fused silica slides or by polydimethylsiloxane (PDMS) molding. Highly diluted solutions of ß-galactosidase were enclosed in such arrays to monitor the fluorogenic reactions of hundreds of individual enzyme molecules in parallel by wide-field fluorescence microscopy. An efficient mechanical sealing procedure was developed to prevent diffusion of the fluorescent reaction product out of the chambers. Different approaches for minimizing non-specific surface adsorption were explored. The signal acquisition was optimized to grant both a large field of view and an efficient signal acquisition from each femtoliter chamber. The optimized femtoliter array has enabled a three-in-one enzyme assay system: First, the concentration of active enzyme can be determined in a digital way by counting fluorescent chambers in the array. Second, the activity of the enzyme bulk solution is given by averaging many individual substrate turnover rates without the need for knowing the exact enzyme concentration. Third-unlike conventional enzyme assays-the distribution of individual substrate turnover rates yields insight into the conformational heterogeneity in an enzyme population. The substrate turnover rates of single ß-galactosidase molecules were found to be broadly distributed and independent of the type of femtoliter array. In general, both types of femtoliter arrays are highly sensitive platforms for enzyme analysis at the single molecule level and yield consistent results. Graphical Abstract Isolation and analysis of individual enzyme molecules in large arrays of femtoliter-sized chambers.


Asunto(s)
beta-Galactosidasa/metabolismo , Dimetilpolisiloxanos/química , Límite de Detección
6.
Anal Chim Acta ; 1057: 18-35, 2019 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-30832915

RESUMEN

For the identification and quantification of analytes in complex samples, highly selective analytical strategies are required. The selectivity of single separation techniques such as gas chromatography (GC), liquid chromatography (LC), or capillary electrophoresis (CE) with common detection principles can be enhanced by hyphenating orthogonal separation techniques but also by using complementary detection systems. In this review, two-dimensional systems containing CE in at least one dimension are reviewed, namely LC-CE or 2D CE systems. Particular attention is paid to the aspect of selectivity enhancement due to the orthogonality of the different separation mechanisms. As an alternative concept, dual detection approaches are reviewed using the common detectors of CE such as UV/VIS, laser-induced fluorescence, capacitively coupled contactless conductivity (C4D), electrochemical detection, and mass spectrometry. Special emphasis is given to dual detection systems implementing the highly flexible C4D as one detection component. Selectivity enhancement can be achieved in case of complementarity of the different detection techniques.

7.
Talanta ; 183: 33-38, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29567184

RESUMEN

Coupling of two detectors is a powerful tool to enhance the overall analytical performance generating complementary information and overcoming the limitations of the single detectors. In this work, capacitively coupled contactless conductivity detection (C4D) and electrospray ionization mass spectrometry (ESI-MS) were coupled in conjunction with non-aqueous capillary electrophoresis (NACE). Non-aqueous electrolytes are highly compatible with ESI due to their volatility. Moreover, they exhibit low background conductivity, which is essential for the detection with C4D. A NACE-C4D-MS method was developed using an acetonitrile buffer containing 2 M HAc and 4 mM NH4Ac as background electrolyte. The influence of the inner diameter of the separation capillary on the C4D was studied and taken into account. A capillary with 50 µm inner diameter was found to be best suited. The complementarity of the two detectors was shown by determining a sample mixture containing choline, thiamine, nitrate, and chloride as well as bromide and acetylcholine as internal standards. The C4D was the detector of choice for the inorganic ions, which were not detectable with the MS whereas the MS had much lower limits of detections for the organic biomolecules. The method was applied on an extract of a food supplement containing the model analytes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA