Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Biol Chem ; 286(29): 25620-7, 2011 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-21592958

RESUMEN

Eukaryotic H ferritins move iron through protein cages to form biologically required, iron mineral concentrates. The biominerals are synthesized during protein-based Fe²âº/O2 oxidoreduction and formation of [Fe³âºO](n) multimers within the protein cage, en route to the cavity, at sites distributed over ~50 Å. Recent NMR and Co²âº-protein x-ray diffraction (XRD) studies identified the entire iron path and new metal-protein interactions: (i) lines of metal ions in 8 Fe²âº ion entry channels with three-way metal distribution points at channel exits and (ii) interior Fe³âºO nucleation channels. To obtain functional information on the newly identified metal-protein interactions, we analyzed effects of amino acid substitution on formation of the earliest catalytic intermediate (diferric peroxo-A(650 nm)) and on mineral growth (Fe³âºO-A(350 nm)), in A26S, V42G, D127A, E130A, and T149C. The results show that all of the residues influenced catalysis significantly (p < 0.01), with effects on four functions: (i) Fe²âº access/selectivity to the active sites (Glu¹³°), (ii) distribution of Fe²âº to each of the three active sites near each ion channel (Asp¹²7), (iii) product (diferric oxo) release into the Fe³âºO nucleation channels (Ala²6), and (iv) [Fe³âºO](n) transit through subunits (Val4², Thr¹49). Synthesis of ferritin biominerals depends on residues along the entire length of H subunits from Fe²âº substrate entry at 3-fold cage axes at one subunit end through active sites and nucleation channels, at the other subunit end, inside the cage at 4-fold cage axes. Ferritin subunit-subunit geometry contributes to mineral order and explains the physiological impact of ferritin H and L subunits.


Asunto(s)
Ferritinas/química , Ferritinas/metabolismo , Hierro/metabolismo , Movimiento , Nanoestructuras/química , Sustitución de Aminoácidos , Animales , Anuros , Biocatálisis , Dominio Catalítico , Secuencia Conservada , Ferritinas/genética , Minerales/metabolismo , Modelos Moleculares , Oxígeno/metabolismo , Estructura Secundaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
2.
J Bacteriol ; 193(18): 4999-5001, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21784948

RESUMEN

The essential trace compounds tungstate and molybdate are taken up by cells via ABC transporters. Despite their similar ionic radii and chemical properties, the WtpA protein selectively binds tungstate in the presence of molybdate. Using site-directed mutagenesis of conserved binding pocket residues, we established a molecular basis for tungstate selectivity.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Pyrococcus furiosus/metabolismo , Compuestos de Tungsteno/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Sustitución de Aminoácidos/genética , Modelos Moleculares , Molibdeno/metabolismo , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Pyrococcus furiosus/genética , Especificidad por Sustrato
3.
Prog Mol Subcell Biol ; 52: 29-47, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21877262

RESUMEN

Ferritins synthesize ferric oxide biominerals and are central to all life for concentrating iron and protection against oxidative stress from the ferrous and oxidant chemistry. The ferritin protein nanocages and biomineral synthesis are discussed in terms of wide biological distribution of the maxi-ferritins (24 subunit ± heme) and mini-ferritins (Dps) (12 subunit), conservations of the iron/oxygen catalytic sites in the protein cages, mineral formation (step i. Fe(II) entry and binding, step ii. O(2) or H(2)O(2) binding and formation of transition intermediates, step iii. release of differric oxo mineral precursors from active sites, step iv. nucleation and mineralization) properties of the minerals, and protein control of mineral dissolution and release of Fe(II). Pores in ferritin protein cages control iron entry for mineralization and iron exit after mineral dissolution. The relationship between phosphate or the presence of catalytically inactive subunits (animal L subunits) and ferritin iron mineral disorder is developed based on new information about contributions of ferritin protein cage structure to nucleation in protein cage subunit channels that exit close enough to those of other subunits and exiting mineral nuclei to facilitate bulk mineral formation. How and where protons move in and out of the protein during mineral synthesis and dissolution, how ferritin cage assembly with 12 or 24 subunits is encoded in the widely divergent ferritin amino acid sequences, and what is the role of the protein in synthesis of the bulk mineral are all described as problems requiring new approaches in future investigations of ferritin biominerals.


Asunto(s)
Ferritinas , Peróxido de Hidrógeno , Animales , Dominio Catalítico , Ferritinas/química , Peróxido de Hidrógeno/metabolismo , Hierro/química , Minerales/química , Subunidades de Proteína/química
4.
Biomolecules ; 11(8)2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34439765

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) have sparked a lot of research regarding their fascinating mode-of-action. Particularly, their boosting effect on top of the well-known cellulolytic enzymes in lignocellulosic hydrolysis makes them industrially relevant targets. As more characteristics of LPMO and its key role have been elucidated, the need for fast and reliable methods to assess its activity have become clear. Several aspects such as its co-substrates, electron donors, inhibiting factors, and the inhomogeneity of lignocellulose had to be considered during experimental design and data interpretation, as they can impact and often hamper outcomes. This review provides an overview of the currently available methods to measure LPMO activity, including their potential and limitations, and it is illustrated with practical examples.


Asunto(s)
Celulosa/química , Lignina/química , Oxigenasas de Función Mixta/metabolismo , Polisacáridos/química , Biomasa , Cromatografía , Cromatografía Líquida de Alta Presión , Transferencia Resonante de Energía de Fluorescencia , Proteínas Fúngicas/metabolismo , Hongos , Hidrólisis , Cinética , Imagen por Resonancia Magnética , Oxidación-Reducción , Estrés Oxidativo , Espectroscopía de Fotoelectrones , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
5.
J Bacteriol ; 192(16): 4143-52, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20562313

RESUMEN

The hyperthermophilic archaeon Pyrococcus furiosus expresses five aldehyde oxidoreductase (AOR) enzymes, all containing a tungsto-bispterin cofactor. The growth of this organism is fully dependent on the presence of tungsten in the growth medium. Previous studies have suggested that molybdenum is not incorporated in the active site of these enzymes. Application of the radioisotope (99)Mo in metal isotope native radioautography in gel electrophoresis (MIRAGE) technology to P. furiosus shows that molybdenum can in fact be incorporated in all five AOR enzymes. Mo(V) signals characteristic for molybdopterin were observed in formaldehyde oxidoreductase (FOR) in electron paramagnetic resonance (EPR)-monitored redox titrations. Our finding that the aldehyde oxidation activity of FOR and WOR5 (W-containing oxidoreductase 5) correlates only with the residual tungsten content suggests that the Mo-containing AORs are most likely inactive. An observed W/Mo antagonism is indicative of tungstate-dependent negative feedback of the expression of the tungstate/molybdate ABC transporter. An intracellular selection mechanism for tungstate and molybdate processing has to be present, since tungsten was found to be preferentially incorporated into the AORs even under conditions with comparable intracellular concentrations of tungstate and molybdate. Under the employed growth conditions of starch as the main carbon source in a rich medium, no tungsten- and/or molybdenum-associated proteins are detected in P. furiosus other than the high-affinity transporter, the proteins of the metallopterin insertion machinery, and the five W-AORs.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Proteínas Arqueales/metabolismo , Coenzimas/metabolismo , Molibdeno/metabolismo , Pyrococcus furiosus/enzimología , Tungsteno/metabolismo , Autorradiografía , Espectroscopía de Resonancia por Spin del Electrón , Electroforesis en Gel de Poliacrilamida , Oxidación-Reducción , Pyrococcus furiosus/metabolismo , Radioisótopos/metabolismo , Coloración y Etiquetado
6.
J Bacteriol ; 191(15): 5010-2, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19465645

RESUMEN

The hydration of oleic acid into 10-hydroxystearic acid was originally described for a Pseudomonas cell extract almost half a century ago. In the intervening years, the enzyme has never been characterized in any detail. We report here the isolation and characterization of oleate hydratase (EC 4.2.1.53) from Elizabethkingia meningoseptica.


Asunto(s)
Proteínas Bacterianas/metabolismo , Flavobacteriaceae/enzimología , Hidroliasas/metabolismo , Ácidos Oléicos/metabolismo , 2-Propanol/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Activación Enzimática/efectos de los fármacos , Hidroliasas/genética , Hidroliasas/aislamiento & purificación , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Ácidos Oléicos/química , Solventes/farmacología , Ácidos Esteáricos/química , Ácidos Esteáricos/metabolismo
7.
J Biol Inorg Chem ; 14(5): 663-72, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19234723

RESUMEN

Bacteria and archaea import molybdenum and tungsten from the environment in the form of the oxyanions molybdate (MoO(4) (2-)) and tungstate (WO(4) (2-)). These substrates are captured by an external, high-affinity binding protein, and delivered to ATP binding cassette transporters, which move them across the cell membrane. We have recently reported a crystal structure of the molybdate/tungstate binding protein ModA/WtpA from Archaeoglobus fulgidus, which revealed an octahedrally coordinated central metal atom. By contrast, the previously determined structures of three bacterial homologs showed tetracoordinate molybdenum and tungsten atoms in their binding pockets. Until then, coordination numbers above four had only been found for molybdenum/tungsten in metalloenzymes where these metal atoms are part of the catalytic cofactors and coordinated by mostly non-oxygen ligands. We now report a high-resolution structure of A. fulgidus ModA/WtpA, as well as crystal structures of four additional homologs, all bound to tungstate. These crystal structures match X-ray absorption spectroscopy measurements from soluble, tungstate-bound protein, and reveal the details of the distorted octahedral coordination. Our results demonstrate that the distorted octahedral geometry is not an exclusive feature of the A. fulgidus protein, and suggest distinct binding modes of the binding proteins from archaea and bacteria.


Asunto(s)
Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Archaeoglobus fulgidus/metabolismo , Compuestos de Tungsteno/química , Compuestos de Tungsteno/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Archaeoglobus fulgidus/química , Archaeoglobus fulgidus/genética , Sitios de Unión , Cristalografía por Rayos X , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas de Unión Periplasmáticas/química , Proteínas de Unión Periplasmáticas/genética , Unión Proteica , Conformación Proteica , Alineación de Secuencia
8.
Dalton Trans ; (39): 8168-70, 2009 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-19789769

RESUMEN

Reversible binding of the tetrahedral oxoanions MoO(4)(2-) and WO(4)(2-) to two carboxylato ligands of the soluble scavenger protein WtpA from the hyperthermophilic archaeon Pyrococcus furiosus enforces a quasi-octahedral MO(6) coordination in which the +VI oxidation state is destabilized.


Asunto(s)
Proteínas Arqueales/metabolismo , Electrones , Molibdeno/química , Compuestos de Tungsteno/química , Oxidación-Reducción , Pyrococcus furiosus/enzimología
9.
Biochemistry ; 47(3): 949-56, 2008 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-18154309

RESUMEN

Molybdenum (Mo) and tungsten (W) enzymes catalyze important redox reactions in the global carbon, nitrogen, and sulfur cycles. Except in nitrogenases both metals are exclusively associated with a unique metal-binding pterin (MPT) that is synthesized by a conserved multistep biosynthetic pathway, which ends with the insertion and thereby biological activation of the respective element. Although the biosynthesis of Mo cofactors has been intensively studied in various systems, the biogenesis of W-containing enzymes, mostly found in archaea, is poorly understood. Here, we describe the function of the Pyrococcus furiosus MoaB protein that is homologous to bacterial (such as MogA) and eukaryotic proteins (such as Cnx1) involved in the final steps of Mo cofactor synthesis. MoaB reconstituted the function of the homologous Escherichia coli MogA protein and catalyzes the adenylylation of MPT in a Mg2+ and ATP-dependent way. At room temperature reaction velocity was similar to that of the previously described plant Cnx1G domain, but it was increased up to 20-fold at 80 degrees C. Metal and nucleotide specificity for MPT adenylylation is well conserved between W and Mo cofactor synthesis. Thermostability of MoaB is believed to rely on its hexameric structure, whereas homologous mesophilic MogA-related proteins form trimers. Comparison of P. furiosus MoaB to E. coli MoaB and MogA revealed that only MogA is able to catalyze MPT adenylylation, whereas E. coli MoaB is inactive. In summary, MogA, Cnx1G, and MoaB proteins exhibit the same adenylyl transfer activity essential for metal insertion in W or Mo cofactor maturation.


Asunto(s)
Coenzimas/biosíntesis , Metaloproteínas/biosíntesis , Compuestos Organometálicos/metabolismo , Pterinas/metabolismo , Pyrococcus furiosus/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Coenzimas/química , Coenzimas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Cinética , Metaloproteínas/química , Metaloproteínas/metabolismo , Modelos Químicos , Datos de Secuencia Molecular , Cofactores de Molibdeno , Nitrato-Reductasa/metabolismo , Unión Proteica , Pteridinas/química , Pteridinas/metabolismo , Pterinas/química , Pyrococcus furiosus/genética , Proteínas Recombinantes/química , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Sulfurtransferasas/química , Sulfurtransferasas/metabolismo , Temperatura , Transfección
10.
J Biol Inorg Chem ; 11(8): 999-1006, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16924554

RESUMEN

Formaldehyde oxidoreductase (FOR) is one of the tungstopterin iron-sulfur enzymes of the five-membered family of aldehyde oxidoreductases in the hyperthermophilic archaeon Pyrococcus furiosus. In dye-mediated equilibrium redox titrations, the tungsten in active P. furiosus FOR is a two-electron acceptor, W(VI/IV). The intermediate, paramagnetic W(V) state can be trapped only by reduction with substrate, with consecutive one-electron intraprotein electron transfer to the single [4Fe-4S](2+;+) cluster and partial comproportionation of the tungsten over W(IV, V, VI); this is a stable state in the absence of an external electron acceptor. Electron paramagnetic resonance (EPR) spectroscopy reveals a single "low-potential" W(V) spectrum with gxyz values 1.847, 1.898, and 1.972, and a [4Fe-4S]+ cubane in a spin mixture of S = 1/2 (10%) and S = 3/2 (90%) of intermediate rhombicity (E/D = 0.21, greal = 1.91). The development of this intermediate in vitro is slow even at elevated temperature and with a nominal 50:1 excess of substrate over enzyme presumably owing to the very unfavorable hydration equilibrium of the formaldehyde/methylene glycol couple with KD approximately 10(3). Rapid intermediate formation of enzyme at concentrations suitable for EPR spectroscopy (200 microM) is only obtained with extremely high nominal substrate concentration (1 M formaldehyde) and is followed by a slower phase of denaturation. The premise that the free formaldehyde, and not the methylene glycol, is the enzyme's substrate implies that KM for formaldehyde is 3 orders of magnitude less that the previously reported value.


Asunto(s)
Aldehído Oxidorreductasas/química , Proteínas Hierro-Azufre/química , Pyrococcus furiosus/enzimología , Tungsteno/química , Proteínas Arqueales , Proteínas Bacterianas/química , Espectroscopía de Resonancia por Spin del Electrón , Electrones , Oxidación-Reducción , Especificidad por Sustrato
11.
J Bacteriol ; 188(18): 6498-505, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16952940

RESUMEN

A novel tungstate and molybdate binding protein has been discovered from the hyperthermophilic archaeon Pyrococcus furiosus. This tungstate transport protein A (WtpA) is part of a new ABC transporter system selective for tungstate and molybdate. WtpA has very low sequence similarity with the earlier-characterized transport proteins ModA for molybdate and TupA for tungstate. Its structural gene is present in the genome of numerous archaea and some bacteria. The identification of this new tungstate and molybdate binding protein clarifies the mechanism of tungstate and molybdate transport in organisms that lack the known uptake systems associated with the ModA and TupA proteins, like many archaea. The periplasmic protein of this ABC transporter, WtpA (PF0080), was cloned and expressed in Escherichia coli. Using isothermal titration calorimetry, WtpA was observed to bind tungstate (dissociation constant [K(D)] of 17 +/- 7 pM) and molybdate (K(D) of 11 +/- 5 nM) with a stoichiometry of 1.0 mol oxoanion per mole of protein. These low K(D) values indicate that WtpA has a higher affinity for tungstate than do ModA and TupA and an affinity for molybdate similar to that of ModA. A displacement titration of molybdate-saturated WtpA with tungstate showed that the tungstate effectively replaced the molybdate in the binding site of the protein.


Asunto(s)
Proteínas Arqueales/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Molibdeno/metabolismo , Proteínas Periplasmáticas/metabolismo , Pyrococcus furiosus/metabolismo , Compuestos de Tungsteno/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Proteínas Bacterianas/genética , Clonación Molecular , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Transporte de Membrana/genética , Datos de Secuencia Molecular , Proteínas de Unión Periplasmáticas/genética , Proteínas Periplasmáticas/genética , Filogenia , Unión Proteica , Pyrococcus furiosus/genética , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
12.
J Bacteriol ; 187(20): 7056-61, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16199576

RESUMEN

WOR5 is the fifth and last member of the family of tungsten-containing oxidoreductases purified from the hyperthermophilic archaeon Pyrococcus furiosus. It is a homodimeric protein (subunit, 65 kDa) that contains one [4Fe-4S] cluster and one tungstobispterin cofactor per subunit. It has a broad substrate specificity with a high affinity for several substituted and nonsubstituted aliphatic and aromatic aldehydes with various chain lengths. The highest catalytic efficiency of WOR5 is found for the oxidation of hexanal (V(max) = 15.6 U/mg, K(m) = 0.18 mM at 60 degrees C). Hexanal-incubated enzyme exhibits S = 1/2 electron paramagnetic resonance signals from [4Fe-4S]1+ (g values of 2.08, 1.93, and 1.87) and W5+ (g values of 1.977, 1.906, and 1.855). Cyclic voltammetry of ferredoxin and WOR5 on an activated glassy carbon electrode shows a catalytic wave upon addition of hexanal, suggesting that ferredoxin can be a physiological redox partner. The combination of WOR5, formaldehyde oxidoreductase, and aldehyde oxidoreductase forms an efficient catalyst for the oxidation of a broad range of aldehydes in P. furiosus.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Aldehídos/metabolismo , Pyrococcus furiosus/enzimología , Tungsteno/metabolismo , Aldehído Oxidorreductasas/genética , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Catálisis , Transporte de Electrón , Datos de Secuencia Molecular , Pyrococcus furiosus/genética , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA