Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(2): 545-559.e22, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33357446

RESUMEN

Biological processes are regulated by intermolecular interactions and chemical modifications that do not affect protein levels, thus escaping detection in classical proteomic screens. We demonstrate here that a global protein structural readout based on limited proteolysis-mass spectrometry (LiP-MS) detects many such functional alterations, simultaneously and in situ, in bacteria undergoing nutrient adaptation and in yeast responding to acute stress. The structural readout, visualized as structural barcodes, captured enzyme activity changes, phosphorylation, protein aggregation, and complex formation, with the resolution of individual regulated functional sites such as binding and active sites. Comparison with prior knowledge, including other 'omics data, showed that LiP-MS detects many known functional alterations within well-studied pathways. It suggested distinct metabolite-protein interactions and enabled identification of a fructose-1,6-bisphosphate-based regulatory mechanism of glucose uptake in E. coli. The structural readout dramatically increases classical proteomics coverage, generates mechanistic hypotheses, and paves the way for in situ structural systems biology.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Imagenología Tridimensional , Proteoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Regulación Alostérica , Secuencia de Aminoácidos , Escherichia coli/enzimología , Escherichia coli/metabolismo , Espectrometría de Masas , Simulación de Dinámica Molecular , Presión Osmótica , Fosforilación , Proteolisis , Reproducibilidad de los Resultados , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Estrés Fisiológico
2.
Cell ; 165(3): 535-50, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-27104977

RESUMEN

The question of how genomic information is expressed to determine phenotypes is of central importance for basic and translational life science research and has been studied by transcriptomic and proteomic profiling. Here, we review the relationship between protein and mRNA levels under various scenarios, such as steady state, long-term state changes, and short-term adaptation, demonstrating the complexity of gene expression regulation, especially during dynamic transitions. The spatial and temporal variations of mRNAs, as well as the local availability of resources for protein biosynthesis, strongly influence the relationship between protein levels and their coding transcripts. We further discuss the buffering of mRNA fluctuations at the level of protein concentrations. We conclude that transcript levels by themselves are not sufficient to predict protein levels in many scenarios and to thus explain genotype-phenotype relationships and that high-quality data quantifying different levels of gene expression are indispensable for the complete understanding of biological processes.


Asunto(s)
Regulación de la Expresión Génica , Proteínas/análisis , ARN Mensajero/análisis , Animales , Humanos , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , Proteómica , ARN Mensajero/metabolismo , Transcripción Genética
3.
Cell ; 163(6): 1539-54, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26638078

RESUMEN

Lifespan is a remarkably diverse trait ranging from a few days to several hundred years in nature, but the mechanisms underlying the evolution of lifespan differences remain elusive. Here we de novo assemble a reference genome for the naturally short-lived African turquoise killifish, providing a unique resource for comparative and experimental genomics. The identification of genes under positive selection in this fish reveals potential candidates to explain its compressed lifespan. Several aging genes are under positive selection in this short-lived fish and long-lived species, raising the intriguing possibility that the same gene could underlie evolution of both compressed and extended lifespans. Comparative genomics and linkage analysis identify candidate genes associated with lifespan differences between various turquoise killifish strains. Remarkably, these genes are clustered on the sex chromosome, suggesting that short lifespan might have co-evolved with sex determination. Our study provides insights into the evolutionary forces that shape lifespan in nature.


Asunto(s)
Evolución Biológica , Peces Killi/genética , Envejecimiento , Animales , ADN Helicasas/genética , Genoma , Humanos , Longevidad , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Selección Genética
4.
Genes Dev ; 36(5-6): 348-367, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35241478

RESUMEN

Cell fate transitions depend on balanced rewiring of transcription and translation programs to mediate ordered developmental progression. Components of the nonsense-mediated mRNA decay (NMD) pathway have been implicated in regulating embryonic stem cell (ESC) differentiation, but the exact mechanism is unclear. Here we show that NMD controls expression levels of the translation initiation factor Eif4a2 and its premature termination codon-encoding isoform (Eif4a2PTC ). NMD deficiency leads to translation of the truncated eIF4A2PTC protein. eIF4A2PTC elicits increased mTORC1 activity and translation rates and causes differentiation delays. This establishes a previously unknown feedback loop between NMD and translation initiation. Furthermore, our results show a clear hierarchy in the severity of target deregulation and differentiation phenotypes between NMD effector KOs (Smg5 KO > Smg6 KO > Smg7 KO), which highlights heterodimer-independent functions for SMG5 and SMG7. Together, our findings expose an intricate link between mRNA homeostasis and mTORC1 activity that must be maintained for normal dynamics of cell state transitions.


Asunto(s)
Proteínas Portadoras , Degradación de ARNm Mediada por Codón sin Sentido , Proteínas Portadoras/genética , Expresión Génica , Células HeLa , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
5.
Nature ; 616(7958): 814-821, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37046086

RESUMEN

Physiological homeostasis becomes compromised during ageing, as a result of impairment of cellular processes, including transcription and RNA splicing1-4. However, the molecular mechanisms leading to the loss of transcriptional fidelity are so far elusive, as are ways of preventing it. Here we profiled and analysed genome-wide, ageing-related changes in transcriptional processes across different organisms: nematodes, fruitflies, mice, rats and humans. The average transcriptional elongation speed (RNA polymerase II speed) increased with age in all five species. Along with these changes in elongation speed, we observed changes in splicing, including a reduction of unspliced transcripts and the formation of more circular RNAs. Two lifespan-extending interventions, dietary restriction and lowered insulin-IGF signalling, both reversed most of these ageing-related changes. Genetic variants in RNA polymerase II that reduced its speed in worms5 and flies6 increased their lifespan. Similarly, reducing the speed of RNA polymerase II by overexpressing histone components, to counter age-associated changes in nucleosome positioning, also extended lifespan in flies and the division potential of human cells. Our findings uncover fundamental molecular mechanisms underlying animal ageing and lifespan-extending interventions, and point to possible preventive measures.


Asunto(s)
Envejecimiento , Longevidad , Elongación de la Transcripción Genética , Animales , Humanos , Ratones , Ratas , Envejecimiento/genética , Insulina/metabolismo , Longevidad/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Transducción de Señal , Drosophila melanogaster/genética , Caenorhabditis elegans/genética , ARN Circular , Somatomedinas , Nucleosomas , Histonas , División Celular , Restricción Calórica
6.
EMBO J ; 40(8): e105776, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33687089

RESUMEN

In the mammalian embryo, epiblast cells must exit the naïve state and acquire formative pluripotency. This cell state transition is recapitulated by mouse embryonic stem cells (ESCs), which undergo pluripotency progression in defined conditions in vitro. However, our understanding of the molecular cascades and gene networks involved in the exit from naïve pluripotency remains fragmentary. Here, we employed a combination of genetic screens in haploid ESCs, CRISPR/Cas9 gene disruption, large-scale transcriptomics and computational systems biology to delineate the regulatory circuits governing naïve state exit. Transcriptome profiles for 73 ESC lines deficient for regulators of the exit from naïve pluripotency predominantly manifest delays on the trajectory from naïve to formative epiblast. We find that gene networks operative in ESCs are also active during transition from pre- to post-implantation epiblast in utero. We identified 496 naïve state-associated genes tightly connected to the in vivo epiblast state transition and largely conserved in primate embryos. Integrated analysis of mutant transcriptomes revealed funnelling of multiple gene activities into discrete regulatory modules. Finally, we delineate how intersections with signalling pathways direct this pivotal mammalian cell state transition.


Asunto(s)
Diferenciación Celular , Redes Reguladoras de Genes , Células Madre Embrionarias de Ratones/metabolismo , Animales , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica , Ratones , Células Madre Embrionarias de Ratones/citología , Transcriptoma
7.
J Mol Cell Cardiol ; 193: 67-77, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38848808

RESUMEN

An increasing body of evidence suggests a pivotal role for the microvasculature in the development of cardiovascular disease. A dysfunctional coronary microvascular network, specifically within endothelial cells-the inner most cell layer of vessels-is considered a strong, independent risk factor for future major adverse cardiac events. However, challenges exist with evaluating this critical vascular bed, as many of the currently available techniques are highly invasive and cost prohibitive. The more easily accessible peripheral microcirculation has surfaced as a potential surrogate in which to study mechanisms of coronary microvascular dysfunction and likewise may be used to predict poor cardiovascular outcomes. In this review, we critically evaluate a variety of prognostic, physiological, and mechanistic studies in humans to answer whether the peripheral microcirculation can add insight into coronary microvascular health. A conceptual framework is proposed that the health of the endothelium specifically may link the coronary and peripheral microvascular beds. This is supported by evidence showing a correlation between human coronary and peripheral endothelial function in vivo. Although not a replacement for investigating and understanding coronary microvascular function, the microvascular endothelium from the periphery responds similarly to (patho)physiological stress and may be leveraged to explore potential therapeutic pathways to mitigate stress-induced damage.

8.
Biochem Biophys Res Commun ; 700: 149585, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38290177

RESUMEN

Endothelial microvascular dysfunction affects multi-organ pathologic processes that contribute to increased vascular tone and is at the base of impaired metabolic and cardiovascular diseases. The vascular dilation impaired by nitric oxide (NO) deficiency in such dysfunctional endothelium is often balanced by endothelial-derived hyperpolarizing factors (EDHFs), which play a critical role in managing vascular tone. Our latest research has uncovered a new group of lactone oxylipins produced in the polyunsaturated fatty acids (PUFAs) CYP450 epoxygenase pathway, significantly affecting vascular dilation. The lactone oxylipin, derived from arachidonic acid (5,6-diHET lactone, AA-L), has been previously shown to facilitate vasodilation dependent on the endothelium in isolated human microvessels. The administration of the lactone oxylipin derived from eicosapentaenoic acid (5,6-diHETE lactone, EPA-L) to hypertensive rats demonstrated a significant decrease in blood pressure and improvement in the relaxation of microvessels. However, the molecular signaling processes that underlie these observations were not fully understood. The current study delineates the molecular pathways through which EPA-L promotes endothelium-dependent vascular dilation. In microvessels from hypertensive individuals, it was found that EPA-L mediates endothelium-dependent vasodilation while the signaling pathway was not dependent on NO. In vitro studies on human endothelial cells showed that the hyperpolarization mediated by EPA-L relies on G-protein-coupled receptor (GPR)-phospholipase C (PLC)-IP3 signaling that further activates calcium-dependent potassium flux. The pathway was confirmed using a range of inhibitors and cells overexpressing GPR40, where a specific antagonist reduced the calcium levels and outward currents induced by EPA-L. The downstream AKT and endothelial NO synthase (eNOS) phosphorylations were non-significant. These findings show that the GPR-PLC-IP3 pathway is a key mediator in the EPA-L-triggered vasodilation of arterioles. Therefore, EPA-L is identified as a significant lactone-based PUFA metabolite that contributes to endothelial and vascular health.


Asunto(s)
Células Endoteliales , Hipertensión , Humanos , Ratas , Animales , Células Endoteliales/metabolismo , Fosfolipasas de Tipo C/metabolismo , Calcio/metabolismo , Dilatación , Oxilipinas/metabolismo , Endotelio Vascular/metabolismo , Vasodilatación , Hipertensión/metabolismo , Óxido Nítrico/metabolismo , Transducción de Señal
9.
Small ; : e2402155, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795001

RESUMEN

Two-dimensional (2D) materials exhibit the potential to transform semiconductor technology. Their rich compositional and stacking varieties allow tailoring materials' properties toward device applications. Monolayer to multilayer gallium sulfide (GaS) with its ultraviolet band gap, which can be tuned by varying the layer number, holds promise for solar-blind photodiodes and light-emitting diodes as applications. However, achieving commercial viability requires wafer-scale integration, contrasting with established, limited methods such as mechanical exfoliation. Here the one-step synthesis of 2D GaS is introduced via metal-organic chemical vapor deposition on sapphire substrates. The pulsed-mode deposition of industry-standard precursors promotes 2D growth by inhibiting the vapor phase and on-surface pre-reactions. The interface chemistry with the growth of a Ga adlayer that results in an epitaxial relationship is revealed. Probing structure and composition validate thin-film quality and 2D nature with the possibility to control the thickness by the number of GaS pulses. The results highlight the adaptability of established growth facilities for producing atomically thin to multilayered 2D semiconductor materials, paving the way for practical applications.

10.
Mol Syst Biol ; 19(8): e11493, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37485750

RESUMEN

The complexity of many cellular and organismal traits results from the integration of genetic and environmental factors via molecular networks. Network structure and effect propagation are best understood at the level of functional modules, but so far, no concept has been established to include the global network state. Here, we show when and how genetic perturbations lead to molecular changes that are confined to small parts of a network versus when they lead to modulation of network states. Integrating multi-omics profiling of genetically heterogeneous budding and fission yeast strains with an array of cellular traits identified a central state transition of the yeast molecular network that is related to PKA and TOR (PT) signaling. Genetic variants affecting this PT state globally shifted the molecular network along a single-dimensional axis, thereby modulating processes including energy and amino acid metabolism, transcription, translation, cell cycle control, and cellular stress response. We propose that genetic effects can propagate through large parts of molecular networks because of the functional requirement to centrally coordinate the activity of fundamental cellular processes.


Asunto(s)
Herencia Multifactorial , Proteínas de Saccharomyces cerevisiae , Transducción de Señal/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fenotipo
12.
Heart Lung Circ ; 33(5): 576-604, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38184426

RESUMEN

BACKGROUND: Cancer and cardiovascular disease (CVD) are major causes of morbidity and mortality in the United States (US). Cancer survivors have increased risks for CVD and CVD-related mortality due to multiple factors including cancer treatment-related cardiotoxicity. Disparities are rooted in differential exposure to risk factors and social determinants of health (SDOH), including systemic racism. This review aimed to assess SDOH's role in disparities, document CVD-related disparities among US cancer survivors, and identify literature gaps for future research. METHODS: Following the Peer Review of Electronic Search Strategies (PRESS) guidelines, MEDLINE, PsycINFO, and Scopus were searched on March 15, 2021, with an update conducted on September 26, 2023. Articles screening was performed using the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) 2020, a pre-defined Population, Exposure, Comparison, Outcomes, and Settings (PECOS) framework, and the Rayyan platform. A modified version of the Newcastle-Ottawa Scale was used to assess the risk of bias, and RAW Graphs for alluvial charts. This review is registered with PROSPERO under ID #CRD42021236460. RESULTS: Out of 7,719 retrieved articles, 24 were included, and discussed diverse SDOH that contribute to CVD-related disparities among cancer survivors. The 24 included studies had a large combined total sample size (n=7,704,645; median=19,707). While various disparities have been investigated, including rural-urban, sex, socioeconomic status, and age, a notable observation is that non-Hispanic Black cancer survivors experience disproportionately adverse CVD outcomes when compared to non-Hispanic White survivors. This underscores historical racism and discrimination against non-Hispanic Black individuals as fundamental drivers of CVD-related disparities. CONCLUSIONS: Stakeholders should work to eliminate the root causes of disparities. Clinicians should increase screening for risk factors that exacerbate CVD-related disparities among cancer survivors. Researchers should prioritise the investigation of systemic factors driving disparities in cancer and CVD and develop innovative interventions to mitigate risk in cancer survivors.


Asunto(s)
Supervivientes de Cáncer , Enfermedades Cardiovasculares , Neoplasias , Humanos , Supervivientes de Cáncer/estadística & datos numéricos , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etnología , Estados Unidos/epidemiología , Neoplasias/epidemiología , Neoplasias/terapia , Factores de Riesgo , Disparidades en el Estado de Salud
13.
J Physiol ; 601(3): 469-481, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36575638

RESUMEN

Microvascular dysfunction predicts adverse cardiovascular events despite absence of large vessel disease. A shift in the mediator of flow-mediated dilatation (FMD) from nitric oxide (NO) to mitochondrial-derived hydrogen peroxide (H2 O2 ) occurs in arterioles from patients with coronary artery disease (CAD). The underlying mechanisms governing this shift are not completely defined. Lipid phosphate phosphatase 3 (LPP3) is a transmembrane protein that dephosphorylates lysophosphatidic acid, a bioactive lipid, causing a receptor-mediated increase in reactive oxygen species. A single nucleotide loss-of-function polymorphism in the gene coding for LPP3 (rs17114036) is associated with elevated risk for CAD, independent of traditional risk factors. LPP3 is suppressed by miR-92a, which is elevated in the circulation of patients with CAD. Repression of LPP3 increases vascular inflammation and atherosclerosis in animal models. We investigated the role of LPP3 and miR-92a as a mechanism for microvascular dysfunction in CAD. We hypothesized that modulation of LPP3 is critically involved in the disease-associated shift in mediator of FMD. LPP3 protein expression was reduced in left ventricle tissue from CAD relative to non-CAD patients (P = 0.004), with mRNA expression unchanged (P = 0.96). Reducing LPP3 expression (non-CAD) caused a shift from NO to H2 O2 (% maximal dilatation: Control 78.1 ± 11.4% vs. Peg-Cat 30.0 ± 11.2%; P < 0.0001). miR-92a is elevated in CAD arterioles (fold change: 1.9 ± 0.01 P = 0.04), while inhibition of miR-92a restored NO-mediated FMD (CAD), and enhancing miR-92a expression (non-CAD) elicited H2 O2 -mediated dilatation (P < 0.0001). Our data suggests LPP3 is crucial in the disease-associated switch in the mediator of FMD. KEY POINTS: Lipid phosphate phosphatase 3 (LPP3) expression is reduced in heart tissue patients with coronary artery disease (CAD). Loss of LPP3 in CAD is associated with an increase in the LPP3 inhibitor, miR-92a. Inhibition of LPP3 in the microvasculature of healthy patients mimics the CAD flow-mediated dilatation (FMD) phenotype. Inhibition of miR-92a restores nitric oxide-mediated FMD in the microvasculature of CAD patients.


Asunto(s)
Enfermedad de la Arteria Coronaria , MicroARNs , Animales , Humanos , Óxido Nítrico , Arteriolas/metabolismo , Enfermedad de la Arteria Coronaria/genética , Dilatación , Células Cultivadas , MicroARNs/genética , MicroARNs/metabolismo , Vasodilatación/fisiología
14.
Mol Syst Biol ; 18(5): e10712, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35574625

RESUMEN

Genomic variation impacts on cellular networks by affecting the abundance (e.g., protein levels) and the functional states (e.g., protein phosphorylation) of their components. Previous work has focused on the former, while in this context, the functional states of proteins have largely remained neglected. Here, we generated high-quality transcriptome, proteome, and phosphoproteome data for a panel of 112 genomically well-defined yeast strains. Genetic effects on transcripts were generally transmitted to the protein layer, but specific gene groups, such as ribosomal proteins, showed diverging effects on protein levels compared with RNA levels. Phosphorylation states proved crucial to unravel genetic effects on signaling networks. Correspondingly, genetic variants that cause phosphorylation changes were mostly different from those causing abundance changes in the respective proteins. Underscoring their relevance for cell physiology, phosphorylation traits were more strongly correlated with cell physiological traits such as chemical compound resistance or cell morphology, compared with transcript or protein abundance. This study demonstrates how molecular networks mediate the effects of genomic variants to cellular traits and highlights the particular importance of protein phosphorylation.


Asunto(s)
Genoma , Genómica , Fosforilación , Proteoma/genética , Saccharomyces cerevisiae/genética
15.
Circ Res ; 129(1): e21-e34, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33934611

RESUMEN

Although cardiovascular toxicity from traditional chemotherapies has been well recognized for decades, the recent explosion of effective novel targeted cancer therapies with cardiovascular sequelae has driven the emergence of cardio-oncology as a new clinical and research field. Cardiovascular toxicity associated with cancer therapy can manifest as a broad range of potentially life-threatening complications, including heart failure, arrhythmia, myocarditis, and vascular events. Beyond toxicology, the intersection of cancer and heart disease has blossomed to include discovery of genetic and environmental risk factors that predispose to both. There is a pressing need to understand the underlying molecular mechanisms of cardiovascular toxicity to improve outcomes in patients with cancer. Preclinical cardiovascular models, ranging from cellular assays to large animals, serve as the foundation for mechanistic studies, with the ultimate goal of identifying biologically sound biomarkers and cardioprotective therapies that allow the optimal use of cancer treatments while minimizing toxicities. Given that novel cancer therapies target specific pathways integral to normal cardiovascular homeostasis, a better mechanistic understanding of toxicity may provide insights into fundamental pathways that lead to cardiovascular disease when dysregulated. The goal of this scientific statement is to summarize the strengths and weaknesses of preclinical models of cancer therapy-associated cardiovascular toxicity, to highlight overlapping mechanisms driving cancer and cardiovascular disease, and to discuss opportunities to leverage cardio-oncology models to address important mechanistic questions relevant to all patients with cardiovascular disease, including those with and without cancer.


Asunto(s)
Antineoplásicos/toxicidad , Cardiopatías/inducido químicamente , Miocitos Cardíacos/efectos de los fármacos , Pruebas de Toxicidad , American Heart Association , Animales , Cardiotoxicidad , Células Cultivadas , Modelos Animales de Enfermedad , Cardiopatías/genética , Cardiopatías/metabolismo , Cardiopatías/patología , Humanos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Medición de Riesgo , Estados Unidos
16.
PLoS Comput Biol ; 18(2): e1009849, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35176023

RESUMEN

Single-cell RNA sequencing (scRNA-seq) methods are typically unable to quantify the expression levels of all genes in a cell, creating a need for the computational prediction of missing values ('dropout imputation'). Most existing dropout imputation methods are limited in the sense that they exclusively use the scRNA-seq dataset at hand and do not exploit external gene-gene relationship information. Further, it is unknown if all genes equally benefit from imputation or which imputation method works best for a given gene. Here, we show that a transcriptional regulatory network learned from external, independent gene expression data improves dropout imputation. Using a variety of human scRNA-seq datasets we demonstrate that our network-based approach outperforms published state-of-the-art methods. The network-based approach performs particularly well for lowly expressed genes, including cell-type-specific transcriptional regulators. Further, the cell-to-cell variation of 11.3% to 48.8% of the genes could not be adequately imputed by any of the methods that we tested. In those cases gene expression levels were best predicted by the mean expression across all cells, i.e. assuming no measurable expression variation between cells. These findings suggest that different imputation methods are optimal for different genes. We thus implemented an R-package called ADImpute (available via Bioconductor https://bioconductor.org/packages/release/bioc/html/ADImpute.html) that automatically determines the best imputation method for each gene in a dataset. Our work represents a paradigm shift by demonstrating that there is no single best imputation method. Instead, we propose that imputation should maximally exploit external information and be adapted to gene-specific features, such as expression level and expression variation across cells.


Asunto(s)
Análisis de la Célula Individual , Programas Informáticos , Perfilación de la Expresión Génica , Redes Reguladoras de Genes/genética , Humanos , ARN , Análisis de Secuencia de ARN , Análisis de la Célula Individual/métodos , Secuenciación del Exoma
17.
Am J Physiol Heart Circ Physiol ; 323(4): H702-H720, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35930448

RESUMEN

Many anticancer therapies (CTx) have cardiotoxic side effects that limit their therapeutic potential and cause long-term cardiovascular complications in cancer survivors. This has given rise to the field of cardio-oncology, which recognizes the need for basic, translational, and clinical research focused on understanding the complex signaling events that drive CTx-induced cardiovascular toxicity. Several CTx agents cause mitochondrial damage in the form of mitochondrial DNA deletions, mutations, and suppression of respiratory function and ATP production. In this review, we provide a brief overview of the cardiovascular complications of clinically used CTx agents and discuss current knowledge of local and systemic secondary signaling events that arise in response to mitochondrial stress/damage. Mitochondrial oxidative stress has long been recognized as a contributor to CTx-induced cardiotoxicity; thus, we focus on emerging roles for mitochondria in epigenetic regulation, innate immunity, and signaling via noncoding RNAs and mitochondrial hormones. Because data exploring mitochondrial secondary signaling in the context of cardio-oncology are limited, we also draw upon clinical and preclinical studies, which have examined these pathways in other relevant pathologies.


Asunto(s)
Antineoplásicos , Cardiopatías , Neoplasias , Adenosina Trifosfato/metabolismo , Antineoplásicos/farmacología , Cardiotoxicidad/etiología , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Epigénesis Genética , Hormonas/farmacología , Humanos , Neoplasias/tratamiento farmacológico , Estrés Oxidativo
18.
Am J Physiol Heart Circ Physiol ; 323(4): H749-H762, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36018760

RESUMEN

Aging is associated with blunted coronary microvascular vasodilatory function. Previously, systemically administered adipose stromal vascular fraction (SVF) therapy reversed aging-induced attenuation of ß1-adrenergic- and flow-mediated dilation dependent on reducing mitochondrial reactive oxygen species. We hypothesized that SVF-mediated recovery of microvascular dilatory function is dependent on recovery of mitochondrial function, specifically by reducing mitochondrial hyperfission. Female Fischer-344 rats were allocated into young control, old control, and old + SVF therapy groups. Pressure myography, immunofluorescent staining, Western blot analysis, and RNA sequencing were performed to determine coronary microvascular mitochondrial dynamics and function. Gene and protein expression of fission-mediator DRP-1 was enhanced with aging but reversed by SVF therapy. SVF facilitated an increase in fusion-mediator MFN-1 gene and protein expression. Mitochondrial morphology was characterized as rod-like and densely networked in young controls, isolated circular and punctate with aging, and less circularity with partially restored mitochondrial branch density with SVF therapy. Decreased mitochondrial membrane potential and ATP bioavailability in aged animals at baseline and during flow-mediated dilation were reversed by SVF and accompanied with enhanced oxygen consumption. Dilation to norepinephrine and flow in young controls were dependent on uninhibited mitochondrial fusion, whereas inhibiting fission did not restore aged microvessel response to norepinephrine or flow. SVF-mediated recovery of ß-adrenergic function was dependent on uninhibited mitochondrial fusion, whereas recovery of flow-mediated dilation was dependent on maintained mitochondrial fission. Impaired dilation in aging is mitigated by SVF therapy, which recovers mitochondrial function and fission/fusion balance.NEW & NOTEWORTHY We elucidated the consequences of aging on coronary microvascular mitochondrial health as well as SVF's ability to reverse these effects. Aging shifts gene/protein expression and mitochondrial morphology indicating hyperfission, alongside attenuated mitochondrial membrane potential and ATP bioavailability, all reversed using SVF therapy. Mitochondrial membrane potential and ATP levels correlated with vasodilatory efficiency. Mitochondrial dysfunction is a contributing pathological factor in aging that can be targeted by therapeutic SVF to preserve microvascular dilative function.


Asunto(s)
Tejido Adiposo , Células del Estroma , Adenosina Trifosfato/metabolismo , Tejido Adiposo/metabolismo , Adrenérgicos , Animales , Femenino , Mitocondrias , Norepinefrina/metabolismo , Ratas , Ratas Endogámicas F344 , Especies Reactivas de Oxígeno/metabolismo , Células del Estroma/metabolismo , Fracción Vascular Estromal
19.
Am J Physiol Heart Circ Physiol ; 323(6): H1167-H1175, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36306213

RESUMEN

Microvascular disease plays a critical role in systemic end-organ dysfunction, and treatment of microvascular pathologies may greatly reduce cardiovascular morbidity and mortality. The Call for Papers collection: New Developments in Translational Microcirculatory Research highlights key advances in our understanding of the role of microvessels in the development of chronic diseases as well as therapeutic strategies to enhance microvascular function. This Mini Review provides a concise summary of these advances and draws from other relevant research to provide the most up-to-date information on the influence of cutaneous, cerebrovascular, coronary, and peripheral microcirculation on the pathophysiology of obesity, hypertension, cardiovascular aging, peripheral artery disease, and cognitive impairment. In addition to these disease- and location-dependent research articles, this Call for Papers includes state-of-the-art reviews on coronary endothelial function and assessment of microvascular health in different organ systems, with an additional focus on establishing rigor and new advances in clinical trial design. These articles, combined with original research evaluating cellular, exosomal, pharmaceutical, exercise, heat, and dietary interventional therapies, establish the groundwork for translating microcirculatory research from bench to bedside. Although numerous studies in this collection are focused on human microcirculation, most used robust preclinical models to probe mechanisms of pathophysiology and interventional benefits. Future work focused on translating these findings to humans are necessary for finding clinical strategies to prevent and treat microvascular dysfunction.


Asunto(s)
Hipertensión , Enfermedades Vasculares Periféricas , Humanos , Microcirculación/fisiología , Microvasos , Endotelio
20.
Opt Express ; 30(13): 23544-23555, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-36225031

RESUMEN

We report on new THz electromagnetic emission mechanism from deformational coupling of acoustic (AC) phonons with electrons in the propagation medium of non-polar Si. The epicenters of the AC phonon pulses are the surface and interface of a GaP transducer layer whose thickness (d) is varied in nanoscale from 16 to 45 nm. The propagating AC pulses locally modulate the bandgap, which in turn generates a train of electric field pulses, inducing an abrupt drift motion at the depletion edge of Si. The fairly time-delayed THz bursts, centered at different times (t1T H z, t2T H z, and t3T H z), are concurrently emitted only when a series of AC pulses reach the point of the depletion edge of Si, even without any piezoelectricity. The analysis on the observed peak emission amplitudes is consistent with calculations based on the combined effects of mobile charge carrier density and AC-phonon-induced local deformation, which recapitulates the role of deformational potential coupling in THz wave emission in a formulatively distinct manner from piezoelectric counterpart.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA