Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Genet Metab ; 136(1): 38-45, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35367142

RESUMEN

Classical phenylketonuria (PKU, OMIM 261600) owes to hepatic deficiency of phenylalanine hydroxylase (PAH) that enzymatically converts phenylalanine (Phe) to tyrosine (Tyr). PKU neurologic phenotypes include impaired brain development, decreased myelination, early onset mental retardation, seizures, and late-onset features (neuropsychiatric, Parkinsonism). Phe over-representation is systemic; however, tissue response to hyperphenylalaninemia is not consistent. To characterize hyperphenylalaninemia tissue response, metabolomics was applied to Pahenu2 classical PKU mouse blood, liver, and brain. In blood and liver over-represented analytes were principally Phe, Phe catabolites, and Phe-related analytes (Phe-conjugates, Phe-containing dipeptides). In addition to Phe and Phe-related analytes, the metabolomic profile of Pahenu2 brain tissue evidenced oxidative stress responses and energy dysregulation. Glutathione and homocarnosine anti-oxidative responses are apparent Pahenu2 brain. Oxidative stress in Pahenu2 brain was further evidenced by increased reactive oxygen species. Pahenu2 brain presents an increased NADH/NAD ratio suggesting respiratory chain complex 1 dysfunction. Respirometry in Pahenu2 brain mitochondria functionally confirmed reduced respiratory chain activity with an attenuated response to pyruvate substrate. Glycolysis pathway analytes are over-represented in Pahenu2 brain tissue. PKU pathologies owe to liver metabolic deficiency; yet, Pahenu2 liver tissue shows neither energy disruption nor anti-oxidative response. Unique aspects of metabolomic homeostasis in PKU brain tissue along with increased reactive oxygen species and respiratory chain deficit provide insight to neurologic disease mechanisms. While some elements of assumed, long standing PKU neuropathology are enforced by metabolomic data (e.g. reduced tryptophan and serotonin representation), energy dysregulation and tissue oxidative stress expand mechanisms underlying neuropathology.


Asunto(s)
Fenilalanina Hidroxilasa , Fenilcetonurias , Animales , Modelos Animales de Enfermedad , Humanos , Metabolómica , Ratones , Estrés Oxidativo , Fenilalanina , Fenilcetonurias/genética , Especies Reactivas de Oxígeno
2.
Mol Genet Metab ; 137(4): 342-348, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36335793

RESUMEN

GM3 synthase (GM3S) deficiency is a rare neurodevelopmental disorder caused by an inability to synthesize gangliosides, for which there is currently no treatment. Gangliosides are brain-enriched, plasma membrane glycosphingolipids with poorly understood biological functions related to cell adhesion, growth, and receptor-mediated signal transduction. Here, we investigated the effects of GM3S deficiency on metabolism and mitochondrial function in a mouse model. By indirect calorimetry, GM3S knockout mice exhibited increased whole-body respiration and an increased reliance upon carbohydrate as an energy source. 18F-FDG PET confirmed higher brain glucose uptake in knockout mice, and GM3S deficient N41 neuronal cells showed higher glucose utilization in vitro. Brain mitochondria from knockout mice respired at a higher rate on Complex I substrates including pyruvate. This appeared to be due to higher expression of pyruvate dehydrogenase (PDH) and lower phosphorylation of PDH, which would favor pyruvate entry into the mitochondrial TCA cycle. Finally, it was observed that blocking glucose metabolism with the glycolysis inhibitor 2-deoxyglucose reduced seizure intensity in GM3S knockout mice following administration of kainate. In conclusion, GM3S deficiency may be associated with a hypermetabolic phenotype that could promote seizure activity.


Asunto(s)
Glucosa , Sialiltransferasas , Animales , Ratones , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Gangliósido G(M3)/metabolismo , Glucosa/metabolismo , Ratones Noqueados , Ácido Pirúvico , Convulsiones/genética , Sialiltransferasas/genética , Sialiltransferasas/metabolismo
3.
J Lipid Res ; 62: 100069, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33757734

RESUMEN

Long-chain fatty acid oxidation is frequently impaired in primary and systemic metabolic diseases affecting the heart; thus, therapeutically increasing reliance on normally minor energetic substrates, such as ketones and medium-chain fatty acids, could benefit cardiac health. However, the molecular fundamentals of this therapy are not fully known. Here, we explored the ability of octanoate, an eight-carbon medium-chain fatty acid known as an unregulated mitochondrial energetic substrate, to ameliorate cardiac hypertrophy in long-chain fatty acid oxidation-deficient hearts because of carnitine palmitoyltransferase 2 deletion (Cpt2M-/-). CPT2 converts acylcarnitines to acyl-CoAs in the mitochondrial matrix for oxidative bioenergetic metabolism. In Cpt2M-/- mice, high octanoate-ketogenic diet failed to alleviate myocardial hypertrophy, dysfunction, and acylcarnitine accumulation suggesting that this alternative substrate is not sufficiently compensatory for energy provision. Aligning this outcome, we identified a major metabolic distinction between muscles and liver, wherein heart and skeletal muscle mitochondria were unable to oxidize free octanoate, but liver was able to oxidize free octanoate. Liver mitochondria, but not heart or muscle, highly expressed medium-chain acyl-CoA synthetases, potentially enabling octanoate activation for oxidation and circumventing acylcarnitine shuttling. Conversely, octanoylcarnitine was oxidized by liver, skeletal muscle, and heart, with rates in heart 4-fold greater than liver and, in muscles, was not dependent upon CPT2. Together, these data suggest that dietary octanoate cannot rescue CPT2-deficient cardiac disease. These data also suggest the existence of tissue-specific mechanisms for octanoate oxidative metabolism, with liver being independent of free carnitine availability, whereas cardiac and skeletal muscles depend on carnitine but not on CPT2.


Asunto(s)
Carnitina O-Palmitoiltransferasa/deficiencia , Errores Innatos del Metabolismo
4.
Mol Genet Metab ; 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33846068

RESUMEN

Classical phenylketonuria (PKU, OMIM 261600) owes to hepatic deficiency of phenylalanine hydroxylase (PAH) that enzymatically converts phenylalanine (Phe) to tyrosine (Tyr). PKU neurologic phenotypes include impaired brain development, decreased myelination, early onset mental retardation, seizures, and late-onset features (neuropsychiatric, Parkinsonism). PAH deficiency leads to systemic hyperphenylalaninemia; however, the impact of Phe varies between tissues. To characterize tissue response to hyperphenylalaninemia, metabolomics was applied to tissue from therapy noncompliant classical PKU patients (blood, liver), the Pahenu2 classical PKU mouse (blood, liver, brain) and the PAH deficient pig (blood, liver, brain, cerebrospinal fluid). In blood, liver, and CSF from both patients and animal models over-represented analytes were principally Phe, Phe catabolites, and Phe-related analytes (conjugates, Phe-containing dipeptides). In addition to Phe and Phe-related analytes, the metabolomic profile of PKU brain tissue (mouse, pig) evidenced oxidative stress responses and energy dysregulation. In Pahenu2 and PKU pig brain tissues, anti-oxidative response by glutathione and homocarnosine is apparent. Oxidative stress in Pahenu2 brain was further demonstrated by increased reactive oxygen species. In Pahenu2 and PKU pig brain, an increased NADH/NAD ratio suggests a respiratory chain dysfunction. Respirometry in PKU brain mitochondria (mouse, pig) functionally confirmed reduced respiratory chain activity. Glycolysis pathway analytes are over-represented in PKU brain tissue (mouse, pig). PKU pathologies owe to liver metabolic deficiency; yet, PKU liver tissue (mouse, pig, human) shows neither energy disruption nor anti-oxidative response. Unique aspects of metabolomic homeostasis in PKU brain tissue along with increased reactive oxygen species and respiratory chain deficit provide insight to neurologic disease mechanisms. While some elements of assumed, long standing PKU neuropathology are enforced by metabolomic data (e.g. reduced tryptophan and serotonin representation), energy dysregulation and tissue oxidative stress expand mechanisms underlying neuropathology.

5.
Mol Genet Metab ; 134(1-2): 156-163, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34556413

RESUMEN

Acyl CoA Dehydrogenase 9 (ACAD9) is a member of the family of flavoenzymes that catalyze the dehydrogenation of acyl-CoAs to 2,3 enoyl-CoAs in mitochondrial fatty acid oxidation (FAO). Inborn errors of metabolism of all family members, including ACAD9, have been described in humans, and represent significant causes of morbidity and mortality particularly in children. ACAD9 deficiency leads to a combined defect in fatty acid oxidation and oxidative phosphorylation (OXPHOS) due to a dual role in the pathways. In addition to its function in mitochondrial FAO, ACAD9 has a second function as one of 14 factors responsible for assembly of complex I of the electron transport chain (ETC). Considerable controversy remains over the relative role of these two functions in normal physiology and the disparate clinical findings described in patients with ACAD9 deficiency. To better understand the normal function of ACAD9 and the pathophysiology of its deficiency, several knock out mouse models were developed. Homozygous total body knock out appeared to be lethal as no ACAD9 animals were obtained. Cre-lox technology was then used to generate tissue-specific deletion of the gene. Cardiac-specific ACAD9 deficient animals had severe neonatal cardiomyopathy and died by 17 days of age. They had severe mitochondrial dysfunction in vitro. Muscle-specific mutants were viable but exhibited muscle weakness. Additional studies of heart muscle from the cardiac specific deficient animals were used to examine the evolutionarily conserved signaling Intermediate in toll pathway (ECSIT) protein, a known binding partner of ACAD9 in the electron chain complex I assembly pathway. As expected, ECSIT levels were significantly reduced in the absence of ACAD9 protein, consistent with the demonstrated impairment of the complex I assembly. The various ACAD9 deficient animals should serve as useful models for development of novel therapeutics for this disorder.


Asunto(s)
Acidosis/genética , Acidosis/fisiopatología , Acil-CoA Deshidrogenasa/deficiencia , Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/fisiopatología , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/fisiopatología , Modelos Animales de Enfermedad , Ratones , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/fisiopatología , Debilidad Muscular/genética , Debilidad Muscular/fisiopatología , Acidosis/complicaciones , Acil-CoA Deshidrogenasa/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/complicaciones , Animales , Cardiomiopatías/etiología , Cardiomiopatías/genética , Cardiomiopatía Hipertrófica/complicaciones , Complejo I de Transporte de Electrón/genética , Enfermedades Mitocondriales/complicaciones , Debilidad Muscular/complicaciones , Mutación
6.
Biochem Biophys Res Commun ; 527(1): 162-166, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32446361

RESUMEN

Dicarboxylic fatty acids, taken as a nutritional supplement or produced endogenously via omega oxidation of monocarboxylic fatty acids, may have therapeutic potential for rare inborn errors of metabolism as well as common metabolic diseases such as type 2 diabetes. Breakdown of dicarboxylic acids yields acetyl-CoA and succinyl-CoA as products, the latter of which is anaplerotic for the TCA cycle. However, little is known about the metabolic pathways responsible for degradation of dicarboxylic acids. Here, we demonstrated with whole-cell fatty acid oxidation assays that both mitochondria and peroxisomes contribute to dicarboxylic acid degradation. Several mitochondrial acyl-CoA dehydrogenases were tested for activity against dicarboxylyl-CoAs. Medium-chain acyl-CoA dehydrogenase (MCAD) exhibited activity with both six and 12 carbon dicarboxylyl-CoAs, and the capacity for dehydrogenation of these substrates was significantly reduced in MCAD knockout mouse liver. However, when dicarboxylic acids were fed to normal mice, the expression of MCAD did not change, while expression of peroxisomal fatty acid oxidation enzymes was greatly upregulated. In conclusion, mitochondrial fatty acid oxidation, and in particular MCAD, contributes to dicarboxylic acid degradation, but feeding dicarboxylic acids induces only the peroxisomal pathway.


Asunto(s)
Acil-CoA Deshidrogenasas/metabolismo , Ácidos Dicarboxílicos/metabolismo , Ácidos Grasos/metabolismo , Mitocondrias/enzimología , Animales , Masculino , Ratones , Ratones Noqueados
7.
Mol Genet Metab ; 131(1-2): 83-89, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32389575

RESUMEN

The fatty acid oxidation enzyme long-chain acyl-CoA dehydrogenase (LCAD) is expressed at high levels in human alveolar type II (ATII) cells in the lung. A common polymorphism causing an amino acid substitution (K333Q) was previously linked to a loss of LCAD antigen in the lung tissue in sudden infant death syndrome. However, the effects of the polymorphism on LCAD function has not been tested. The present work evaluated recombinant LCAD K333Q. Compared to wild-type LCAD protein, LCAD K333Q exhibited significantly reduced enzymatic activity. Molecular modeling suggested that K333 is within interacting distance of the essential FAD cofactor, and the K333Q protein showed a propensity to lose FAD. Exogenous FAD only partially rescued the activity of LCAD K333Q. LCAD K333Q protein was less stable than wild-type when incubated at physiological temperatures, likely explaining the observation of dramatically reduced LCAD antigen in primary ATII cells isolated from individuals homozygous for K333Q. Despite the effect of K333Q on activity, stability, and antigen levels, the frequency of the polymorphism was not increased among infants and children with lung disease.


Asunto(s)
Acil-CoA Deshidrogenasa de Cadena Larga/genética , Estabilidad de Enzimas/genética , Enfermedades Pulmonares/genética , Relación Estructura-Actividad , Acil-CoA Deshidrogenasa de Cadena Larga/ultraestructura , Animales , Niño , Humanos , Lactante , Pulmón/metabolismo , Pulmón/patología , Enfermedades Pulmonares/metabolismo , Enfermedades Pulmonares/patología , Modelos Moleculares , Oxidación-Reducción , Polimorfismo Genético , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/patología
8.
J Am Soc Nephrol ; 30(12): 2384-2398, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31575700

RESUMEN

BACKGROUND: The primary site of damage during AKI, proximal tubular epithelial cells, are highly metabolically active, relying on fatty acids to meet their energy demands. These cells are rich in mitochondria and peroxisomes, the two organelles that mediate fatty acid oxidation. Emerging evidence shows that both fatty acid pathways are regulated by reversible posttranslational modifications, particularly by lysine acylation. Sirtuin 5 (Sirt5), which localizes to both mitochondria and peroxisomes, reverses post-translational lysine acylation on several enzymes involved in fatty acid oxidation. However, the role of the Sirt5 in regulating kidney energy metabolism has yet to be determined. METHODS: We subjected male Sirt5-deficient mice (either +/- or -/-) and wild-type controls, as well as isolated proximal tubule cells, to two different AKI models (ischemia-induced or cisplatin-induced AKI). We assessed kidney function and injury with standard techniques and measured fatty acid oxidation by the catabolism of 14C-labeled palmitate to 14CO2. RESULTS: Sirt5 was highly expressed in proximal tubular epithelial cells. At baseline, Sirt5 knockout (Sirt5-/- ) mice had modestly decreased mitochondrial function but significantly increased fatty acid oxidation, which was localized to the peroxisome. Although no overt kidney phenotype was observed in Sirt5-/- mice, Sirt5-/- mice had significantly improved kidney function and less tissue damage compared with controls after either ischemia-induced or cisplatin-induced AKI. This coincided with higher peroxisomal fatty acid oxidation compared with mitochondria fatty acid oxidation in the Sirt5-/- proximal tubular epithelial cells. CONCLUSIONS: Our findings indicate that Sirt5 regulates the balance of mitochondrial versus peroxisomal fatty acid oxidation in proximal tubular epithelial cells to protect against injury in AKI. This novel mechanism might be leveraged for developing AKI therapies.


Asunto(s)
Lesión Renal Aguda/metabolismo , Ácidos Grasos/metabolismo , Túbulos Renales Proximales/metabolismo , Mitocondrias/metabolismo , Peroxisomas/metabolismo , Sirtuinas/fisiología , Lesión Renal Aguda/etiología , Lesión Renal Aguda/patología , Animales , Cisplatino/toxicidad , Riñón/irrigación sanguínea , Masculino , Ratones , Ratones Noqueados , Oxidación-Reducción , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Sirtuinas/deficiencia , Sirtuinas/genética
9.
J Biol Chem ; 292(24): 10068-10086, 2017 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-28432125

RESUMEN

Hepatocellular carcinoma (HCC) is a common cancer that frequently overexpresses the c-Myc (Myc) oncoprotein. Using a mouse model of Myc-induced HCC, we studied the metabolic, biochemical, and molecular changes accompanying HCC progression, regression, and recurrence. These involved altered rates of pyruvate and fatty acid ß-oxidation and the likely re-directing of glutamine into biosynthetic rather than energy-generating pathways. Initial tumors also showed reduced mitochondrial mass and differential contributions of electron transport chain complexes I and II to respiration. The uncoupling of complex II's electron transport function from its succinate dehydrogenase activity also suggested a mechanism by which Myc generates reactive oxygen species. RNA sequence studies revealed an orderly progression of transcriptional changes involving pathways pertinent to DNA damage repair, cell cycle progression, insulin-like growth factor signaling, innate immunity, and further metabolic re-programming. Only a subset of functions deregulated in initial tumors was similarly deregulated in recurrent tumors thereby indicating that the latter can "normalize" some behaviors to suit their needs. An interactive and freely available software tool was developed to allow continued analyses of these and other transcriptional profiles. Collectively, these studies define the metabolic, biochemical, and molecular events accompanyingHCCevolution, regression, and recurrence in the absence of any potentially confounding therapies.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/metabolismo , Hígado/metabolismo , Neoplasias Experimentales/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Regulación hacia Arriba , Animales , Carcinogénesis , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/prevención & control , Reparación del ADN , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Complejo II de Transporte de Electrones/genética , Complejo II de Transporte de Electrones/metabolismo , Femenino , Perfilación de la Expresión Génica , Silenciador del Gen , Humanos , Hígado/patología , Masculino , Ratones Transgénicos , Recambio Mitocondrial , Recurrencia Local de Neoplasia/metabolismo , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/fisiopatología , Recurrencia Local de Neoplasia/prevención & control , Neoplasias Experimentales/patología , Neoplasias Experimentales/prevención & control , Proteínas Proto-Oncogénicas c-myc/genética , Especies Reactivas de Oxígeno/metabolismo , Carga Tumoral
10.
J Biol Chem ; 292(24): 10239-10249, 2017 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-28458255

RESUMEN

SIRT5 is a lysine desuccinylase known to regulate mitochondrial fatty acid oxidation and the urea cycle. Here, SIRT5 was observed to bind to cardiolipin via an amphipathic helix on its N terminus. In vitro, succinyl-CoA was used to succinylate liver mitochondrial membrane proteins. SIRT5 largely reversed the succinyl-CoA-driven lysine succinylation. Quantitative mass spectrometry of SIRT5-treated membrane proteins pointed to the electron transport chain, particularly Complex I, as being highly targeted for desuccinylation by SIRT5. Correspondingly, SIRT5-/- HEK293 cells showed defects in both Complex I- and Complex II-driven respiration. In mouse liver, SIRT5 expression was observed to localize strictly to the periportal hepatocytes. However, homogenates prepared from whole SIRT5-/- liver did show reduced Complex II-driven respiration. The enzymatic activities of Complex II and ATP synthase were also significantly reduced. Three-dimensional modeling of Complex II suggested that several SIRT5-targeted lysine residues lie at the protein-lipid interface of succinate dehydrogenase subunit B. We postulate that succinylation at these sites may disrupt Complex II subunit-subunit interactions and electron transfer. Lastly, SIRT5-/- mice, like humans with Complex II deficiency, were found to have mild lactic acidosis. Our findings suggest that SIRT5 is targeted to protein complexes on the inner mitochondrial membrane via affinity for cardiolipin to promote respiratory chain function.


Asunto(s)
Cardiolipinas/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Hepatocitos/enzimología , Modelos Moleculares , Procesamiento Proteico-Postraduccional , Sirtuinas/metabolismo , Sustitución de Aminoácidos , Animales , Cardiolipinas/química , Complejo I de Transporte de Electrón/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Células HEK293 , Hepatocitos/metabolismo , Humanos , Lisina/metabolismo , Ratones , Ratones Noqueados , Mitocondrias Hepáticas/enzimología , Mitocondrias Hepáticas/metabolismo , Membranas Mitocondriales/enzimología , Membranas Mitocondriales/metabolismo , Mutación , Transporte de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Sirtuinas/química , Sirtuinas/genética
11.
Biochem Biophys Res Commun ; 497(2): 700-704, 2018 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-29458021

RESUMEN

We previously showed that the mitochondrial fatty acid oxidation enzyme long-chain acyl-CoA dehydrogenase (LCAD) is expressed in alveolar type II pneumocytes and that LCAD-/- mice have altered breathing mechanics and surfactant defects. Here, we hypothesized that LCAD-/- mice would be susceptible to influenza infection. Indeed, LCAD-/- mice demonstrated increased mortality following infection with 2009 pandemic influenza (A/CA/07/09). However, the mortality was not due to increased lung injury, as inflammatory cell counts, viral titers, and histology scores all showed non-significant trends toward milder injury in LCAD-/- mice. To confirm this, LCAD-/- were infected with a second, mouse-adapted H1N1 virus (A/PR/8/34), to which they responded with significantly less lung injury. While both strains become increasingly hypoglycemic over the first week post-infection, LCAD-/- mice lose body weight more rapidly than wild-type mice. Surprisingly, while acutely fasted LCAD-/- mice develop hepatic steatosis, influenza-infected LCAD-/- mice do not. They do, however, become more hypothermic than wild-type mice and demonstrate increased blood lactate values. We conclude that LCAD-/- mice succumb to influenza from bioenergetic starvation, likely due to increased reliance upon glucose for energy.


Asunto(s)
Acil-CoA Deshidrogenasa de Cadena Larga/genética , Técnicas de Silenciamiento del Gen , Subtipo H1N1 del Virus de la Influenza A/fisiología , Pulmón/patología , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/patología , Animales , Peso Corporal , Femenino , Hipotermia/etiología , Hipotermia/genética , Hipotermia/patología , Hipotermia/virología , Pulmón/virología , Ratones , Ratones Noqueados , Infecciones por Orthomyxoviridae/complicaciones , Infecciones por Orthomyxoviridae/virología
12.
J Biol Chem ; 291(51): 26241-26251, 2016 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-27738108

RESUMEN

Hepatoblastoma (HB) is associated with aberrant activation of the ß-catenin and Hippo/YAP signaling pathways. Overexpression of mutant ß-catenin and YAP in mice induces HBs that express high levels of c-Myc (Myc). In light of recent observations that Myc is unnecessary for long-term hepatocyte proliferation, we have now examined its role in HB pathogenesis using the above model. Although Myc was found to be dispensable for in vivo HB initiation, it was necessary to sustain rapid tumor growth. Gene expression profiling identified key molecular differences between myc+/+ (WT) and myc-/- (KO) hepatocytes and HBs that explain these behaviors. In HBs, these included both Myc-dependent and Myc-independent increases in families of transcripts encoding ribosomal proteins, non-structural factors affecting ribosome assembly and function, and enzymes catalyzing glycolysis and lipid bio-synthesis. In contrast, transcripts encoding enzymes involved in fatty acid ß-oxidation were mostly down-regulated. Myc-independent metabolic changes associated with HBs included dramatic reductions in mitochondrial mass and oxidative function, increases in ATP content and pyruvate dehydrogenase activity, and marked inhibition of fatty acid ß-oxidation (FAO). Myc-dependent metabolic changes included higher levels of neutral lipid and acetyl-CoA in WT tumors. The latter correlated with higher histone H3 acetylation. Collectively, our results indicate that the role of Myc in HB pathogenesis is to impose mutually dependent changes in gene expression and metabolic reprogramming that are unattainable in non-transformed cells and that cooperate to maximize tumor growth.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Hepatoblastoma/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Animales , Metabolismo Energético/genética , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Perfilación de la Expresión Génica , Hepatoblastoma/genética , Neoplasias Hepáticas/genética , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas c-myc/genética
13.
Biochem Biophys Res Commun ; 482(2): 346-351, 2017 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-27856258

RESUMEN

The metabolic effects of salicylates are poorly understood. This study investigated the effects of aspirin on fatty acid oxidation. Aspirin increased mitochondrial long-chain fatty acid oxidation, but inhibited peroxisomal fatty acid oxidation, in two different cell lines. Aspirin increased mitochondrial protein acetylation and was found to be a stronger acetylating agent in vitro than acetyl-CoA. However, aspirin-induced acetylation did not alter the activity of fatty acid oxidation proteins, and knocking out the mitochondrial deacetylase SIRT3 did not affect the induction of long-chain fatty acid oxidation by aspirin. Aspirin did not change oxidation of medium-chain fatty acids, which can freely traverse the mitochondrial membrane. Together, these data indicate that aspirin does not directly alter mitochondrial matrix fatty acid oxidation enzymes, but most likely exerts its effects at the level of long-chain fatty acid transport into mitochondria. The drive on mitochondrial fatty acid oxidation may be a compensatory response to altered mitochondrial morphology and inhibited electron transport chain function, both of which were observed after 24 h incubation of cells with aspirin. These studies provide insight into the pathophysiology of Reye Syndrome, which is known to be triggered by aspirin ingestion in patients with fatty acid oxidation disorders.


Asunto(s)
Aspirina/administración & dosificación , Ácidos Grasos/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Antiinflamatorios no Esteroideos/administración & dosificación , Respiración de la Célula/fisiología , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Tasa de Depuración Metabólica/efectos de los fármacos , Oxidación-Reducción
14.
J Biol Chem ; 290(39): 23897-904, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26240137

RESUMEN

The role of mitochondrial energy metabolism in maintaining lung function is not understood. We previously observed reduced lung function in mice lacking the fatty acid oxidation enzyme long-chain acyl-CoA dehydrogenase (LCAD). Here, we demonstrate that long-chain acylcarnitines, a class of lipids secreted by mitochondria when metabolism is inhibited, accumulate at the air-fluid interface in LCAD(-/-) lungs. Acylcarnitine accumulation is exacerbated by stress such as influenza infection or by dietary supplementation with l-carnitine. Long-chain acylcarnitines co-localize with pulmonary surfactant, a unique film of phospholipids and proteins that reduces surface tension and prevents alveolar collapse during breathing. In vitro, the long-chain species palmitoylcarnitine directly inhibits the surface adsorption of pulmonary surfactant as well as its ability to reduce surface tension. Treatment of LCAD(-/-) mice with mildronate, a drug that inhibits carnitine synthesis, eliminates acylcarnitines and improves lung function. Finally, acylcarnitines are detectable in normal human lavage fluid. Thus, long-chain acylcarnitines may represent a risk factor for lung injury in humans with dysfunctional fatty acid oxidation.


Asunto(s)
Acil-CoA Deshidrogenasa de Cadena Larga/metabolismo , Carnitina/análogos & derivados , Lesión Pulmonar/metabolismo , Pulmón/metabolismo , Fosfolípidos/metabolismo , Surfactantes Pulmonares/metabolismo , Acil-CoA Deshidrogenasa de Cadena Larga/genética , Animales , Carnitina/genética , Carnitina/metabolismo , Humanos , Pulmón/patología , Lesión Pulmonar/genética , Lesión Pulmonar/patología , Ratones , Ratones Noqueados , Fosfolípidos/genética
15.
J Biol Chem ; 289(15): 10668-10679, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24591516

RESUMEN

Long-chain acyl-CoA dehydrogenase (LCAD) is a mitochondrial fatty acid oxidation enzyme whose expression in humans is low or absent in organs known to utilize fatty acids for energy such as heart, muscle, and liver. This study demonstrates localization of LCAD to human alveolar type II pneumocytes, which synthesize and secrete pulmonary surfactant. The physiological role of LCAD and the fatty acid oxidation pathway in lung was subsequently studied using LCAD knock-out mice. Lung fatty acid oxidation was reduced in LCAD(-/-) mice. LCAD(-/-) mice demonstrated reduced pulmonary compliance, but histological examination of lung tissue revealed no obvious signs of inflammation or pathology. The changes in lung mechanics were found to be due to pulmonary surfactant dysfunction. Large aggregate surfactant isolated from LCAD(-/-) mouse lavage fluid had significantly reduced phospholipid content as well as alterations in the acyl chain composition of phosphatidylcholine and phosphatidylglycerol. LCAD(-/-) surfactant demonstrated functional abnormalities when subjected to dynamic compression-expansion cycling on a constrained drop surfactometer. Serum albumin, which has been shown to degrade and inactivate pulmonary surfactant, was significantly increased in LCAD(-/-) lavage fluid, suggesting increased epithelial permeability. Finally, we identified two cases of sudden unexplained infant death where no lung LCAD antigen was detectable. Both infants were homozygous for an amino acid changing polymorphism (K333Q). These findings for the first time identify the fatty acid oxidation pathway and LCAD in particular as factors contributing to the pathophysiology of pulmonary disease.


Asunto(s)
Acil-CoA Deshidrogenasa de Cadena Larga/deficiencia , Errores Innatos del Metabolismo Lipídico/metabolismo , Enfermedades Pulmonares/etiología , Surfactantes Pulmonares/metabolismo , Acil-CoA Deshidrogenasa de Cadena Larga/metabolismo , Adulto , Animales , Bronquios/metabolismo , Línea Celular Tumoral , Coenzima A/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Ácidos Grasos/metabolismo , Femenino , Homocigoto , Humanos , Lactante , Recién Nacido , Pulmón/metabolismo , Enfermedades Pulmonares/metabolismo , Neoplasias Pulmonares/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Oxígeno/metabolismo , Fosfatidilcolinas/química , Fosfatidilgliceroles/química , Polimorfismo Genético , Alveolos Pulmonares/metabolismo
16.
J Biol Chem ; 288(47): 33837-33847, 2013 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-24121500

RESUMEN

Long-chain acyl-CoA dehydrogenase (LCAD) is a key mitochondrial fatty acid oxidation enzyme. We previously demonstrated increased LCAD lysine acetylation in SIRT3 knockout mice concomitant with reduced LCAD activity and reduced fatty acid oxidation. To study the effects of acetylation on LCAD and determine sirtuin 3 (SIRT3) target sites, we chemically acetylated recombinant LCAD. Acetylation impeded substrate binding and reduced catalytic efficiency. Deacetylation with recombinant SIRT3 partially restored activity. Residues Lys-318 and Lys-322 were identified as SIRT3-targeted lysines. Arginine substitutions at Lys-318 and Lys-322 prevented the acetylation-induced activity loss. Lys-318 and Lys-322 flank residues Arg-317 and Phe-320, which are conserved among all acyl-CoA dehydrogenases and coordinate the enzyme-bound FAD cofactor in the active site. We propose that acetylation at Lys-318/Lys-322 causes a conformational change which reduces hydride transfer from substrate to FAD. Medium-chain acyl-CoA dehydrogenase and acyl-CoA dehydrogenase 9, two related enzymes with lysines at positions equivalent to Lys-318/Lys-322, were also efficiently deacetylated by SIRT3 following chemical acetylation. These results suggest that acetylation/deacetylation at Lys-318/Lys-322 is a mode of regulating fatty acid oxidation. The same mechanism may regulate other acyl-CoA dehydrogenases.


Asunto(s)
Ácidos Grasos/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Mitocondrias Hepáticas/enzimología , Sirtuina 3/metabolismo , Acetilación , Acil-CoA Deshidrogenasa de Cadena Larga , Animales , Dominio Catalítico/fisiología , Ácidos Grasos/química , Ácidos Grasos/genética , Flavina-Adenina Dinucleótido/química , Flavina-Adenina Dinucleótido/genética , Humanos , Ratones , Ratones Noqueados , Mitocondrias Hepáticas/genética , Oxidación-Reducción , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sirtuina 3/química , Sirtuina 3/genética
17.
J Clin Invest ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687608

RESUMEN

Dicarboxylic fatty acids are generated in the liver and kidney in a minor pathway called fatty acid ω-oxidation. The effects of consuming dicarboxylic fatty acids as an alternative source of dietary fat have not been explored. Here, we fed dodecanedioic acid, a 12-carbon dicarboxylic (DC12), to mice at 20% of daily caloric intake for nine weeks. DC12 increased metabolic rate, reduced body fat, reduced liver fat, and improved glucose tolerance. We observed DC12-specific breakdown products in liver, kidney, muscle, heart, and brain, indicating that oral DC12 escaped first-pass liver metabolism and was utilized by many tissues. In tissues expressing the "a" isoform of acyl-CoA oxidase-1 (ACOX1), a key peroxisomal fatty acid oxidation enzyme, DC12 was chain shortened to the TCA cycle intermediate succinyl-CoA. In tissues with low peroxisomal fatty acid oxidation capacity, DC12 was oxidized by mitochondria. In vitro, DC12 was catabolized even by adipose tissue and was not stored intracellularly. We conclude that DC12 and other dicarboxylic acids may be useful for combatting obesity and for treating metabolic disorders.

18.
bioRxiv ; 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38405696

RESUMEN

Victims of a radiation terrorist event will include pregnant women and unborn fetuses. Mitochondrial dysfunction and oxidative stress are key pathogenic factors of fetal irradiation injury. The goal of this preclinical study is to investigate the efficacy of mitigating fetal irradiation injury by maternal administration of the mitochondrial-targeted gramicidin S (GS)- nitroxide radiation mitigator, JP4-039. Pregnant female C57BL/6NTac mice received 3 Gy total body ionizing irradiation (TBI) at mid-gestation embryonic day 13.5 (E13.5). Using novel time- and-motion-resolved 4D in utero magnetic resonance imaging (4D-uMRI), we found TBI caused extensive injury to the fetal brain that included cerebral hemorrhage, loss of cerebral tissue, and hydrocephalus with excessive accumulation of cerebrospinal fluid (CSF). Histopathology of the fetal mouse brain showed broken cerebral vessels and elevated apoptosis. Further use of novel 4D Oxy-wavelet MRI capable of probing in vivo mitochondrial function in intact brain revealed significant reduction of mitochondrial function in the fetal brain after 3Gy TBI. This was validated by ex vivo Oroboros mitochondrial respirometry. Maternal administration JP4-039 one day after TBI (E14.5), which can pass through the placental barrier, significantly reduced fetal brain radiation injury and improved fetal brain mitochondrial respiration. This also preserved cerebral brain tissue integrity and reduced cerebral hemorrhage and cell death. As JP4-039 administration did not change litter sizes or fetus viability, together these findings indicate JP4-039 can be deployed as a safe and effective mitigator of fetal radiation injury from mid-gestational in utero ionizing radiation exposure. One Sentence Summary: Mitochondrial-targeted gramicidin S (GS)-nitroxide JP4-039 is safe and effective radiation mitigator for mid-gestational fetal irradiation injury.

19.
bioRxiv ; 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37961631

RESUMEN

Objective: Cardiovascular disease (CVD) is a global health crisis and a leading cause of mortality. The intricate interplay between vascular contractility and mitochondrial function is central to CVD pathogenesis. The progranulin gene (GRN) encodes glycoprotein progranulin (PGRN), a ubiquitous molecule with known anti-inflammatory property. However, the role of PGRN in CVD remains enigmatic. In this study, we sought to dissect the significance of PGRN in the regulation vascular contractility and investigate the interface between PGRN and mitochondrial quality. Method: Our investigation utilized aortae from male and female C57BL6/J wild-type (PGRN+/+) and B6(Cg)-Grntm1.1Aidi/J (PGRN-/-) mice, encompassing wire myograph assays to assess vascular contractility and primary aortic vascular smooth muscle cells (VSMCs) for mechanistic insights. Results: Our results showed suppression of contractile activity in PGRN-/- VSMCs and aorta, followed by reduced α-smooth muscle actin expression. Mechanistically, PGRN deficiency impaired mitochondrial oxygen consumption rate (OCR), complex I activity, mitochondrial turnover, and mitochondrial redox signaling, while restoration of PGRN levels in aortae from PGRN-/- mice via lentivirus delivery ameliorated contractility and boosted OCR. In addition, VSMC overexpressing PGRN displayed higher mitochondrial respiration and complex I activity accompanied by cellular hypercontractility. Furthermore, increased PGRN triggered lysosome biogenesis by regulating transcription factor EB and accelerated mitophagy flux in VSMC, while treatment with spermidine, an autophagy inducer, improved mitochondrial phenotype and enhanced vascular contractility. Finally, angiotensin II failed to induce vascular contractility in PGRN-/- suggesting a key role of PGRN to maintain the vascular tone. Conclusion: Our findings suggest that PGRN preserves the vascular contractility via regulating mitophagy flux, mitochondrial complex I activity, and redox signaling. Therefore, loss of PGRN function appears as a pivotal risk factor in CVD development.

20.
Antioxidants (Basel) ; 12(4)2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37107275

RESUMEN

Karyomegalic interstitial nephritis (KIN) is a genetic adult-onset chronic kidney disease (CKD) characterized by genomic instability and mitotic abnormalities in the tubular epithelial cells. KIN is caused by recessive mutations in the FAN1 DNA repair enzyme. However, the endogenous source of DNA damage in FAN1/KIN kidneys has not been identified. Here we show, using FAN1-deficient human renal tubular epithelial cells (hRTECs) and FAN1-null mice as a model of KIN, that FAN1 kidney pathophysiology is triggered by hypersensitivity to endogenous reactive oxygen species (ROS), which cause chronic oxidative and double-strand DNA damage in the kidney tubular epithelial cells, accompanied by an intrinsic failure to repair DNA damage. Furthermore, persistent oxidative stress in FAN1-deficient RTECs and FAN1 kidneys caused mitochondrial deficiencies in oxidative phosphorylation and fatty acid oxidation. The administration of subclinical, low-dose cisplatin increased oxidative stress and aggravated mitochondrial dysfunction in FAN1-deficient kidneys, thereby exacerbating KIN pathophysiology. In contrast, treatment of FAN1 mice with a mitochondria-targeted ROS scavenger, JP4-039, attenuated oxidative stress and accumulation of DNA damage, mitigated tubular injury, and preserved kidney function in cisplatin-treated FAN1-null mice, demonstrating that endogenous oxygen stress is an important source of DNA damage in FAN1-deficient kidneys and a driver of KIN pathogenesis. Our findings indicate that therapeutic modulation of kidney oxidative stress may be a promising avenue to mitigate FAN1/KIN kidney pathophysiology and disease progression in patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA