Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Methods ; 20(1): 149-161, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36550275

RESUMEN

Age-related macular degeneration (AMD), a leading cause of blindness, initiates in the outer-blood-retina-barrier (oBRB) formed by the retinal pigment epithelium (RPE), Bruch's membrane, and choriocapillaris. The mechanisms of AMD initiation and progression remain poorly understood owing to the lack of physiologically relevant human oBRB models. To this end, we engineered a native-like three-dimensional (3D) oBRB tissue (3D-oBRB) by bioprinting endothelial cells, pericytes, and fibroblasts on the basal side of a biodegradable scaffold and establishing an RPE monolayer on top. In this 3D-oBRB model, a fully-polarized RPE monolayer provides barrier resistance, induces choriocapillaris fenestration, and supports the formation of Bruch's-membrane-like structure by inducing changes in gene expression in cells of the choroid. Complement activation in the 3D-oBRB triggers dry AMD phenotypes (including subRPE lipid-rich deposits called drusen and choriocapillaris degeneration), and HIF-α stabilization or STAT3 overactivation induce choriocapillaris neovascularization and type-I wet AMD phenotype. The 3D-oBRB provides a physiologically relevant model to studying RPE-choriocapillaris interactions under healthy and diseased conditions.


Asunto(s)
Degeneración Macular , Epitelio Pigmentado de la Retina , Humanos , Epitelio Pigmentado de la Retina/metabolismo , Células Endoteliales , Coroides/metabolismo , Retina/metabolismo , Degeneración Macular/metabolismo
2.
PLoS Biol ; 21(12): e3002402, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38048369

RESUMEN

Vision impairment places a serious burden on the aging society, affecting the lives of millions of people. Many retinal diseases are of genetic origin, of which over 50% are due to mutations in cilia-associated genes. Most research on retinal degeneration has focused on the ciliated photoreceptor cells of the retina. However, the contribution of primary cilia in other ocular cell types has largely been ignored. The retinal pigment epithelium (RPE) is a monolayer epithelium at the back of the eye intricately associated with photoreceptors and essential for visual function. It is already known that primary cilia in the RPE are critical for its development and maturation; however, it remains unclear whether this affects RPE function and retinal tissue homeostasis. We generated a conditional knockout mouse model, in which IFT20 is exclusively deleted in the RPE, ablating primary cilia. This leads to defective RPE function, followed by photoreceptor degeneration and, ultimately, vision impairment. Transcriptomic analysis offers insights into mechanisms underlying pathogenic changes, which include transcripts related to epithelial homeostasis, the visual cycle, and phagocytosis. Due to the loss of cilia exclusively in the RPE, this mouse model enables us to tease out the functional role of RPE cilia and their contribution to retinal degeneration, providing a powerful tool for basic and translational research in syndromic and non-syndromic retinal degeneration. Non-ciliary mechanisms of IFT20 in the RPE may also contribute to pathogenesis and cannot be excluded, especially considering the increasing evidence of non-ciliary functions of ciliary proteins.


Asunto(s)
Degeneración Retiniana , Epitelio Pigmentado de la Retina , Animales , Humanos , Ratones , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cilios/genética , Cilios/metabolismo , Modelos Animales de Enfermedad , Epitelio , Ratones Noqueados , Retina , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Epitelio Pigmentado de la Retina/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(19): e2117553119, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35522714

RESUMEN

Regional phenotypic and functional differences in the retinal pigment epithelium (RPE) monolayer have been suggested to account for regional susceptibility in ocular diseases such as age-related macular degeneration (AMD), late-onset retinal degeneration (L-ORD), and choroideremia (CHM). However, a comprehensive description of human topographical RPE diversity is not yet available, thus limiting the understanding of regional RPE diversity and degenerative disease sensitivity in the eye. To develop a complete morphometric RPE map of the human eye, artificial intelligence­based software was trained to recognize, segment, and analyze RPE borders. Five statistically different, concentric RPE subpopulations (P1 to P5) were identified using cell area as a parameter, including a subpopulation (P4) with cell area comparable to that of macular cells in the far periphery of the eye. This work provides a complete reference map of human RPE subpopulations and their location in the eye. In addition, the analysis of cadaver non-AMD and AMD eyes and ultra-widefield fundus images of patients revealed differential vulnerability of the five RPE subpopulations to different retinal diseases.


Asunto(s)
Mácula Lútea , Enfermedades de la Retina , Inteligencia Artificial , Humanos , Enfermedades de la Retina/genética , Epitelio Pigmentado de la Retina
4.
Cytotherapy ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38958627

RESUMEN

Since their first production in 2007, human induced pluripotent stem cells (iPSCs) have provided a novel platform for the development of various cell therapies targeting a spectrum of diseases, ranging from rare genetic eye disorders to cancer treatment. However, several challenges must be tackled for iPSC-based cell therapy to enter the market and achieve broader global adoption. This white paper, authored by the Japanese Society for Regenerative Medicine (JSRM) - International Society for Cell Therapy (ISCT) iPSC Committee delves into the hurdles encountered in the pursuit of safe and economically viable iPSC-based therapies, particularly from the standpoint of the cell therapy industry. It discusses differences in global guidelines and regulatory frameworks, outlines a series of quality control tests required to ensure the safety of the cell therapy, and provides details and important considerations around cost of goods (COGs), including the impact of automated advanced manufacturing.

5.
Cytotherapy ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38970614

RESUMEN

Approval of induced pluripotent stem cells (iPSCs) for the manufacture of cell therapies to support clinical trials is now becoming realized after 20 years of research and development. In 2022 the International Society for Cell and Gene Therapy (ISCT) established a Working Group on Emerging Regenerative Medicine Technologies, an area in which iPSCs-derived technologies are expected to play a key role. In this article, the Working Group surveys the steps that an end user should consider when generating iPSCs that are stable, well-characterised, pluripotent, and suitable for making differentiated cell types for allogeneic or autologous cell therapies. The objective is to provide the reader with a holistic view of how to achieve high-quality iPSCs from selection of the starting material through to cell banking. Key considerations include: (i) intellectual property licenses; (ii) selection of the raw materials and cell sources for creating iPSC intermediates and master cell banks; (iii) regulatory considerations for reprogramming methods; (iv) options for expansion in 2D vs. 3D cultures; and (v) available technologies and equipment for harvesting, washing, concentration, filling, cryopreservation, and storage. Some key process limitations are highlighted to help drive further improvement and innovation, and includes recommendations to close and automate current open and manual processes.

6.
Am J Physiol Cell Physiol ; 325(6): C1470-C1484, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37899750

RESUMEN

Epithelial tissues form selective barriers to ions, nutrients, waste products, and infectious agents throughout the body. Damage to these barriers is associated with conditions such as celiac disease, cystic fibrosis, diabetes, and age-related macular degeneration. Conventional electrophysiology measurements like transepithelial resistance can quantify epithelial tissue maturity and barrier integrity but are limited in differentiating between apical, basolateral, and paracellular transport pathways. To overcome this limitation, a combination of mathematical modeling, stem cell biology, and cell physiology led to the development of 3 P-EIS, a novel mathematical model and measurement technique. 3 P-EIS employs an intracellular pipette and extracellular electrochemical impedance spectroscopy to accurately measure membrane-specific properties of epithelia, without the constraints of prior models. 3 P-EIS was validated using electronic circuit models of epithelia with known resistances and capacitances, confirming a median error of 19% (interquartile range: 14%-26%) for paracellular and transcellular resistances and capacitances (n = 5). Patient stem cell-derived retinal pigment epithelium tissues were measured using 3 P-EIS, successfully isolating the cellular responses to adenosine triphosphate. 3 P-EIS enhances quality control in epithelial cell therapies and has extensive applicability in drug testing and disease modeling, marking a significant advance in epithelial physiology.NEW & NOTEWORTHY This interdisciplinary paper integrates mathematics, biology, and physiology to measure epithelial tissue's apical, basolateral, and paracellular transport pathways. A key advancement is the inclusion of intracellular voltage recordings using a sharp pipette, enabling precise quantification of relative impedance changes between apical and basolateral membranes. This enhanced electrochemical impedance spectroscopy technique offers insights into epithelial transport dynamics, advancing disease understanding, drug interactions, and cell therapies. Its broad applicability contributes significantly to epithelial physiology research.


Asunto(s)
Células Epiteliales , Epitelio Pigmentado de la Retina , Humanos , Epitelio/metabolismo , Epitelio Pigmentado de la Retina/fisiología , Membrana Celular/metabolismo , Modelos Teóricos
7.
Annu Rev Pharmacol Toxicol ; 60: 553-572, 2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31914900

RESUMEN

Pluripotent stem cells (PSCs) are a potential replacement tissue source for degenerative diseases. Age-related macular degeneration (AMD) is a blinding disease triggered by degeneration of the retinal pigment epithelium (RPE), a monolayer tissue that functionally supports retinal photoreceptors. Recently published clinical and preclinical studies have tested PSC-derived RPE as a potential treatment for AMD. Multiple approaches have been used to manufacture RPE cells, to validate them functionally, to confirm their safety profile, and to deliver them to patients either as suspension or as a monolayer patch. Since most of these studies are at an early regulatory approval stage, the primary outcome has been to determine the safety of RPE transplants in patients. However, preliminary signs of efficacy were observed in a few patients. Here, we review the current progress in the PSC-derived RPE transplantation field and provide a comparative assessment of various approaches under development as potential therapeutics for AMD.


Asunto(s)
Degeneración Macular/terapia , Células Madre Pluripotentes/citología , Epitelio Pigmentado de la Retina/trasplante , Animales , Humanos , Degeneración Macular/patología , Epitelio Pigmentado de la Retina/citología
8.
Exp Eye Res ; 222: 109170, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35835183

RESUMEN

Age-related macular degeneration (AMD) is a disease that affects the macula - the central part of the retina. It is a leading cause of irreversible vision loss in the elderly. AMD onset is marked by the presence of lipid- and protein-rich extracellular deposits beneath the retinal pigment epithelium (RPE), a monolayer of polarized, pigmented epithelial cells located between the photoreceptors and the choroidal blood supply. Progression of AMD to the late nonexudative "dry" stage of AMD, also called geographic atrophy, is linked to progressive loss of areas of the RPE, photoreceptors, and underlying choriocapillaris leading to a severe decline in patients' vision. Differential susceptibility of macular RPE in AMD and the lack of an anatomical macula in most lab animal models has promoted the use of in vitro models of the RPE. In addition, the need for high throughput platforms to test potential therapies has driven the creation and characterization of in vitro model systems that recapitulate morphologic and functional abnormalities associated with human AMD. These models range from spontaneously formed cell line ARPE19, immortalized cell lines such as hTERT-RPE1, RPE-J, and D407, to primary human (fetal or adult) or animal (mouse and pig) RPE cells, and embryonic and induced pluripotent stem cell (iPSC) derived RPE. Hallmark RPE phenotypes, such as cobblestone morphology, pigmentation, and polarization, vary significantly betweendifferent models and culture conditions used in different labs, which would directly impact their usability for investigating different aspects of AMD biology. Here the AMD Disease Models task group of the Ryan Initiative for Macular Research (RIMR) provides a summary of several currently used in vitro RPE models, historical aspects of their development, RPE phenotypes that are attainable in these models, their ability to model different aspects of AMD pathophysiology, and pros/cons for their use in the RPE and AMD fields. In addition, due to the burgeoning use of iPSC derived RPE cells, the critical need for developing standards for differentiating and rigorously characterizing RPE cell appearance, morphology, and function are discussed.


Asunto(s)
Atrofia Geográfica , Células Madre Pluripotentes Inducidas , Degeneración Macular , Adulto , Anciano , Animales , Técnicas de Cultivo de Célula , Atrofia Geográfica/patología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Degeneración Macular/metabolismo , Ratones , Epitelio Pigmentado de la Retina/metabolismo , Porcinos
9.
Int J Mol Sci ; 23(6)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35328338

RESUMEN

PURPOSE: The lack of suitable animal models for (dry) age-related macular degeneration (AMD) has hampered therapeutic research into the disease, so far. In this study, pigmented rats and mice were systematically injected with various doses of sodium iodate (SI). After injection, the retinal structure and visual function were non-invasively characterized over time to obtain in-depth data on the suitability of these models for studying experimental therapies for retinal degenerative diseases, such as dry AMD. METHODS: SI was injected into the tail vein (i.v.) using a series of doses (0-70 mg/kg) in adolescent C57BL/6J mice and Brown Norway rats. The retinal structure and function were assessed non-invasively at baseline (day 1) and at several time points (1-3, 5, and 10-weeks) post-injection by scanning laser ophthalmoscopy (SLO), optical coherence tomography (OCT), and electroretinography (ERG). RESULTS: After the SI injection, retinal degeneration in mice and rats yielded similar results. The lowest dose (10 mg/kg) resulted in non-detectable structural or functional effects. An injection with 20 mg/kg SI did not result in an evident retinal degeneration as judged from the OCT data. In contrast, the ERG responses were temporarily decreased but returned to baseline within two-weeks. Higher doses (30, 40, 50, and 70 mg/kg) resulted in moderate to severe structural RPE and retinal injury and decreased the ERG amplitudes, indicating visual impairment in both mice and rat strains. CONCLUSIONS: After the SI injections, we observed dose-dependent structural and functional pathological effects on the retinal pigment epithelium (RPE) and retina in the pigmented mouse and rat strains that were used in this study. Similar effects were observed in both species. In particular, a dose of 30 mg/kg seems to be suitable for future studies on developing experimental therapies. These relatively easily induced non-inherited models may serve as useful tools for evaluating novel therapies for RPE-related retinal degenerations, such as AMD.


Asunto(s)
Degeneración Macular , Degeneración Retiniana , Animales , Modelos Animales de Enfermedad , Electrorretinografía , Estudios de Seguimiento , Yodatos , Degeneración Macular/diagnóstico por imagen , Degeneración Macular/tratamiento farmacológico , Degeneración Macular/patología , Ratones , Ratones Endogámicos C57BL , Ratas , Retina/patología , Degeneración Retiniana/diagnóstico por imagen , Degeneración Retiniana/tratamiento farmacológico , Degeneración Retiniana/patología , Epitelio Pigmentado de la Retina/patología , Sodio/farmacología , Tomografía de Coherencia Óptica
10.
Adv Exp Med Biol ; 1256: 265-293, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33848006

RESUMEN

Age-related macular degeneration (AMD) is a leading cause of blindness worldwide. The pathogenesis of AMD involves dysfunction and loss of the retinal pigment epithelium (RPE), a monolayer of cells that provide nourishment and functional support for the overlying photoreceptors. RPE cells in mammals are not known to divide, renew or regenerate in vivo, and in advanced AMD, RPE loss leads to degeneration of the photoreceptors and impairment of vision. One possible therapeutic approach would be to support and replace the failing RPE cells of affected patients, and indeed moderate success of surgical procedures in which relatively healthy autologous RPE from the peripheral retina of the same eye was transplanted under the retina in the macular area suggested that RPE replacement could be a means to attenuate photoreceptor cell loss. This prompted exploration of the possibility to use pluripotent stem cells (PSCs) as a potential source for "healthy and young" RPE cells for such cell-based therapy of AMD. Various approaches ranging from the use of allogeneic embryonic stem cells to autologous induced pluripotent stem cells are now being tested within early clinical trials. Such PSC-derived RPE cells are either injected into the subretinal space as a suspension, or transplanted as a monolayer patch upon scaffold support. Although most of these approaches are at early clinical stages, safety of the RPE product has been demonstrated by several of these studies. Here, we review the concept of cell-based therapy of AMD and provide an update on current progress in the field of RPE transplantation.


Asunto(s)
Células Madre Pluripotentes Inducidas , Degeneración Macular , Células Madre Pluripotentes , Animales , Tratamiento Basado en Trasplante de Células y Tejidos , Humanos , Degeneración Macular/terapia , Epitelio Pigmentado de la Retina
11.
Hum Mol Genet ; 27(19): 3325-3339, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30239781

RESUMEN

The human eye is built from several specialized tissues which direct, capture and pre-process information to provide vision. The gene expression of the different eye tissues has been extensively profiled with RNA-seq across numerous studies. Large consortium projects have also used RNA-seq to study gene expression patterning across many different human tissues, minus the eye. There has not been an integrated study of expression patterns from multiple eye tissues compared with other human body tissues. We have collated all publicly available healthy human eye RNA-seq datasets as well as dozens of other tissues. We use this fully integrated dataset to probe the biological processes and pan expression relationships between the cornea, retina, retinal pigment epithelium (RPE)-choroid complex, and the rest of the human tissues with differential expression, clustering and gene ontology term enrichment tools. We also leverage our large collection of retina and RPE-choroid tissues to build the first human weighted gene correlation networks and use them to highlight known biological pathways and eye gene disease enrichment. We also have integrated publicly available single-cell RNA-seq data from mouse retina into our framework for validation and discovery. Finally, we make all these data, analyses and visualizations available via a powerful interactive web application (https://eyeintegration.nei.nih.gov/).


Asunto(s)
Ojo/metabolismo , Regulación de la Expresión Génica/genética , Especificidad de Órganos/genética , Retina/metabolismo , Animales , Coroides/metabolismo , Córnea/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones , Epitelio Pigmentado de la Retina/metabolismo
12.
PLoS Genet ; 13(12): e1007093, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29240767

RESUMEN

Congenital nephron number varies widely in the human population and individuals with low nephron number are at risk of developing hypertension and chronic kidney disease. The development of the kidney occurs via an orchestrated morphogenetic process where metanephric mesenchyme and ureteric bud reciprocally interact to induce nephron formation. The genetic networks that modulate the extent of this process and set the final nephron number are mostly unknown. Here, we identified a specific isoform of MITF (MITF-A), a bHLH-Zip transcription factor, as a novel regulator of the final nephron number. We showed that overexpression of MITF-A leads to a substantial increase of nephron number and bigger kidneys, whereas Mitfa deficiency results in reduced nephron number. Furthermore, we demonstrated that MITF-A triggers ureteric bud branching, a phenotype that is associated with increased ureteric bud cell proliferation. Molecular studies associated with an in silico analyses revealed that amongst the putative MITF-A targets, Ret was significantly modulated by MITF-A. Consistent with the key role of this network in kidney morphogenesis, Ret heterozygosis prevented the increase of nephron number in mice overexpressing MITF-A. Collectively, these results uncover a novel transcriptional network that controls branching morphogenesis during kidney development and identifies one of the first modifier genes of nephron endowment.


Asunto(s)
Riñón/fisiología , Factor de Transcripción Asociado a Microftalmía/metabolismo , Nefronas/fisiología , Animales , Femenino , Humanos , Riñón/embriología , Riñón/metabolismo , Masculino , Ratones , Ratones Transgénicos , Factor de Transcripción Asociado a Microftalmía/genética , Morfogénesis , Nefronas/anatomía & histología , Nefronas/crecimiento & desarrollo , Nefronas/metabolismo , Organogénesis , Isoformas de Proteínas , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas Proto-Oncogénicas c-ret/metabolismo , Uréter/metabolismo , Uréter/fisiología
13.
Am J Hum Genet ; 99(6): 1388-1394, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27889061

RESUMEN

Human MITF is, by convention, called the "microphthalmia-associated transcription factor" because of previously published seminal mouse genetic studies; however, mutations in MITF have never been associated with microphthalmia in humans. Here, we describe a syndrome that we term COMMAD, characterized by coloboma, osteopetrosis, microphthalmia, macrocephaly, albinism, and deafness. COMMAD is associated with biallelic MITF mutant alleles and hence suggests a role for MITF in regulating processes such as optic-fissure closure and bone development or homeostasis, which go beyond what is usually seen in individuals carrying monoallelic MITF mutations.


Asunto(s)
Albinismo/genética , Alelos , Coloboma/genética , Sordera/genética , Megalencefalia/genética , Factor de Transcripción Asociado a Microftalmía/genética , Microftalmía/genética , Osteopetrosis/genética , Animales , Preescolar , Femenino , Homocigoto , Humanos , Lactante , Masculino , Linaje , Síndrome , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
14.
Stem Cells ; 36(2): 218-229, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29143419

RESUMEN

Early lung development is a tightly orchestrated process encompassing (a) formation of definitive endoderm, (b) anteriorization of definitive endoderm, followed by (c) specification and maturation of both proximal and distal lung precursors. Several reports detailing the interaction of genes and proteins during lung development are available; however, studies reporting the role(s) of long noncoding RNAs (lncRNA) in lung morphogenesis are limited. To investigate this, we tailored a protocol for differentiation of human-induced pluripotent stem cells into distal and proximal lung progenitors to mimic in vivo lung development. The authenticity of differentiated cells was confirmed by expression of key lung markers such as FoxA2, Sox-17, Nkx2.1, Pitx2, FoxJ1, CC10, SPC, and via scanning as well as transmission electron microscopy. We employed next generation sequencing to identify lncRNAs and categorized them based on their proximity to genes essential for lung morphogenesis. In-depth bioinformatical analysis of the sequencing data enabled identification of a novel lncRNA, RP11-380D23.2, which is located upstream of PITX2 and includes a binding site for PARP1. Chromatin immunoprecipitation and other relevant studies revealed that PARP1 is a repressor for PITX2. Whole genome microarray analysis of RP11-380D23.2/PITX2 knockdown populations of progenitors demonstrated enrichment in proximal progenitors and indicated altered distal-proximal patterning. Dysregulation of WNT effectors in both knockdowns highlighted direct modulation of PITX2 by RP11-380D23.2. Most of these results were validated in four independent hiPSC lines (including a patient-specific CFTR mutant line). Taken together, these findings offer a mechanistic explanation underpinning the role of RP11-380D23.2 during lung morphogenesis via WNT signaling. Stem Cells 2018;36:218-229.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Pulmón/metabolismo , ARN Largo no Codificante/metabolismo , Factores de Transcripción/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Línea Celular , Inmunoprecipitación de Cromatina , Proteínas de Homeodominio/genética , Humanos , Células Madre Pluripotentes/metabolismo , Interferencia de ARN , ARN Largo no Codificante/genética , Transducción de Señal/genética , Transducción de Señal/fisiología , Factores de Transcripción/genética , Proteína del Homeodomínio PITX2
15.
Biologicals ; 56: 67-83, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30150108

RESUMEN

Sessions included an overview of past cell therapy (CT) conferences sponsored by the International Alliance for Biological Standardization (IABS). The sessions highlighted challenges in the field of human pluripotent stem cells (hPSCs) and also addressed specific points on manufacturing, bioanalytics and comparability, tumorigenicity testing, storage, and shipping. Panel discussions complemented the presentations. The conference concluded that a range of new standardization groups is emerging that could help the field, but ways must be found to ensure that these efforts are coordinated. In addition, there are opportunities for regulatory convergence starting with a gap analysis of existing guidelines to determine what might be missing and what issues might be creating divergence. More specific global regulatory guidance, preferably from WHO, would be welcome. IABS and the California Institute for Regenerative Medicine (CIRM) will explore with stakeholders the development of a practical and innovative road map to support early CT product (CTP) developers.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Células Madre Pluripotentes , Pruebas de Carcinogenicidad , Guías como Asunto , Humanos , Control de Calidad , Medicina Regenerativa
16.
Adv Exp Med Biol ; 1074: 633-640, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29721997

RESUMEN

Previous work suggests that replacing diseased Retinal Pigment Epithelium (RPE) with a healthy autologous RPE sheet can provide vision rescue for AMD patients. We differentiated iPSCs into RPE using a directed differentiation protocol. RPE cells at the immature RPE stage were purified and seeded onto either electrospun poly(lactic-co-glycolic acid) (PLGA) scaffolds or non-biodegradable polyester cell culture inserts and compared the two tissues. In vitro, PLGA and polyester substrates produced functionally similar results. Following in vitro evaluation, we tested RPE tissue in animal models for safety and function. Safety studies were conducted in RNU rats using an injection composed of intact cells and homogenized scaffolds. To assess function and develop surgical procedures, the tissues were implanted into an acute RPE injury model pig eye and evaluated using optical coherence tomography (OCT), multifocal ERG (mfERG), and histology. Subretinal injection studies in rats demonstrated safety of the implant. Biodegradability and biocompatibility data from a pig model demonstrated that PLGA scaffold is safe, with the added benefit of being resorbed by the body over time, leaving no foreign material in the eye. We confirmed that biodegradable substrates provide suitable support for RPE maturation and transplantation.


Asunto(s)
Células Epiteliales/trasplante , Células Madre Pluripotentes Inducidas/trasplante , Degeneración Macular/terapia , Epitelio Pigmentado de la Retina/citología , Animales , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/patología , Modelos Animales , Ratas , Ratas Desnudas , Reproducibilidad de los Resultados , Trasplante de Células Madre/efectos adversos , Porcinos , Teratoma/etiología
17.
Proc Natl Acad Sci U S A ; 112(35): 10950-5, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26269569

RESUMEN

Age-related macular degeneration (AMD) is associated with dysfunction and death of retinal pigment epithelial (RPE) cells. Cell-based approaches using RPE-like cells derived from human pluripotent stem cells (hPSCs) are being developed for AMD treatment. However, most efficient RPE differentiation protocols rely on complex, stepwise treatments and addition of growth factors, whereas small-molecule-only approaches developed to date display reduced yields. To identify new compounds that promote RPE differentiation, we developed and performed a high-throughput quantitative PCR screen complemented by a novel orthogonal human induced pluripotent stem cell (hiPSC)-based RPE reporter assay. Chetomin, an inhibitor of hypoxia-inducible factors, was found to strongly increase RPE differentiation; combination with nicotinamide resulted in conversion of over one-half of the differentiating cells into RPE. Single passage of the whole culture yielded a highly pure hPSC-RPE cell population that displayed many of the morphological, molecular, and functional characteristics of native RPE.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Células Madre Pluripotentes/efectos de los fármacos , Epitelio Pigmentado de la Retina/citología , Ensayos Analíticos de Alto Rendimiento , Humanos , Células Madre Pluripotentes/citología , Reacción en Cadena de la Polimerasa
18.
PLoS Genet ; 10(5): e1004360, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24875170

RESUMEN

During organogenesis, PAX6 is required for establishment of various progenitor subtypes within the central nervous system, eye and pancreas. PAX6 expression is maintained in a variety of cell types within each organ, although its role in each lineage and how it acquires cell-specific activity remain elusive. Herein, we aimed to determine the roles and the hierarchical organization of the PAX6-dependent gene regulatory network during the differentiation of the retinal pigmented epithelium (RPE). Somatic mutagenesis of Pax6 in the differentiating RPE revealed that PAX6 functions in a feed-forward regulatory loop with MITF during onset of melanogenesis. PAX6 both controls the expression of an RPE isoform of Mitf and synergizes with MITF to activate expression of genes involved in pigment biogenesis. This study exemplifies how one kernel gene pivotal in organ formation accomplishes a lineage-specific role during terminal differentiation of a single lineage.


Asunto(s)
Diferenciación Celular/genética , Proteínas del Ojo/biosíntesis , Proteínas de Homeodominio/biosíntesis , Factor de Transcripción Asociado a Microftalmía/genética , Organogénesis/genética , Factores de Transcripción Paired Box/biosíntesis , Proteínas Represoras/biosíntesis , Animales , Proteínas del Ojo/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Ratones , Factor de Transcripción Asociado a Microftalmía/biosíntesis , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/genética , Pigmentación/genética , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Epitelio Pigmentado de la Retina/crecimiento & desarrollo , Epitelio Pigmentado de la Retina/metabolismo
19.
Development ; 140(6): 1330-41, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23406904

RESUMEN

Dysfunction or death of photoreceptors is the primary cause of vision loss in retinal and macular degenerative diseases. As photoreceptors have an intimate relationship with the retinal pigment epithelium (RPE) for exchange of macromolecules, removal of shed membrane discs and retinoid recycling, an improved understanding of the development of the photoreceptor-RPE complex will allow better design of gene- and cell-based therapies. To explore the epigenetic contribution to retinal development we generated conditional knockout alleles of DNA methyltransferase 1 (Dnmt1) in mice. Conditional Dnmt1 knockdown in early eye development mediated by Rx-Cre did not produce lamination or cell fate defects, except in cones; however, the photoreceptors completely lacked outer segments despite near normal expression of phototransduction and cilia genes. We also identified disruption of RPE morphology and polarization as early as E15.5. Defects in outer segment biogenesis were evident with Dnmt1 exon excision only in RPE, but not when excision was directed exclusively to photoreceptors. We detected a reduction in DNA methylation of LINE1 elements (a measure of global DNA methylation) in developing mutant RPE as compared with neural retina, and of Tuba3a, which exhibited dramatically increased expression in mutant retina. These results demonstrate a unique function of DNMT1-mediated DNA methylation in controlling RPE apicobasal polarity and neural retina differentiation. We also establish a model to study the epigenetic mechanisms and signaling pathways that guide the modulation of photoreceptor outer segment morphogenesis by RPE during retinal development and disease.


Asunto(s)
Permeabilidad de la Membrana Celular/fisiología , ADN (Citosina-5-)-Metiltransferasas/genética , Morfogénesis/genética , Segmento Externo de las Células Fotorreceptoras Retinianas/fisiología , Epitelio Pigmentado de la Retina/fisiología , Animales , Permeabilidad de la Membrana Celular/genética , Polaridad Celular/genética , ADN (Citosina-5-)-Metiltransferasa 1 , Metilación de ADN/genética , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Ratones , Ratones Transgénicos , Análisis por Micromatrices , Morfogénesis/fisiología , Especificidad de Órganos/genética , Segmento Externo de las Células Fotorreceptoras Retinianas/metabolismo , Epitelio Pigmentado de la Retina/embriología , Epitelio Pigmentado de la Retina/crecimiento & desarrollo , Epitelio Pigmentado de la Retina/metabolismo , Transcriptoma
20.
PLoS Genet ; 8(7): e1002757, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22792072

RESUMEN

The separation of the optic neuroepithelium into future retina and retinal pigment epithelium (RPE) is a critical event in early eye development in vertebrates. Here we show in mice that the transcription factor PAX6, well-known for its retina-promoting activity, also plays a crucial role in early pigment epithelium development. This role is seen, however, only in a background genetically sensitized by mutations in the pigment cell transcription factor MITF. In fact, a reduction in Pax6 gene dose exacerbates the RPE-to-retina transdifferentiation seen in embryos homozygous for an Mitf null allele, and it induces such a transdifferentiation in embryos that are either heterozygous for the Mitf null allele or homozygous for an RPE-specific hypomorphic Mitf allele generated by targeted mutation. Conversely, an increase in Pax6 gene dose interferes with transdifferentiation even in homozygous Mitf null embryos. Gene expression analyses show that, together with MITF or its paralog TFEC, PAX6 suppresses the expression of Fgf15 and Dkk3. Explant culture experiments indicate that a combination of FGF and DKK3 promote retina formation by inhibiting canonical WNT signaling and stimulating the expression of retinogenic genes, including Six6 and Vsx2. Our results demonstrate that in conjunction with Mitf/Tfec Pax6 acts as an anti-retinogenic factor, whereas in conjunction with retinogenic genes it acts as a pro-retinogenic factor. The results suggest that careful manipulation of the Pax6 regulatory circuit may facilitate the generation of retinal and pigment epithelium cells from embryonic or induced pluripotent stem cells.


Asunto(s)
Proteínas del Ojo , Proteínas de Homeodominio , Factor de Transcripción Asociado a Microftalmía , Factores de Transcripción Paired Box , Proteínas Represoras , Retina/crecimiento & desarrollo , Epitelio Pigmentado de la Retina/crecimiento & desarrollo , Vía de Señalización Wnt , Proteínas Adaptadoras Transductoras de Señales , Animales , Transdiferenciación Celular , Desarrollo Embrionario , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Dosificación de Gen , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Retina/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Vía de Señalización Wnt/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA