Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 108(7): 1342-1349, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34143952

RESUMEN

EDEM3 encodes a protein that converts Man8GlcNAc2 isomer B to Man7-5GlcNAc2. It is involved in the endoplasmic reticulum-associated degradation pathway, responsible for the recognition of misfolded proteins that will be targeted and translocated to the cytosol and degraded by the proteasome. In this study, through a combination of exome sequencing and gene matching, we have identified seven independent families with 11 individuals with bi-allelic protein-truncating variants and one individual with a compound heterozygous missense variant in EDEM3. The affected individuals present with an inherited congenital disorder of glycosylation (CDG) consisting of neurodevelopmental delay and variable facial dysmorphisms. Experiments in human fibroblast cell lines, human plasma, and mouse plasma and brain tissue demonstrated decreased trimming of Man8GlcNAc2 isomer B to Man7GlcNAc2, consistent with loss of EDEM3 enzymatic activity. In human cells, Man5GlcNAc2 to Man4GlcNAc2 conversion is also diminished with an increase of Glc1Man5GlcNAc2. Furthermore, analysis of the unfolded protein response showed a reduced increase in EIF2AK3 (PERK) expression upon stimulation with tunicamycin as compared to controls, suggesting an impaired unfolded protein response. The aberrant plasma N-glycan profile provides a quick, clinically available test for validating variants of uncertain significance that may be identified by molecular genetic testing. We propose to call this deficiency EDEM3-CDG.


Asunto(s)
Proteínas de Unión al Calcio/genética , Trastornos Congénitos de Glicosilación/genética , Retículo Endoplásmico/genética , alfa-Manosidasa/genética , Adolescente , Alelos , Proteínas de Unión al Calcio/deficiencia , Línea Celular , Niño , Preescolar , Trastornos Congénitos de Glicosilación/sangre , Discapacidades del Desarrollo/genética , Femenino , Glicoproteínas/sangre , Glicosilación , Humanos , Lactante , Discapacidad Intelectual/genética , Masculino , Mutación , Linaje , Polisacáridos/sangre , Deficiencias en la Proteostasis/genética , alfa-Manosidasa/deficiencia
2.
Mol Biol Rep ; 51(1): 650, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734811

RESUMEN

BACKGROUND: Vitiligo is a common autoimmune skin disease. Capsaicin has been found to exert a positive effect on vitiligo treatment, and mesenchymal stem cells (MSCs) are also confirmed to be an ideal cell type. This study aimed to explore the influence of capsaicin combined with stem cells on the treatment of vitiligo and to confirm the molecular mechanism of capsaicin combined with stem cells in treating vitiligo. METHODS AND RESULTS: PIG3V cell proliferation and apoptosis were detected using CCK-8 and TUNEL assays, MitoSOX Red fluorescence staining was used to measure the mitochondrial ROS level, and JC-1 staining was used to detect the mitochondrial membrane potential. The expression of related genes and proteins was detected using RT‒qPCR and Western blotting. Coimmunoprecipitation was used to analyze the protein interactions between HSP70 and TLR4 or between TLR4 and mTOR. The results showed higher expression of HSP70 in PIG3V cells than in PIG1 cells. The overexpression of HSP70 reduced the proliferation of PIG3V cells, promoted apoptosis, and aggravated mitochondrial dysfunction and autophagy abnormalities. The expression of HSP70 could be inhibited by capsaicin combined with MSCs, which increased the levels of Tyr, Tyrp1 and DCT, promoted the proliferation of PIG3V cells, inhibited apoptosis, activated autophagy, and improved mitochondrial dysfunction. In addition, capsaicin combined with MSCs regulated the expression of TLR4 through HSP70 and subsequently affected the mTOR/FAK signaling pathway CONCLUSIONS: Capsaicin combined with MSCs inhibits TLR4 through HSP70, and the mTOR/FAK signaling pathway is inhibited to alleviate mitochondrial dysfunction and autophagy abnormalities in PIG3V cells.


Asunto(s)
Apoptosis , Capsaicina , Proliferación Celular , Proteínas HSP70 de Choque Térmico , Melanocitos , Mitocondrias , Transducción de Señal , Serina-Treonina Quinasas TOR , Receptor Toll-Like 4 , Vitíligo , Receptor Toll-Like 4/metabolismo , Humanos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Serina-Treonina Quinasas TOR/metabolismo , Vitíligo/metabolismo , Vitíligo/tratamiento farmacológico , Capsaicina/farmacología , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Melanocitos/metabolismo , Melanocitos/efectos de los fármacos , Línea Celular , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Autofagia/efectos de los fármacos
3.
Nephrology (Carlton) ; 29(5): 300-304, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38233937

RESUMEN

We describe a unique case of 27-year-old male with Gitelman syndrome (GS) co-exist with pseudohypoparathyroidism type 1B (PHP1B). The patient presented with a 5-year history of seizures, tetany, and numbness of the extremities. Further examinations showed recurrent hypokalemia, inappropriate kaliuresis, hypocalcemia, hyperphosphatemia, and elevated PTH levels. A novel variant of autosomal recessive GS (p.Val287Met SLC12A3) and a novel 492.3Kb deletion containing the whole of STX16, were discovered by a whole-exome sequencing. Following the diagnosis, calcitriol, calcium, and potassium supplements were started. Hematuria calcium and phosphorus levels, as well as blood potassium levels, have recovered and remained within normal ranges after 3 years of follow-up. Our findings have important consequences for supporting the idea that heterozygosity for variants have effects on the patients' clinical performance with autosomal recessive inheritance disorders. Further study is need for the putative effects of the variant. Likewise, further investigation with regards to the gene-gene interaction relations between GS and other electrolyte imbalance disorders is warranted.


Asunto(s)
Síndrome de Gitelman , Hipopotasemia , Seudohipoparatiroidismo , Desequilibrio Hidroelectrolítico , Masculino , Humanos , Adulto , Síndrome de Gitelman/complicaciones , Síndrome de Gitelman/diagnóstico , Síndrome de Gitelman/genética , Hipopotasemia/complicaciones , Calcio , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Seudohipoparatiroidismo/complicaciones , Seudohipoparatiroidismo/diagnóstico , Seudohipoparatiroidismo/genética , Convulsiones/etiología , Convulsiones/genética , Desequilibrio Hidroelectrolítico/complicaciones , Calcio de la Dieta , Epigénesis Genética , Potasio
4.
Chem Biodivers ; : e202400557, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38701359

RESUMEN

In the present investigation, a series of dimethoxy or methylenedioxy substituted-cinnamamide derivatives containing tertiary amine moiety (N. N-Dimethyl, N, N-diethyl, Pyrrolidine, Piperidine, Morpholine) were synthesized and evaluated for cholinesterase inhibition and blood-brain barrier (BBB) permeability. Although their chemical structures are similar, their biological activities exhibit diversity. The results showed that all compounds except for those containing morpholine group exhibited moderate to potent acetylcholinesterase inhibition. Preliminary screening of BBB permeability shows that methylenedioxy substituted compounds have better brain permeability than the others. Compound 10c, containing methylenedioxy and pyrrolidine side chain, showed a better acetylcholinesterase inhibition (IC50: 1.52±0.19 µmol/L) and good blood-brain barrier permeability. Further pharmacokinetic investigation of compound 10c using ultra high performance liquid chromatography-mass/mass spectrometry (UPLC-MS/MS) in mice showed that compound 10c in brain tissue reached its peak concentration (857.72±93.56 ng/g) after dosing 30 min. Its half-life in the serum is 331 min (5.52 h), and the CBrain/CSerum at various sampling points is ranged from 1.65 to 4.71(Mean: 2.76) within 24 hours. This investigation provides valuable information on the chemistry and pharmacological diversity of cinnamic acid derivatives and may be beneficial for the discovery of central nervous system drugs.

5.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38473708

RESUMEN

DNA lesions trigger DNA damage checkpoint (DDC) signaling which arrests cell cycle progression and promotes DNA damage repair. In Saccharomyces cerevisiae, phosphorylation of histone H2A (γH2A, equivalent to γH2AX in mammals) is an early chromatin mark induced by DNA damage that is recognized by a group of DDC and DNA repair factors. We find that γH2A negatively regulates the G2/M checkpoint in response to the genotoxin camptothecin, which is a DNA topoisomerase I poison. γH2A also suppresses DDC signaling induced by the DNA alkylating agent methyl methanesulfonate. These results differ from prior findings, which demonstrate positive or no roles of γH2A in DDC in response to other DNA damaging agents such as phleomycin and ionizing radiation, which suggest that γH2A has DNA damage-specific effects on DDC signaling. We also find evidence supporting the notion that γH2A regulates DDC signaling by mediating the competitive recruitment of the DDC mediator Rad9 and the DNA repair factor Rtt107 to DNA lesions. We propose that γH2A/γH2AX serves to create a dynamic balance between DDC and DNA repair that is influenced by the nature of DNA damage.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Daño del ADN , Histonas/metabolismo , ADN/metabolismo
6.
J Cell Mol Med ; 27(7): 939-949, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36919822

RESUMEN

Lymph node metastases and distant metastases were the important limiting factor for therapy of unresectable locally advanced (IIIB stage) and oligotransduction (IVa stage) lung cancer. This study was undertaken to identify a novel predictive biomarker for predicting lymph node metastases of lung cancer. A total of 364 patients with lung cancer which comprised of 198 patients with transcriptome sequencing data, 110 cases with immunohistochemistry data and 66 patients with serum samples were included to identify and validate the candidate gene. Autophagy was measured by western blots, immunofluorescence and electron microscope. We found that 3-hydroxybutyrate dehydrogenase 1 (BDH1) was associated with proliferation and metastases of lung cancer. BDH1 expression in both tissue and serum samples was associated with lung cancer metastases. Mechanical studies revealed that the AMPK-mTOR signalling pathway mediated by PARP1 played an important role in BDH1-induced autophagy. Activation of mTOR pathway markedly increased the effect of BDH1 in cell proliferation and metastases. These results were verified by the knockdown of PARP1. Furthermore, in vivo administration of BDH1 effectively promoted tumour growth in H460 xenografts mice. Our finding not only suggested that BDH1 might be useful as a novel biomarker and therapeutic target for lung cancer metastases, but also imply that PARP1-mediated AMPK-mTOR signalling pathway might play a critical role in BDH1-induced autophagy and lung cancer proliferation and metastases.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Neoplasias Pulmonares , Humanos , Ratones , Animales , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Metástasis Linfática , Neoplasias Pulmonares/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Autofagia/genética , Proliferación Celular/genética , Línea Celular Tumoral , Poli(ADP-Ribosa) Polimerasa-1/genética
7.
Anal Chem ; 95(33): 12514-12520, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37553880

RESUMEN

Monitoring the molecular activation networks of cellular processes through fluorescence imaging to accurately elucidate the signaling pathways of mitochondrial apoptosis and the regulation of upstream and downstream molecules remains a current major challenge. In this work, a multicolor-encoded tetrahedral DNA framework (meTDF) carrying two pairs of catalytic hairpins is synthesized to monitor the intracellular upstream manganese superoxide dismutase (MnSOD) mRNA and the downstream cytochrome c (Cyt c) molecules for specific and sensitive detection of the mitochondrial apoptotic signaling pathway. These two types of molecules can trigger catalytic hairpin assembly (CHA) reactions with accelerated reaction kinetics for the hairpin pairs confined on meTDF to show highly amplified fluorescence for sensitive and simultaneous detection of MnSOD mRNA and Cyt c with detection limits of 3.7 pM and 0.23 nM in vitro, respectively. Moreover, the high stability and biocompatibility of the designed meTDF can facilitate efficient delivery of the probes into cells to monitor intracellular MnSOD mRNA and Cyt c for specific detection of the mitochondrial apoptosis pathway regulated by different drugs. With the successful demonstration of their robust capability, the meTDF nanoprobes can thus open new opportunities for detecting cell apoptotic mechanisms for studying the corresponding apoptotic signaling pathways and for screening potential therapeutic drugs.


Asunto(s)
Apoptosis , ADN , Transducción de Señal
8.
Eur J Immunol ; 52(7): 1129-1140, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35415925

RESUMEN

Mesenchymal stromal cells (MSCs) are well known for their immunoregulatory roles on allergic inflammation particularly by acting on T cells, B cells, and dendritic cells (DCs). MSC-derived small extracellular vesicles (MSC-sEV) are increasingly considered as one of the main factors for the effects of MSCs on immune responses. However, the effects of MSC-sEV on DCs in allergic diseases remain unclear. MSC-sEV were prepared from the induced pluripotent stem cells (iPSC)-MSCs by anion-exchange chromatography, and were characterized with the size, morphology, and specific markers. Human monocyte-derived DCs were generated and cultured in the presence of MSC-sEV to differentiate the so-called sEV-immature DCs (sEV-iDCs) and sEV-mature DCs (sEV-mDCs), respectively. The phenotypes and the phagocytic ability of sEV-iDCs were analyzed by flow cytometry. sEV-mDCs were co-cultured with isolated CD4+ T cells or peripheral blood mononuclear cells (PBMCs) from patients with allergic rhinitis. The levels of Th1 and Th2 cytokines produced by T cells were examined by ELISA and intracellular flow staining. And the following mechanisms were further investigated. We demonstrated that MSC-sEV inhibited the differentiation of human monocytes to iDCs with downregulation of the expression of CD40, CD80, CD86, and HLA-DR, but had no effects on mDCs with these markers. However, MSC-sEV treatment enhanced the phagocytic ability of mDCs. More importantly, using anti-IL-10 monoclonal antibody or IL-10Rα blocking antibody, we identified that sEV-mDCs suppressed the Th2 immune response by reducing the production of IL-4, IL-9, and IL-13 via IL-10. Furthermore, sEV-mDCs increased the level of Treg cells. Our study identified that mDCs treated with MSC-sEV inhibited the Th2 responses, providing novel evidence of the potential cell-free therapy acting on DCs in allergic airway diseases.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Rinitis Alérgica , Diferenciación Celular , Células Cultivadas , Células Dendríticas , Humanos , Leucocitos Mononucleares , Células Madre Mesenquimatosas/metabolismo , Rinitis Alérgica/metabolismo , Rinitis Alérgica/terapia
9.
Mol Cell Biochem ; 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38158493

RESUMEN

Hypertrophic scar (HS) formation is a cutaneous fibroproliferative disease that occurs after skin injuries and results in severe functional and esthetic disability. To date, few drugs have shown satisfactory outcomes for the treatment of HS formation. Transforming growth factor-beta (TGF-ß)/Notch interaction via small mothers against decapentaplegic 3 (Smad3) could facilitate HS formation; therefore, targeting TGF-ß/ Notch interaction via Smad3 is a potential therapeutic strategy to attenuate HS formation. In addition, optic atrophy 1 (OPA1)-mediated mitochondrial fusion contributes to fibroblast proliferation, and TGF-ß/Smad3 axis and the Notch1 pathway facilitate OPA1-mediated mitochondrial fusion. Thus, the aim of this study was to investigate whether drugs targeting TGF-ß/Notch interaction via Smad3 suppressed fibroblast proliferation to attenuate HS formation through OPA1-mediated mitochondrial fusion. We found that the TGF-ß pathway, Notch pathway, and TGF-ß/Notch interaction via Smad3 were inhibited by pirfenidone, the gamma- secretase inhibitor DAPT, and SIS3 in human keloid fibroblasts (HKF) and an HS rat model, respectively. Protein interaction was detected by co-immunoprecipitation, and mitochondrial morphology was determined by electron microscopy. Our results indicated that pirfenidone, DAPT, and SIS3 suppressed the proliferation of HKFs and attenuated HS formation in the HS rat model by inhibiting TGF-ß/Notch interaction via Smad3. Moreover, pirfenidone, DAPT, and SIS3 hindered OPA1-mediated mitochondrial fusion through inhibiting TGF-ß/Notch interaction, thereby suppressing the proliferation of HS fibroblasts and HS formation. In summary, these findings investigating the effects of drugs targeting TGF-ß/Notch interaction on HS formation might lead to novel drugs for the treatment of HS formation.

10.
Arterioscler Thromb Vasc Biol ; 42(9): 1139-1151, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35861973

RESUMEN

BACKGROUND: Common genetic variation in close proximity to the ILRUN gene are significantly associated with coronary artery disease as well as with plasma lipid traits. We recently demonstrated that hepatic inflammation and lipid regulator with ubiquitin-associated domain-like and NBR1-like domains (ILRUN) regulates lipoprotein metabolism in vivo in mice. However, whether ILRUN, which is expressed in vascular cells, directly impacts atherogenesis remains unclear. We sought to determine the role of ILRUN in atherosclerosis development in mice. METHODS: For our study, we generated global Ilrun-deficient (IlrunKO) male and female mice on 2 hyperlipidemic backgrounds: low density lipoprotein receptor knockout (LdlrKO) and apolipoprotein E knockout (ApoeKO; double knockout [DKO]). RESULTS: Compared with littermate control mice (single LdlrKO or ApoeKO), deletion of Ilrun in DKO mice resulted in significantly attenuated both early and advanced atherosclerotic lesion development, as well as reduced necrotic area. DKO mice also had significantly decreased plasma cholesterol levels, primarily attributable to non-HDL (high-density lipoprotein) cholesterol. Hepatic-specific reconstitution of ILRUN in DKO mice on the ApoeKO background normalized plasma lipids, but atherosclerotic lesion area and necrotic area remained reduced in DKO mice. Further analysis showed that loss of Ilrun increased efferocytosis receptor MerTK expression in macrophages, enhanced in vitro efferocytosis, and significantly improved in situ efferocytosis in advanced lesions. CONCLUSIONS: Our results support ILRUN as an important novel regulator of atherogenesis that promotes lesion progression and necrosis. It influences atherosclerosis through both plasma lipid-dependent and lipid-independent mechanisms. These findings support ILRUN as the likely causal gene responsible for genetic association of variants with coronary artery disease at this locus and suggest that suppression of ILRUN activity might be expected to reduce atherosclerosis.


Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , Animales , Femenino , Masculino , Ratones , Aterosclerosis/metabolismo , HDL-Colesterol/metabolismo , Enfermedad de la Arteria Coronaria/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados
11.
Aesthetic Plast Surg ; 47(5): 2074-2083, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37227488

RESUMEN

BACKGROUND: Fat transplantation retention rate is individualized and unpredictable. The presence of blood components and oil droplets in the injected lipoaspirate increases inflammation and fibrosis in a dose-dependent manner, and is probably the key factor associated with poor retention. OBJECTIVES: This study describes a volumetric fat grafting strategy based on optimization of grafts via screening intact fat particles and absorbing free oil droplets and impurities. METHODS: Centrifuged fat components were analyzed by n-hexane leaching. A special device was applied to de-oil intact fat components and obtain ultra-condensed fat (UCF). UCF was evaluated by scanning electron microscopy, particle size analysis, and flow cytometric analysis. Histological and immunohistochemical changes were investigated in a nude mouse fat graft model over 90 days. RESULTS: The lower 50% of centrifuged fat was concentrated to 40% of the original volume to obtain UCF. In UCF, the free oil droplet content was less than 10%, more than 80% of particles were larger than 1000 µm, and architecturally important fat components were present. The retention rate of UCF was significantly higher than that of Coleman fat on day 90 (57.5 ± 2.7% vs. 32.8 ± 2.5%, p < 0.001). Histological analysis detected small preadipocytes with multiple intracellular lipid droplets on day 3 in UCF grafts, indicative of early adipogenesis. Angiogenesis and macrophage infiltration were observed in UCF grafts soon after transplantation. CONCLUSION: Adipose regeneration with UCF involves rapid macrophage infiltration and exit, resulting in angiogenesis and adipogenesis. UCF may serve as a lipofiller which is beneficial for fat regeneration. LEVEL OF EVIDENCE IV: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors http://www.springer.com/00266 .


Asunto(s)
Tejido Adiposo , Supervivencia de Injerto , Ratones , Animales , Tejido Adiposo/trasplante , Microscopía Electrónica de Rastreo
12.
Int J Mol Sci ; 25(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38203354

RESUMEN

Bacterial wilt, caused by Ralstonia solanacearum, one of the most destructive phytopathogens, leads to significant annual crop yield losses. Type III effectors (T3Es) mainly contribute to the virulence of R. solanacearum, usually by targeting immune-related proteins. Here, we clarified the effect of a novel E3 ubiquitin ligase (NEL) T3E, RipAW, from R. solanacearum on pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and further explored its action mechanism. In the susceptible host Arabidopsis thaliana, we monitored the expression of PTI marker genes, flg22-induced ROS burst, and callose deposition in RipAW- and RipAWC177A-transgenic plants. Our results demonstrated that RipAW suppressed host PTI in an NEL-dependent manner. By Split-Luciferase Complementation, Bimolecular Fluorescent Complimentary, and Co-Immunoprecipitation assays, we further showed that RipAW associated with three crucial components of the immune receptor complex, namely FLS2, XLG2, and BIK1. Furthermore, RipAW elevated the ubiquitination levels of FLS2, XLG2, and BIK1, accelerating their degradation via the 26S proteasome pathway. Additionally, co-expression of FLS2, XLG2, or BIK1 with RipAW partially but significantly restored the RipAW-suppressed ROS burst, confirming the involvement of the immune receptor complex in RipAW-regulated PTI. Overall, our results indicate that RipAW impairs host PTI by disrupting the immune receptor complex. Our findings provide new insights into the virulence mechanism of R. solanacearum.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ralstonia solanacearum , Complejo Antígeno-Anticuerpo , Reconocimiento de Inmunidad Innata , Especies Reactivas de Oxígeno , Inmunoprecipitación , Receptores Inmunológicos , Proteínas Serina-Treonina Quinasas , Proteínas de Arabidopsis/genética
13.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(12): 1276-1281, 2023 Dec 15.
Artículo en Zh | MEDLINE | ID: mdl-38112147

RESUMEN

A boy, aged 6 years, attended the hospital due to global developmental delay for 6 years and recurrent fever and convulsions for 5 years. The boy was found to have delayed mental and motor development at the age of 3 months and experienced recurrent fever and convulsions since the age of 1 year, with intermittent canker sores and purulent tonsillitis. During the fever period, blood tests showed elevated white blood cell count, C-reactive protein, and erythrocyte sedimentation rate, which returned to normal after the fever subsides. Electroencephalography showed epilepsy, and genetic testing showed compound heterozygous mutations in the GPAA1 gene. The boy was finally diagnosed with glycosylphosphatidylinositol biosynthesis deficiency 15 (GPIBD15) and periodic fever. The patient did not respond well to antiepileptic treatment, but showed successful fever control with glucocorticoid therapy. This article reports the first case of GPIBD15 caused by GPAA1 gene mutation in China and summarizes the genetic features, clinical features, diagnosis, and treatment of this disease, which provides a reference for the early diagnosis and treatment of GPIBD15.


Asunto(s)
Glicosilfosfatidilinositoles , Enfermedades Raras , Humanos , Masculino , Fiebre , Glicosilfosfatidilinositoles/genética , Glicoproteínas de Membrana/genética , Mutación , Convulsiones , Niño
14.
J Cell Mol Med ; 26(11): 3235-3242, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35570832

RESUMEN

The inflammatory response mediated by macrophages plays a role in tissue repair. Macrophages preferentially infiltrate the donor site and subsequently, infiltrate the recipient site after fat grafting. This study aimed to trace host-derived macrophages and to evaluate the effects of macrophage infiltration at the recipient site during the early stage on long-term fat graft retention. In our novel mouse model, all mice underwent simulated liposuction and were divided into 2 groups. The fat procurement plus grafting (Pro-Grafting) group was engrafted with prepared fat (0.3 ml). The pro-Grafting+M2 group was engrafted with prepared fat (0.3 ml) mixed with 1.0 × 106 GFP+M0 macrophages, and then, 2 ng IL-4 was injected into the grafts on Day 3. In addition, 1.0 × 106 GFP+M0 macrophages were injected into the tail vein for tracing in the Pro-Grafting group. As a result, GFP+macrophages first infiltrated the donor site and subsequently infiltrated the recipient site in the Pro-Grafting group. The long-term retention rate was higher in the Pro-Grafting+M2 group (52% ± 6.5%) than in the Pro-Grafting group (40% ± 3.5%). CD34+ and CD31+ areas were observed earlier, and expression of the adipogenic proteins PPAR-γ, C/EBP and AP2 was higher in the Pro-Grafting+M2 group than in the Pro-Grafting group. The host macrophages preferentially infiltrate the donor site, and then, infiltrate the recipient site after fat grafting. At the early stage, an increase in macrophages at the recipient site may promote vascularization and regeneration, and thereby improve the fat graft retention rate.


Asunto(s)
Adipogénesis , Tejido Adiposo , Adipogénesis/fisiología , Tejido Adiposo/metabolismo , Animales , Modelos Animales de Enfermedad , Supervivencia de Injerto/fisiología , Macrófagos/metabolismo , Ratones , Neovascularización Patológica/metabolismo , Neovascularización Fisiológica/fisiología
15.
Stem Cells ; 39(7): 975-987, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33662168

RESUMEN

Group 2 innate lymphoid cells (ILC2s) are recognized as key controllers and effectors of type 2 inflammation. Mesenchymal stem cells (MSCs) have been shown to alleviate type 2 inflammation by modulating T lymphocyte subsets and decreasing TH 2 cytokine levels. However, the effects of MSCs on ILC2s have not been investigated. In this study, we investigated the potential immunomodulatory effects of MSCs on ILC2s in peripheral blood mononuclear cells (PBMCs) from allergic rhinitis patients and healthy subjects. We further investigated the mechanisms involved in the MSC modulation using isolated lineage negative (Lin- ) cells. PBMCs and Lin- cells were cocultured with induced pluripotent stem cell-derived MSCs (iPSC-MSCs) under the stimulation of epithelial cytokines IL-25 and IL-33. And the ILC2 levels and functions were examined and the possible mechanisms were investigated based on regulatory T (Treg) cells and ICOS-ICOSL pathway. iPSC-MSCs successfully decreased the high levels of IL-13, IL-9, and IL-5 in PBMCs in response to IL-25, IL-33, and the high percentages of IL-13+ ILC2s and IL-9+ ILC2s in response to epithelial cytokines were significantly reversed after the treatment of iPSC-MSCs. However, iPSC-MSCs were found directly to enhance ILC2 levels and functions via ICOS-ICOSL interaction in Lin- cells and pure ILC2s. iPSC-MSCs exerted their inhibitory effects on ILC2s via activating Treg cells through ICOS-ICOSL interaction. The MSC-induced Treg cells then suppressed ILC2s by secreting IL-10 in the coculture system. This study revealed that human MSCs suppressed ILC2s via Treg cells through ICOS-ICOSL interaction, which provides further insight to regulate ILC2s in inflammatory disorders.


Asunto(s)
Células Madre Mesenquimatosas , Linfocitos T Reguladores , Citocinas/metabolismo , Humanos , Inmunidad Innata , Ligando Coestimulador de Linfocitos T Inducibles/metabolismo , Proteína Coestimuladora de Linfocitos T Inducibles/metabolismo , Leucocitos Mononucleares , Linfocitos , Células Madre Mesenquimatosas/metabolismo , Linfocitos T Reguladores/metabolismo
16.
Chemistry ; 28(36): e202200540, 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35390207

RESUMEN

The newly emerging persulfide prodrugs provide additional options for the profound study of persulfide, a fascinating molecule expected to intervene in biological functions and even diseases. Peroxynitrite is often the culprit in pathological processes characterized by oxidative stress, while the persulfide prodrug responsive to it is still pending. To enrich the family of redox-activated prodrugs, we designed prodrugs with a 2-oxo-2-phenylacetamide trigger, which achieved the release of persulfide via 1, 6-N, S-relay. The degradation of prodrugs and the formation of persulfides were confirmed to be peroxynitrite-responsible by the qualitative and quantitative studies based on LC-MS/MS methods and a spectrophotometry-based tag-switch strategy. Furthermore, these prodrugs showed potent peroxynitrite scavenging activity, cellular therapeutic potential against paracetamol poisoning in HepG2 and oxidative stress in H9c2, as well as desirable in vitro metabolic properties.


Asunto(s)
Profármacos , Acetaminofén , Cromatografía Liquida , Ácido Peroxinitroso , Profármacos/farmacología , Sulfuros , Espectrometría de Masas en Tándem
17.
Circ Res ; 127(11): 1347-1361, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-32912065

RESUMEN

RATIONALE: Single-nucleotide polymorphisms near the ILRUN (inflammation and lipid regulator with ubiquitin-associated-like and NBR1 [next to BRCA1 gene 1 protein]-like domains) gene are genome-wide significantly associated with plasma lipid traits and coronary artery disease (CAD), but the biological basis of this association is unknown. OBJECTIVE: To investigate the role of ILRUN in plasma lipid and lipoprotein metabolism. METHODS AND RESULTS: ILRUN encodes a protein that contains a ubiquitin-associated-like domain, suggesting that it may interact with ubiquitinylated proteins. We generated mice globally deficient for Ilrun and found they had significantly lower plasma cholesterol levels resulting from reduced liver lipoprotein production. Liver transcriptome analysis uncovered altered transcription of genes downstream of lipid-related transcription factors, particularly PPARα (peroxisome proliferator-activated receptor alpha), and livers from Ilrun-deficient mice had increased PPARα protein. Human ILRUN was shown to bind to ubiquitinylated proteins including PPARα, and the ubiquitin-associated-like domain of ILRUN was found to be required for its interaction with PPARα. CONCLUSIONS: These findings establish ILRUN as a novel regulator of lipid metabolism that promotes hepatic lipoprotein production. Our results also provide functional evidence that ILRUN may be the casual gene underlying the observed genetic associations with plasma lipids at 6p21 in human.


Asunto(s)
Hepatocitos/metabolismo , Lipoproteínas/sangre , Hígado/metabolismo , Animales , Glucemia/metabolismo , Células COS , Línea Celular Tumoral , Chlorocebus aethiops , HDL-Colesterol/sangre , HDL-Colesterol/genética , Regulación de la Expresión Génica , Intolerancia a la Glucosa/sangre , Intolerancia a la Glucosa/genética , Células HEK293 , Humanos , Lipoproteínas/genética , Lipoproteínas VLDL/sangre , Lipoproteínas VLDL/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Unión Proteica , Receptor alfa X Retinoide/genética , Receptor alfa X Retinoide/metabolismo , Transcriptoma , Triglicéridos/sangre , Triglicéridos/genética , Ubiquitinación
18.
Biomed Chromatogr ; 36(9): e5429, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35712886

RESUMEN

Cyclocarya paliurus (CP) extracts have been shown to lower sugar and lipid levels in blood, but the material basis is not clear. We analyzed CP aqueous extracts using high-performance liquid chromatography "fingerprinting", checked their pharmacological parameters using virtual screening, and undertook molecular docking and molecular dynamics simulations. Also, the inhibitory effects of CP components upon α-glucosidase in vitro were evaluated. Fingerprinting and virtual screening showed that the aqueous extract of CP contained the active components protocatechuic acid, chlorogenic acid, caffeic acid and rutin, which were safe and had no side effects in vivo. Molecular docking and molecular dynamics simulations showed that chlorogenic acid and rutin might have a potent inhibitory effect on α-glucosidase. An enzyme-activity assay in vitro showed that the half-maximal inhibitory values of chlorogenic acid and rutin were 398.9 and 351.8 µg/ml, respectively. Chlorogenic acid and rutin had an inhibitory effect on α-glucosidase. Cyclocarya paliurus could be developed as a natural α-glucosidase inhibitor.


Asunto(s)
Juglandaceae , alfa-Glucosidasas , Ácido Clorogénico/farmacología , Cromatografía Líquida de Alta Presión , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/farmacología , Juglandaceae/química , Juglandaceae/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Extractos Vegetales/química , Extractos Vegetales/farmacología , Rutina , alfa-Glucosidasas/metabolismo
19.
Sensors (Basel) ; 22(13)2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35808199

RESUMEN

The detection of moving objects is one of the key problems in the field of computer vision. It is very important to detect moving objects accurately and rapidly for automatic driving. In this paper, we propose an improved moving object detection method to overcome the disadvantages of the RGB information-only-based method in detecting moving objects that are susceptible to shadow interference and illumination changes by adding depth information. Firstly, a convolutional neural network (CNN) based on the color edge-guided super-resolution reconstruction of depth maps is proposed to perform super-resolution reconstruction of low-resolution depth images obtained by depth cameras. Secondly, the RGB-D moving object detection algorithm is based on fusing the depth information of the same scene with RGB features for detection. Finally, in order to evaluate the effectiveness of the algorithm proposed in this paper, the Middlebury 2005 dataset and the SBM-RGBD dataset are successively used for testing. The experimental results show that our super-resolution reconstruction algorithm achieves the best results among the six commonly used algorithms, and our moving object detection algorithm improves the detection accuracy by up to 18.2%, 9.87% and 40.2% in three scenes, respectively, compared with the original algorithm, and it achieves the best results compared with the other three recent RGB-D-based methods. The algorithm proposed in this paper can better overcome the interference caused by shadow or illumination changes and detect moving objects more accurately.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Visión Ocular
20.
Sensors (Basel) ; 22(11)2022 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-35684916

RESUMEN

Accurate trajectory prediction is an essential task in automated driving, which is achieved by sensing and analyzing the behavior of surrounding vehicles. Although plenty of research works have been invested in this field, it is still a challenging subject due to the environment's complexity and the driving intention uncertainty. In this paper, we propose a joint learning architecture to incorporate the lane orientation, vehicle interaction, and driving intention in vehicle trajectory forecasting. This work employs a coordinate transform to encode the vehicle trajectory with lane orientation information, which is further incorporated into various interaction models to explore the mutual trajectory relations. Extracted features are applied in a dual-level stochastic choice learning to distinguish the trajectory modality at both the intention and motion levels. By collaborative learning of lane orientation, interaction, and intention, our approach can be applied to both highway and urban scenes. Experiments on the NGSIM, HighD, and Argoverse datasets demonstrate that the proposed method achieves a significant improvement in prediction accuracy compared with the baseline.


Asunto(s)
Conducción de Automóvil , Prácticas Interdisciplinarias , Accidentes de Tránsito , Intención , Movimiento (Física)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA