Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Parasit Vectors ; 15(1): 53, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35164852

RESUMEN

BACKGROUND: Cameroon is considering the implementation of indoor residual spraying (IRS) as a complementary measure to control malaria in the context of high pyrethroid resistance in major malaria vectors. Non-pyrethroid insecticide classes such as organophosphates and carbamates may be utilized in IRS due to widespread pyrethroid resistance. However, the success of this strategy depends on good knowledge of the resistance status of malaria vectors to carbamates and organophosphates. Here, we assessed the susceptibility profile of Anopheles gambiae sensu lato with respect to carbamates and organophosphate and the distribution of the molecular mechanism underlying resistance to these insecticides. METHODS: Anopheles gambiae s.l. mosquitoes were collected from nine settings across the country and bio-assayed with bendiocarb, propoxur and pirimiphos-methyl. The Ace-1 target-site G119S mutation was genotyped using a TaqMan assay. To investigate the polymorphism in the Ace-1 gene, a region of 924 base pairs in a sequence of the gene was amplified from both live and dead females of An. gambiae exposed to bendiocarb. RESULTS: Pirimiphos-methyl induced full mortality in An. gambiae s.l. from all study sites, whereas for carbamates, resistance was observed in four localities, with the lowest mortality rate recorded in Mangoum (17.78 ± 5.02% for bendiocarb and 18.61 ± 3.86% for propoxur) in the southern part of Cameroon. Anopheles coluzzii was found to be the predominant species in the northern tropical part of the country where it is sympatric with Anopheles arabiensis. In the localities situated in southern equatorial regions, this species was predominant in urban settings, while An. gambiae was the most abundant species in rural areas. The G119S Ace-1 target-site mutation was detected only in An. gambiae and only in the sites located in southern Cameroon. Phylogenetic analyses showed a clustering according to the phenotype. CONCLUSION: The occurrence of the Ace-1 target-site substitution G119S in An. gambiae s.l. populations highlights the challenge associated with the impending deployment of IRS in Cameroon using carbamates or organophosphates. It is therefore important to think about a resistance management plan including the use of other insecticide classes such as neonicotinoids or pyrrole to guarantee the implementation of IRS in Cameroon.


Asunto(s)
Anopheles , Insecticidas , Acetilcolinesterasa/genética , Animales , Anopheles/genética , Camerún , Carbamatos/farmacología , Femenino , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Control de Mosquitos , Mosquitos Vectores/genética , Mutación , Organofosfatos/farmacología , Filogenia
2.
Pathogens ; 11(2)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35215196

RESUMEN

Understanding how multiple insecticide resistance mechanisms occur in malaria vectors is essential for efficient vector control. This study aimed at assessing the evolution of metabolic mechanisms and Kdr L995F/S resistance alleles in Anopheles gambiae s.l. from North Cameroon, following long-lasting insecticidal nets (LLINs) distribution in 2011. Female An. gambiae s.l. emerging from larvae collected in Ouro-Housso/Kanadi, Be-Centre, and Bala in 2011 and 2015, were tested for susceptibility to deltamethrin + piperonyl butoxide (PBO) or SSS-tributyl-phosphoro-thrithioate (DEF) synergists, using the World Health Organization's standard protocol. The Kdr L995F/S alleles were genotyped using Hot Ligation Oligonucleotide Assay. Tested mosquitoes identified using PCR-RFLP were composed of An. arabiensis (68.5%), An. coluzzii (25.5%) and An. gambiae (6%) species. From 2011 to 2015, metabolic resistance increased in Ouro-Housso/Kanadi (up to 89.5% mortality to deltametnrin+synergists in 2015 versus <65% in 2011; p < 0.02), while it decreased in Be-Centre and Bala (>95% mortality in 2011 versus 42-94% in 2015; p < 0.001). Conversely, the Kdr L995F allelic frequencies slightly decreased in Ouro-Housso/Kanadi (from 50% to 46%, p > 0.9), while significantly increasing in Be-Centre and Bala (from 0-13% to 18-36%, p < 0.02). These data revealed two evolutionary trends of deltamethrin resistance mechanisms; non-pyrethroid vector control tools should supplement LLINs in North Cameroon.

3.
PLoS One ; 15(9): e0230984, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32946446

RESUMEN

Insecticide resistance genes are often associated with pleiotropic effects on various mosquito life-history traits. However, very little information is available on the impact of insecticide resistance on blood feeding process in mosquitoes. Here, using two recently detected DNA-based metabolic markers in the major malaria vector, An. funestus, we investigated how metabolic resistance genes could affect the blood meal intake. After allowing both the field F1 and lab F8 Anopheles funestus strains to feed on the human arm for 30 minutes, we assessed the association between key parameters of blood meal process including, probing time, feeding duration, blood feeding success, blood meal size, and markers of glutathione S-transferase (L119F-GSTe2) and cytochrome P450 (CYP6P9a_R)-mediated metabolic resistance. None of the parameters of blood meal process was associated with L119F-GSTe2 genotypes. By contrast, for CYP6P9a_R, homozygous resistant mosquitoes were significantly more able to blood-feed than homozygous susceptible (OR = 3.3; CI 95%: 1.4-7.7; P = 0.01) mosquitoes. Moreover, the volume of blood meal ingested by CYP6P9a-SS mosquitoes was lower than that of CYP6P9a-RS (P<0.004) and of CYP6P9a-RR (P<0.006). This suggests that CYP6P9a gene is inked with the feeding success and blood meal size of An. funestus. However, no correlation was found in the expression of CYP6P9a and that of genes encoding for salivary proteins involved in blood meal process. This study suggests that P450-based metabolic resistance may influence the blood feeding process of Anopheles funestus mosquito and consequently its ability to transmit malaria parasites.


Asunto(s)
Anopheles/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Glutatión Transferasa/metabolismo , Proteínas de Insectos/metabolismo , Mosquitos Vectores/metabolismo , Animales , Anopheles/efectos de los fármacos , Anopheles/genética , Anopheles/parasitología , Sangre/metabolismo , Camerún , Sistema Enzimático del Citocromo P-450/genética , Conducta Alimentaria , Femenino , Glutatión Transferasa/genética , Humanos , Proteínas de Insectos/genética , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Malaria/parasitología , Malaria/prevención & control , Malaria/transmisión , Mosquitos Vectores/efectos de los fármacos , Mosquitos Vectores/genética , Mosquitos Vectores/parasitología , Plasmodium/patogenicidad , Piretrinas/farmacología , Proteínas y Péptidos Salivales/metabolismo
4.
Genes (Basel) ; 10(3)2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30871094

RESUMEN

D7 family proteins are among the most expressed salivary proteins in mosquitoes. They facilitate blood meal intake of the mosquito by scavenging host amines that induce vasoconstriction, platelet aggregation and pain. Despite this important role, little information is available on the impact of insecticide resistance on the regulation of D7 proteins and consequently on the blood feeding success. In this study, real-time quantitative polymerase chain reaction (qPCR) analyses were performed to investigate how pyrethroid resistance could influence the expression of genes encoding D7 family proteins in Anopheles gambiae and Anopheles funestus s.s. mosquitoes from Elon in the Central Cameroon. Out of 328 collected mosquitoes, 256 were identified as An. funestus sl and 64 as An. gambiae sl. Within the An. funestus group, An. funestus s.s. was the most abundant species (95.95%) with An. rivulorum, An. parensis and An. rivulorum-like also detected. All An. gambiae s.l mosquitoes were identified as An. gambiae. High levels of pyrethroid resistance were observed in both An. gambiae and An. funestus mosquitoes. RT-qPCR analyses revealed a significant overexpression of two genes encoding D7 proteins, D7r3 and D7r4, in pyrethroids resistant An. funestus. However, no association was observed between the polymorphism of these genes and their overexpression. In contrast, overall D7 salivary genes were under-expressed in pyrethroid resistant An. gambiae. This study provides preliminary evidences that pyrethroid resistance could influence blood meal intake through over-expression of D7 proteins although future studies will help establishing potential impact on vectorial capacity.


Asunto(s)
Anopheles/genética , Proteínas de Insectos/genética , Resistencia a los Insecticidas/genética , Glándulas Salivales/metabolismo , Animales , Anopheles/efectos de los fármacos , Proteínas de Insectos/metabolismo , Insecticidas/toxicidad , Piretrinas/toxicidad , Regulación hacia Arriba
5.
Genes (Basel) ; 10(10)2019 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-31614683

RESUMEN

Growing resistance is reported to carbamate insecticides in malaria vectors in Cameroon. However, the contribution of acetylcholinesterase (Ace-1) to this resistance remains uncharacterised. Here, we established that the G119S mutation is driving resistance to carbamates in Anopheles gambiae populations from Cameroon. Insecticide bioassay on field-collected mosquitoes from Bankeng, a locality in southern Cameroon, showed high resistance to the carbamates bendiocarb (64.8% ± 3.5% mortality) and propoxur (55.71% ± 2.9%) but a full susceptibility to the organophosphate fenitrothion. The TaqMan genotyping of the G119S mutation in field-collected adults revealed the presence of this resistance allele (39%). A significant correlation was observed between the Ace-1R and carbamate resistance at allelic ((bendiocarb; odds ratio (OR) = 75.9; p < 0.0001) and (propoxur; OR = 1514; p < 0.0001)) and genotypic (homozygote resistant vs. homozygote susceptible (bendiocarb; OR = 120.8; p < 0.0001) and (propoxur; OR = 3277; p < 0.0001)) levels. Furthermore, the presence of the mutation was confirmed by sequencing an Ace-1 portion flanking codon 119. The cloning of this fragment revealed a likely duplication of Ace-1 in Cameroon as mosquitoes exhibited at least three distinct haplotypes. Phylogenetic analyses showed that the predominant Ace-1R allele is identical to that from West Africa suggesting a recent introduction of this allele in Central Africa from the West. The spread of this Ace-1R represents a serious challenge to future implementation of indoor residual spraying (IRS)-based interventions using carbamates or organophosphates in Cameroon.


Asunto(s)
Acetilcolinesterasa/genética , Anopheles/genética , Resistencia a los Insecticidas/genética , Acetilcolinesterasa/metabolismo , Animales , Anopheles/efectos de los fármacos , Anopheles/patogenicidad , Camerún , Carbamatos/metabolismo , Carbamatos/farmacología , Vectores de Enfermedades , Fenitrotión , Resistencia a los Insecticidas/efectos de los fármacos , Insecticidas/farmacología , Malaria/transmisión , Control de Mosquitos , Mosquitos Vectores , Mutación/efectos de los fármacos , Fenilcarbamatos , Filogenia , Polimorfismo de Nucleótido Simple/genética , Propoxur
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA