Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Eur J Nucl Med Mol Imaging ; 50(2): 423-434, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36102964

RESUMEN

PURPOSE: Early after [18F]PI-2620 PET tracer administration, perfusion imaging has potential for regional assessment of neuronal injury in neurodegenerative diseases. This is while standard late-phase [18F]PI-2620 tau-PET is able to discriminate the 4-repeat tauopathies progressive supranuclear palsy and corticobasal syndrome (4RTs) from disease controls and healthy controls. Here, we investigated whether early-phase [18F]PI-2620 PET has an additive value for biomarker based evaluation of 4RTs. METHODS: Seventy-eight patients with 4RTs (71 ± 7 years, 39 female), 79 patients with other neurodegenerative diseases (67 ± 12 years, 35 female) and twelve age-matched controls (69 ± 8 years, 8 female) underwent dynamic (0-60 min) [18F]PI-2620 PET imaging. Regional perfusion (0.5-2.5 min p.i.) and tau load (20-40 min p.i.) were measured in 246 predefined brain regions [standardized-uptake-value ratios (SUVr), cerebellar reference]. Regional SUVr were compared between 4RTs and controls by an ANOVA including false-discovery-rate (FDR, p < 0.01) correction. Hypoperfusion in resulting 4RT target regions was evaluated at the patient level in all patients (mean value - 2SD threshold). Additionally, perfusion and tau pattern expression levels were explored regarding their potential discriminatory value of 4RTs against other neurodegenerative disorders, including validation in an independent external dataset (n = 37), and correlated with clinical severity in 4RTs (PSP rating scale, MoCA, activities of daily living). RESULTS: Patients with 4RTs had significant hypoperfusion in 21/246 brain regions, most dominant in thalamus, caudate nucleus, and anterior cingulate cortex, fitting to the topology of the 4RT disease spectrum. However, single region hypoperfusion was not specific regarding the discrimination of patients with 4RTs against patients with other neurodegenerative diseases. In contrast, perfusion pattern expression showed promise for discrimination of patients with 4RTs from other neurodegenerative diseases (AUC: 0.850). Discrimination by the combined perfusion-tau pattern expression (AUC: 0.903) exceeded that of the sole tau pattern expression (AUC: 0.864) and the discriminatory power of the combined perfusion-tau pattern expression was replicated in the external dataset (AUC: 0.917). Perfusion but not tau pattern expression was associated with PSP rating scale (R = 0.402; p = 0.0012) and activities of daily living (R = - 0.431; p = 0.0005). CONCLUSION: [18F]PI-2620 perfusion imaging mirrors known topology of regional hypoperfusion in 4RTs. Single region hypoperfusion is not specific for 4RTs, but perfusion pattern expression may provide an additive value for the discrimination of 4RTs from other neurodegenerative diseases and correlates closer with clinical severity than tau pattern expression.


Asunto(s)
Enfermedad de Alzheimer , Degeneración Corticobasal , Parálisis Supranuclear Progresiva , Anciano , Femenino , Humanos , Persona de Mediana Edad , Actividades Cotidianas , Enfermedad de Alzheimer/complicaciones , Degeneración Corticobasal/diagnóstico por imagen , Enfermedades Neurodegenerativas/diagnóstico por imagen , Tomografía de Emisión de Positrones , Parálisis Supranuclear Progresiva/diagnóstico por imagen
2.
Eur J Nucl Med Mol Imaging ; 48(7): 2272-2282, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33462630

RESUMEN

PURPOSE: Tau pathology progression in Alzheimer's disease (AD) is explained through the network degeneration hypothesis and the neuropathological Braak stages; however, the compatibility of these models remains unclear. METHODS: We utilized [18F]AV-1451 tau-PET scans of 39 subjects with AD and 39 sex-matched amyloid-negative healthy controls (HC) in the ADNI (Alzheimer's Disease Neuroimaging Initiative) dataset. The peak cluster of tau-tracer uptake was identified in each Braak stage of neuropathological tau deposition and used to create a seed-based functional connectivity network (FCN) using 198 HC subjects, to identify healthy networks unaffected by neurodegeneration. RESULTS: Voxel-wise tau deposition was both significantly higher inside relative to outside FCNs and correlated significantly and positively with levels of healthy functional connectivity. Within many isolated Braak stages and regions, the correlation between tau and intrinsic functional connectivity was significantly stronger than it was across the whole brain. In this way, each peak cluster of tau was related to multiple Braak stages traditionally associated with both earlier and later stages of disease. CONCLUSION: We show specificity of healthy FCN topography for AD-pathological tau as well as positive voxel-by-voxel correlations between pathological tau and healthy functional connectivity. We propose a model of "up- and downstream" functional tau progression, suggesting that tau pathology evolves along functional connectivity networks not only "downstream" (i.e., along the expected sequence of the established Braak stages) but also in part "upstream" or "retrograde" (i.e., against the expected sequence of the established Braak stages), with pathology in earlier Braak stages intensified by its functional relationship to later disease stages.


Asunto(s)
Enfermedad de Alzheimer , Proteínas tau , Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Humanos , Neuroimagen , Tomografía de Emisión de Positrones , Proteínas tau/metabolismo
3.
Eur J Nucl Med Mol Imaging ; 48(7): 2110-2120, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33590274

RESUMEN

PURPOSE: In 2017, the Geneva Alzheimer's disease (AD) strategic biomarker roadmap initiative proposed a framework of the systematic validation AD biomarkers to harmonize and accelerate their development and implementation in clinical practice. Here, we use this framework to examine the translatability of the second-generation tau PET tracers into the clinical context. METHODS: All available literature was systematically searched based on a set of search terms that related independently to analytic validity (phases 1-2), clinical validity (phase 3-4), and clinical utility (phase 5). The progress on each of the phases was determined based on scientific criteria applied for each phase and coded as fully, partially, preliminary achieved or not achieved at all. RESULTS: The validation of the second-generation tau PET tracers has successfully passed the analytical phase 1 of the strategic biomarker roadmap. Assay definition studies showed evidence on the superiority over first-generation tau PET tracers in terms of off-target binding. Studies have partially achieved the primary aim of the analytical validity stage (phase 2), and preliminary evidence has been provided for the assessment of covariates on PET signal retention. Studies investigating of the clinical validity in phases 3, 4, and 5 are still underway. CONCLUSION: The current literature provides overall preliminary evidence on the establishment of the second-generation tau PET tracers into the clinical context, thereby successfully addressing some methodological issues from the tau PET tracer of the first generation. Nevertheless, bigger cohort studies, longitudinal follow-up, and examination of diverse disease population are still needed to gauge their clinical validity.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/diagnóstico por imagen , Biomarcadores , Estudios de Cohortes , Humanos , Tomografía de Emisión de Positrones , Proteínas tau
4.
Eur J Nucl Med Mol Imaging ; 48(7): 2070-2085, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33688996

RESUMEN

BACKGROUND: The 2017 Alzheimer's disease (AD) Strategic Biomarker Roadmap (SBR) structured the validation of AD diagnostic biomarkers into 5 phases, systematically assessing analytical validity (Phases 1-2), clinical validity (Phases 3-4), and clinical utility (Phase 5) through primary and secondary Aims. This framework allows to map knowledge gaps and research priorities, accelerating the route towards clinical implementation. Within an initiative aimed to assess the development of biomarkers of tau pathology, we revised this methodology consistently with progress in AD research. METHODS: We critically appraised the adequacy of the 2017 Biomarker Roadmap within current diagnostic frameworks, discussed updates at a workshop convening the Alzheimer's Association and 8 leading AD biomarker research groups, and detailed the methods to allow consistent assessment of aims achievement for tau and other AD diagnostic biomarkers. RESULTS: The 2020 update applies to all AD diagnostic biomarkers. In Phases 2-3, we admitted a greater variety of study designs (e.g., cross-sectional in addition to longitudinal) and reference standards (e.g., biomarker confirmation in addition to clinical progression) based on construct (in addition to criterion) validity. We structured a systematic data extraction to enable transparent and formal evidence assessment procedures. Finally, we have clarified issues that need to be addressed to generate data eligible to evidence-to-decision procedures. DISCUSSION: This revision allows for more versatile and precise assessment of existing evidence, keeps up with theoretical developments, and helps clinical researchers in producing evidence suitable for evidence-to-decision procedures. Compliance with this methodology is essential to implement AD biomarkers efficiently in clinical research and diagnostics.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/diagnóstico , Péptidos beta-Amiloides , Biomarcadores , Estudios Transversales , Progresión de la Enfermedad , Humanos , Estándares de Referencia , Proteínas tau
5.
Eur J Nucl Med Mol Imaging ; 48(12): 3872-3885, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34021393

RESUMEN

PURPOSE: Dynamic 60-min positron emission tomography (PET) imaging with the novel tau radiotracer [18F]PI-2620 facilitated accurate discrimination between patients with progressive supranuclear palsy (PSP) and healthy controls (HCs). This study investigated if truncated acquisition and static time windows can be used for [18F]PI-2620 tau-PET imaging of PSP. METHODS: Thirty-seven patients with PSP Richardson syndrome (PSP-RS) were evaluated together with ten HCs. [18F]PI-2620 PET was performed by a dynamic 60-min scan. Distribution volume ratios (DVRs) were calculated using full and truncated scan durations (0-60, 0-50, 0-40, 0-30, and 0-20 min p.i.). Standardized uptake value ratios (SUVrs) were obtained 20-40, 30-50, and 40-60 min p.i.. All DVR and SUVr data were compared with regard to their potential to discriminate patients with PSP-RS from HCs in predefined subcortical and cortical target regions (effect size, area under the curve (AUC), multi-region classifier). RESULTS: 0-50 and 0-40 DVR showed equivalent effect sizes as 0-60 DVR (averaged Cohen's d: 1.22 and 1.16 vs. 1.26), whereas the performance dropped for 0-30 or 0-20 DVR. The 20-40 SUVr indicated the best performance of all static acquisition windows (averaged Cohen's d: 0.99). The globus pallidus internus discriminated patients with PSP-RS and HCs at a similarly high level for 0-60 DVR (AUC: 0.96), 0-40 DVR (AUC: 0.96), and 20-40 SUVr (AUC: 0.94). The multi-region classifier sensitivity of these time windows was consistently 86%. CONCLUSION: Truncated and static imaging windows can be used for [18F]PI-2620 PET imaging of PSP. 0-40 min dynamic scanning offers the best balance between accuracy and economic scanning.


Asunto(s)
Enfermedad de Alzheimer , Parálisis Supranuclear Progresiva , Estudios de Factibilidad , Humanos , Tomografía de Emisión de Positrones , Parálisis Supranuclear Progresiva/diagnóstico por imagen , Proteínas tau
7.
Eur J Nucl Med Mol Imaging ; 46(9): 1787-1795, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31183635

RESUMEN

PURPOSE: Using PET imaging in a group of patients with Alzheimer's disease (AD), we investigated whether level of education, a proxy for resilience, mitigates the harmful impact of tau pathology on neuronal function. METHODS: We included 38 patients with mild-to-moderate AD (mean age 67 ± 7 years, mean MMSE score 24 ± 4, mean years of education 14 ± 4; 20 men, 18 women) in whom a [18F]AV-1451 scan (a measure of tau pathology) and an [18F]FDG scan (a measure of neuronal function) were available. The preprocessed PET scans were z-transformed using templates for [18F]AV-1451 and [18F]FDG from healthy controls, and subsequently thresholded at a z-score of ≥3.0, representing an one-tailed p value of 0.001. Next, three volumes were computed in each patient: the tau-specific volume (tau pathology without neuronal dysfunction), the FDG-specific volume (neuronal dysfunction without tau pathology), and the overlap volume (tau pathology and neuronal dysfunction). Mean z-scores and volumes were extracted and used as dependent variables in regression analysis with years of education as predictor, and age and MMSE score as covariates. RESULTS: Years of education were positively associated with tau-specific volume (ß = 0.362, p = 0.022), suggesting a lower impact of tau pathology on neuronal function in patients with higher levels of education. Concomitantly, level of education was positively related to tau burden in the overlap volume (ß = 0.303, p = 0.036) implying that with higher levels of education more tau pathology is necessary to induce neuronal dysfunction. CONCLUSION: In patients with higher levels of education, tau pathology is less paralleled by regional and remote neuronal dysfunction. The data suggest that early life-time factors such as level of education support resilience mechanisms, which ameliorate AD-related effects later in life.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Escolaridad , Neuronas/patología , Proteínas tau/metabolismo , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/fisiopatología , Femenino , Humanos , Masculino , Tomografía de Emisión de Positrones
8.
Eur J Nucl Med Mol Imaging ; 46(13): 2819-2830, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31292699

RESUMEN

Our understanding on human neurodegenerative disease was previously limited to clinical data and inferences about the underlying pathology based on histopathological examination. Animal models and in vitro experiments have provided evidence for a cell-autonomous and a non-cell-autonomous mechanism for the accumulation of neuropathology. Combining modern neuroimaging tools to identify distinct neural networks (connectomics) with target-specific positron emission tomography (PET) tracers is an emerging and vibrant field of research with the potential to examine the contributions of cell-autonomous and non-cell-autonomous mechanisms to the spread of pathology. The evidence provided here suggests that both cell-autonomous and non-cell-autonomous processes relate to the observed in vivo characteristics of protein pathology and neurodegeneration across the disease spectrum. We propose a synergistic model of cell-autonomous and non-cell-autonomous accounts that integrates the most critical factors (i.e., protein strain, susceptible cell feature and connectome) contributing to the development of neuronal dysfunction and in turn produces the observed clinical phenotypes. We believe that a timely and longitudinal pursuit of such research programs will greatly advance our understanding of the complex mechanisms driving human neurodegenerative diseases.


Asunto(s)
Conectoma/métodos , Imagen Molecular/métodos , Enfermedades Neurodegenerativas/diagnóstico por imagen , Animales , Humanos
9.
Brain ; 141(2): 568-581, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29315361

RESUMEN

See Whitwell (doi:10.1093/brain/awy001) for a scientific commentary on this article.A stereotypical anatomical propagation of tau pathology has been described in Alzheimer's disease. According to recent concepts (network degeneration hypothesis), this propagation is thought to be indicative of misfolded tau proteins possibly spreading along functional networks. If true, tau pathology accumulation should correlate in functionally connected brain regions. Therefore, we examined whether independent components could be identified in the distribution pattern of in vivo tau pathology and whether these components correspond with specific functional connectivity networks. Twenty-two 18F-AV-1451 PET scans of patients with amnestic Alzheimer's disease (mean age = 66.00 ± 7.22 years, 14 males/eight females) were spatially normalized, intensity standardized to the cerebellum, and z-transformed using the mean and deviation image of a healthy control sample to assess Alzheimer's disease-related tau pathology. First, to detect distinct tau pathology networks, the deviation maps were subjected to an independent component analysis. Second, to investigate if regions of high tau burden are associated with functional connectivity networks, we extracted the region with the maximum z-value in each of the generated tau pathology networks and used them as seeds in a subsequent resting-state functional MRI analysis, conducted in a group of healthy adults (n = 26) who were part of the 1000 Functional Connectomes Project. Third, to examine if tau pathology co-localizes with functional connectivity networks, we quantified the spatial overlap between the seed-based networks and the corresponding tau pathology network by calculating the Dice similarity coefficient. Additionally, we assessed if the tau-dependent seed-based networks correspond with known functional resting-state networks. Finally, we examined the relevance of the identified components in regard to the neuropathological Braak stages. We identified 10 independently coherent tau pathology networks with the majority showing a symmetrical bi-hemispheric expansion and coinciding with highly functionally connected brain regions such as the precuneus and cingulate cortex. A fair-to-moderate overlap was observed between the tau pathology networks and corresponding seed-based networks (Dice range: 0.13-0.57), which in turn resembled known resting-state networks, particularly the default mode network (Dice range: 0.42-0.56). Moreover, greater tau burden in the tau pathology networks was associated with more advanced Braak stages. Using the data-driven approach of an independent component analysis, we observed a set of independently coherent tau pathology networks in Alzheimer's disease, which were associated with disease progression and coincided with functional networks previously reported to be impaired in Alzheimer's disease. Together, our results provide novel information regarding the impact of tau pathology networks on the mechanistic pathway of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Vías Nerviosas/metabolismo , Proteínas tau/metabolismo , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Mapeo Encefálico , Carbolinas/farmacocinética , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/patología , Oxígeno/sangre , Tomografía de Emisión de Positrones , Análisis de Componente Principal , Descanso , Proteínas tau/efectos de los fármacos
10.
Methods ; 130: 114-123, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28790016

RESUMEN

Pathological cerebral aggregations of proteins are suggested to play a crucial role in the development of neurodegenerative disorders. For example, aggregation of the protein ß-amyloid in form of extracellular amyloid-plaques as well as intraneuronal depositions of the protein tau in form of neurofibrillary tangles represent hallmarks of Alzheimer's disease (AD). Recently, novel tracers for in vivo molecular imaging of tau-aggregates in the brain have been introduced, complementing existing tracers for imaging amyloid-plaques. Available data on these novel tracers indicate that the subject of Tau-PET may be of considerable complexity. On the one hand this refers to the various forms of appearance of tau-pathology in different types of neurodegenerative disorders. On the other hand, a number of hurdles regarding validation of these tracers still need to be overcome with regard to comparability and standardization of the different tracers, observed off-target/non-specific binding and quantitative interpretation of the signal. These issues will have to be clarified before systematic clinical application of this exciting new methodological approach may become possible. Potential applications refer to early detection of neurodegeneration, differential diagnosis between tauopathies and non-tauopathies and specific patient selection and follow-up in therapy trials.


Asunto(s)
Fluorodesoxiglucosa F18/metabolismo , Enfermedades Neurodegenerativas/diagnóstico por imagen , Enfermedades Neurodegenerativas/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Proteínas tau/metabolismo , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Fluorodesoxiglucosa F18/administración & dosificación , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/tendencias , Unión Proteica/fisiología , Tauopatías/diagnóstico por imagen , Tauopatías/metabolismo
11.
Eur J Nucl Med Mol Imaging ; 44(13): 2249-2256, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29026951

RESUMEN

PURPOSE: Cerebral glucose metabolism measured with [18F]-FDG PET is a well established marker of neuronal dysfunction in neurodegeneration. The tau-protein tracer [18F]-AV-1451 PET is currently under evaluation and shows promising results. Here, we assess the feasibility of early perfusion imaging with AV-1451 as a substite for FDG PET in assessing neuronal injury. METHODS: Twenty patients with suspected neurodegeneration underwent FDG and early phase AV-1451 PET imaging. Ten one-minute timeframes were acquired after application of 200 MBq AV-1451. FDG images were acquired on a different date according to clinical protocol. Early AV-1451 timeframes were coregistered to individual FDG-scans and spatially normalized. Voxel-wise intermodal correlations were calculated on within-subject level for every possible time window. The window with highest pooled correlation was considered optimal. Z-transformed deviation maps (ZMs) were created from both FDG and early AV-1451 images, comparing against FDG images of healthy controls. RESULTS: Regional patterns and extent of perfusion deficits were highly comparable to metabolic deficits. Best results were observed in a time window from 60 to 360 s (r = 0.86). Correlation strength ranged from r = 0.96 (subcortical gray matter) to 0.83 (frontal lobe) in regional analysis. ZMs of early AV-1451 and FDG images were highly similar. CONCLUSION: Perfusion imaging with AV-1451 is a valid biomarker for assessment of neuronal dysfunction in neurodegenerative diseases. Radiation exposure and complexity of the diagnostic workup could be reduced significantly by routine acquisition of early AV-1451 images, sparing additional FDG PET.


Asunto(s)
Carbolinas , Fluorodesoxiglucosa F18 , Neuronas/metabolismo , Imagen de Perfusión , Tomografía de Emisión de Positrones , Humanos , Enfermedades Neurodegenerativas/diagnóstico por imagen , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología
13.
Neuroimage ; 104: 21-34, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25284304

RESUMEN

We examined functional activation across the adult lifespan in 316 healthy adults aged 20-89years on a judgment task that, across conditions, drew upon both semantic knowledge and ability to modulate neural function in response to cognitive challenge. Activation in core regions of the canonical semantic network (e.g., left IFG) were largely age-invariant, consistent with cognitive aging studies that show verbal knowledge is preserved across the lifespan. However, we observed a steady linear increase in activation with age in regions outside the core network, possibly as compensation to maintain function. Under conditions of increased task demands, we observed a stepwise reduction across the lifespan of modulation of activation to increasing task demands in cognitive control regions (frontal, parietal, anterior cingulate), paralleling the neural equivalent of "processing resources" described by cognitive aging theories. Middle-age was characterized by decreased modulation to task-demand in subcortical regions (caudate, nucleus accumbens, thalamus), and very old individuals showed reduced modulation to task difficulty in midbrain/brainstem regions (ventral tegmental, substantia nigra). These novel findings suggest that aging of activation to demand follows a gradient along the dopaminergic/nigrostriatal system, with earliest manifestation in fronto-parietal regions, followed by deficits in subcortical nuclei in middle-age and then to midbrain/brainstem dopaminergic regions in the very old.


Asunto(s)
Envejecimiento/fisiología , Encéfalo/crecimiento & desarrollo , Encéfalo/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Mapeo Encefálico , Cuerpo Estriado/fisiología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Juicio , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Desempeño Psicomotor/fisiología , Tiempo de Reacción/fisiología , Sustancia Negra/fisiología , Adulto Joven
14.
Psychosom Med ; 77(6): 697-709, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26107577

RESUMEN

OBJECTIVES: This review focuses on the relationship between obesity and aging and how these interact to affect cognitive function. The topics covered are guided by the Scaffolding Theory of Aging and Cognition (STAC [Park and Reuter-Lorenz. Annu Rev Psychol 2009;60:173-96]-a conceptual model designed to relate brain structure and function to one's level of cognitive ability. METHODS: The initial literature search was focused on normal aging and was guided by the key words, "aging, cognition, and obesity" in PubMed. In a second search, we added key words related to neuropathology including words "Alzheimer's disease," "vascular dementia," and "mild cognitive impairment." RESULTS: The data suggest that being overweight or obese in midlife may be more detrimental to subsequent age-related cognitive decline than being overweight or obese at later stages of the life span. These effects are likely mediated by the accelerated effects obesity has on the integrity of neural structures, including both gray and white matter. Further epidemiological studies have provided evidence that obesity in midlife is linked to an increased risk for Alzheimer's disease and vascular dementia, most likely via an increased accumulation of Alzheimer's disease pathology. CONCLUSIONS: Although it is clear that obesity negatively affects cognition, more work is needed to better understand how aging plays a role and how brain structure and brain function might mediate the relationship of obesity and age on cognition. Guided by the STAC and the STAC-R models, we provide a roadmap for future investigations of the role of obesity on cognition across the life span.


Asunto(s)
Envejecimiento/fisiología , Encéfalo/fisiopatología , Trastornos del Conocimiento/etiología , Cognición/fisiología , Obesidad/complicaciones , Envejecimiento/patología , Encéfalo/patología , Humanos
15.
Psychol Sci ; 25(1): 103-12, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24214244

RESUMEN

In the research reported here, we tested the hypothesis that sustained engagement in learning new skills that activated working memory, episodic memory, and reasoning over a period of 3 months would enhance cognitive function in older adults. In three conditions with high cognitive demands, participants learned to quilt, learned digital photography, or engaged in both activities for an average of 16.51 hr a week for 3 months. Results at posttest indicated that episodic memory was enhanced in these productive-engagement conditions relative to receptive-engagement conditions, in which participants either engaged in nonintellectual activities with a social group or performed low-demand cognitive tasks with no social contact. The findings suggest that sustained engagement in cognitively demanding, novel activities enhances memory function in older adulthood, but, somewhat surprisingly, we found limited cognitive benefits of sustained engagement in social activities.


Asunto(s)
Envejecimiento/fisiología , Cognición/fisiología , Aprendizaje/fisiología , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Estilo de Vida , Masculino , Memoria Episódica , Persona de Mediana Edad , Resultado del Tratamiento
16.
Neurobiol Aging ; 143: 19-29, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39208715

RESUMEN

Aquaporin-4 (AQP4) is hypothesized to be a component of the glymphatic system, a pathway for removing brain interstitial solutes like amyloid-ß (Aß). Evidence exists that genetic variation of AQP4 impacts Aß clearance, clinical outcome in Alzheimer's disease as well as sleep measures. We examined whether a risk score calculated from several AQP4 single-nucleotide polymorphisms (SNPs) is related to Aß neuropathology in older cognitively unimpaired white individuals. We used a machine learning approach and explainable artificial intelligence to extract information on synergistic effects of AQP4 SNPs on brain amyloid burden from the ADNI cohort. From this information, we formulated a sex-specific AQP4 SNP-based risk score and evaluated it using data from the screening process of the A4 study. We found in both cohorts significant associations of the risk score with brain amyloid burden. The results support the hypothesis of an involvement of the glymphatic system, and particularly AQP4, in brain amyloid aggregation pathology. They suggest also that different AQP4 SNPs exert a synergistic effect on the build-up of brain amyloid burden.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Acuaporina 4 , Encéfalo , Polimorfismo de Nucleótido Simple , Acuaporina 4/genética , Humanos , Masculino , Femenino , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Péptidos beta-Amiloides/metabolismo , Anciano , Estudios de Cohortes , Anciano de 80 o más Años , Sistema Glinfático , Riesgo , Inteligencia Artificial , Aprendizaje Automático , Estudios de Asociación Genética
17.
eNeuro ; 11(1)2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38164539

RESUMEN

Stereotypical isocortical tau protein pathology along the Braak stages has been described as an instigator of neurodegeneration in Alzheimer's disease (AD). Less is known about tau pathology in motor regions, although higher-order motor deficits such as praxis dysfunction are part of the clinical description. Here, we examined how tau pathology in cytoarchitectonically mapped regions of the primary and higher-order motor network in comparison to primary visual and sensory regions varies across the clinical spectrum of AD. We analyzed tau PET scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort in patients with mild cognitive impairment (MCI; N = 84) and dementia of the Alzheimer's disease type (DAD; N = 25). Additionally, an amyloid-negative sample of healthy older individuals (HC; N = 26) were included. Standard uptake ratio values (SUVRs) were extracted in native space from the left and the right hemispheres. A repeated measurement analysis of variance was conducted to assess the effect of diagnostic disease category on tau pathology in the individual motor regions, controlling for age. We observed that tau pathology varies as a function of diagnostic category in predominantly higher motor regions (i.e., supplementary motor area, superior parietal lobe, angular gyrus, and dorsal premotor cortex) compared to primary visual, sensory and motor regions. Indeed, tau in higher-order motor regions was significantly associated with decline in cognitive function. Together, these results expand our knowledge on the in vivo pattern of tau pathology in AD and suggest that higher motor regions are not spared from tau aggregation in the course of disease, potentially contributing to the symptomatic appearance of the disease.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/patología , Proteínas tau/metabolismo , Neuroimagen , Tomografía de Emisión de Positrones/métodos , Disfunción Cognitiva/metabolismo , Péptidos beta-Amiloides/metabolismo
18.
NPJ Parkinsons Dis ; 10(1): 94, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38697984

RESUMEN

Resilience in neuroscience generally refers to an individual's capacity to counteract the adverse effects of a neuropathological condition. While resilience mechanisms in Alzheimer's disease are well-investigated, knowledge regarding its quantification, neurobiological underpinnings, network adaptations, and long-term effects in Parkinson's disease is limited. Our study involved 151 Parkinson's patients from the Parkinson's Progression Marker Initiative Database with available Magnetic Resonance Imaging, Dopamine Transporter Single-Photon Emission Computed Tomography scans, and clinical information. We used an improved prediction model linking neuropathology to symptom severity to estimate individual resilience levels. Higher resilience levels were associated with a more active lifestyle, increased grey matter volume in motor-associated regions, a distinct structural connectivity network and maintenance of relative motor functioning for up to a decade. Overall, the results indicate that relative maintenance of motor function in Parkinson's patients may be associated with greater neuronal substrate, allowing higher tolerance against neurodegenerative processes through dynamic network restructuring.

19.
J Parkinsons Dis ; 14(6): 1271-1276, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38995804

RESUMEN

 In progressive supranuclear palsy (PSP), subcortical tau and cortical perfusion can be assessed using the tracer [18F]PI-2620. We investigated if subcortical tau (globus pallidus internus, dentate nucleus) and frontal/limbic perfusion correlate in a cohort of 32 PSP patients. Tau in subcortical regions showed significant negative correlation with perfusion in limbic cortex. Perfusion in frontal regions was negatively associated with tau in both subcortical regions, but the significance threshold was only passed for the dentate nucleus. A reason could be a diaschisis-like phenomenon; that is, subcortical tau could lead to reduced connectivity to frontal regions and, thereby, to decreased perfusion.


In a study of 32 patients with progressive supranuclear palsy (PSP), we used a molecular imaging tracer called [18F]PI-2620 to measure two things: the presence of a protein called tau in deep brain areas (specifically, the globus pallidus internus and dentate nucleus) and the function of the brain's cortex by assessing blood flow (perfusion). We found that higher amounts of tau in these deep brain areas were associated with reduced blood flow in the limbic cortex, which is involved in emotion regulation. Also, the frontal areas of the brain showed reduced blood flow related to tau in these deep brain regions. However, this connection was statistically significant only for the dentate nucleus. This study suggests that the buildup of tau protein in deeper brain areas can disrupt function in parts of the brain's cortex, highlighting the damaging role of tau in PSP.


Asunto(s)
Lóbulo Frontal , Parálisis Supranuclear Progresiva , Proteínas tau , Humanos , Parálisis Supranuclear Progresiva/diagnóstico por imagen , Parálisis Supranuclear Progresiva/metabolismo , Parálisis Supranuclear Progresiva/patología , Parálisis Supranuclear Progresiva/fisiopatología , Proteínas tau/metabolismo , Masculino , Femenino , Anciano , Lóbulo Frontal/diagnóstico por imagen , Lóbulo Frontal/metabolismo , Tomografía de Emisión de Positrones , Persona de Mediana Edad , Sistema Límbico/diagnóstico por imagen , Sistema Límbico/metabolismo , Sistema Límbico/fisiopatología , Lóbulo Límbico/metabolismo , Lóbulo Límbico/diagnóstico por imagen , Lóbulo Límbico/fisiopatología , Lóbulo Límbico/patología , Circulación Cerebrovascular/fisiología
20.
medRxiv ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38645131

RESUMEN

Objectives: Apraxia is a core feature of Alzheimer's disease, but the pathomechanism of this characteristic symptom is not well understood. Here, we systematically investigated apraxia profiles in a well-defined group of patients with Alzheimer's disease (AD; N=32) who additionally underwent PET imaging with the second-generation tau PET tracer [18F]PI-2620. We hypothesized that specific patterns of tau pathology might be related to apraxic deficits. Methods: Patients (N=32) with a biomarker-confirmed diagnosis of Alzheimer's disease were recruited in addition to a sample cognitively unimpaired controls (CU 1 ; N=41). Both groups underwent in-depth neuropsychological assessment of apraxia (Dementia Apraxia Screening Test; DATE and the Cologne Apraxia Screening; KAS). In addition, static PET imaging with [18F]PI-2620 was performed to assess tau pathology in the AD patients. To specifically investigate the association of apraxia with regional tau-pathology, we compared the PET-data from this group with an independent sample of amyloid-negative cognitively intact participants (CU 2; N=54) by generation of z-score-deviation maps as well as voxel- based multiple regression analyses. Results: We identified significant clusters of tau-aggregation in praxis-related regions (e.g., supramarginal gyrus, angular gyrus, temporal, parietal and occipital regions) that were associated with apraxia. These regions were similar between the two apraxia assessments. No correlations between tau-tracer uptake in primary motor cortical or subcortical brain regions and apraxia were observed. Conclusions: These results suggest that tau deposition in specific cortical brain regions may induce local neuronal dysfunction leading to a dose-dependent functional decline in praxis performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA