Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Infect Dis ; 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38135285

RESUMEN

Respiratory syncytial virus (RSV) primarily infects the respiratory epithelium, but growing evidence suggests it may also be responsible for neurological sequelae. In 3D microphysiological peripheral nerve cultures, RSV infected neurons, macrophages, and dendritic cells along two distinct trajectories depending on the initial viral load. Low-level infection was transient, primarily involved macrophages, and induced moderate chemokine release with transient neural hypersensitivity. Infection with higher viral loads was persistent, infected neuronal cells in addition to monocytes, and induced robust chemokine release followed by progressive neurotoxicity. In spinal cord cultures, RSV infected microglia and dendritic cells but not neurons, producing a moderate chemokine expression pattern. The persistence of infection was variable but could be identified in dendritic cells as long as 30 days post-inoculation. This study suggests that RSV can disrupt neuronal function directly through infection of peripheral neurons and indirectly through infection of resident monocytes, and inflammatory chemokines likely mediate both mechanisms.

2.
Clin Infect Dis ; 75(1): e1195-e1201, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34651164

RESUMEN

The relationship between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) dose, infection, and coronavirus disease 2019 (COVID-19) outcomes remains poorly understood. This review summarizes the existing literature regarding this issue, identifies gaps in current knowledge, and suggests opportunities for future research. In humans, host characteristics, including age, sex, comorbidities, smoking, and pregnancy, are associated with severe COVID-19. Similarly, in animals, host factors are strong determinants of disease severity, although most animal infection models manifest clinically with mild to moderate respiratory disease. The influence of variants of concern as it relates to infectious dose, consequence of overall pathogenicity, and disease outcome in dose-response remains unknown. Epidemiologic data suggest a dose-response relationship for infection contrasting with limited and inconsistent surrogate-based evidence between dose and disease severity. Recommendations include the design of future infection studies in animal models to investigate inoculating dose on outcomes and the use of better proxies for dose in human epidemiology studies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Comorbilidad , Femenino , Humanos , Embarazo
3.
Int J Mol Sci ; 21(2)2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-31968632

RESUMEN

Perlecan is a heparan sulfate proteoglycan protein in the extracellular matrix that structurally and biochemically supports the cerebrovasculature by dynamically responding to changes in cerebral blood flow. These changes in perlecan expression seem to be contradictory, ranging from neuroprotective and angiogenic to thrombotic and linked to lipid retention. This review investigates perlecan's influence on risk factors such as diabetes, hypertension, and amyloid that effect Vascular contributions to Cognitive Impairment and Dementia (VCID). VCID, a comorbidity with diverse etiology in sporadic Alzheimer's disease (AD), is thought to be a major factor that drives the overall clinical burden of dementia. Accordingly, changes in perlecan expression and distribution in response to VCID appears to be injury, risk factor, location, sex, age, and perlecan domain dependent. While great effort has been made to understand the role of perlecan in VCID, additional studies are needed to increase our understanding of perlecan's role in health and in cerebrovascular disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Disfunción Cognitiva/metabolismo , Demencia/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Amiloide/metabolismo , Demencia Vascular/metabolismo , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Factores de Riesgo
4.
Am J Physiol Cell Physiol ; 316(2): C252-C263, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30462535

RESUMEN

Ischemicstroke is a leading cause of death and disability in the United States, but recent advances in treatments [i.e., endovascular thrombectomy and tissue plasminogen activator (t-PA)] that target the stroke-causing blood clot, while improving overall stroke mortality rates, have had much less of an impact on overall stroke morbidity. This may in part be attributed to the lack of therapeutics targeting reperfusion-induced injury after the blood clot has been removed, which, if left unchecked, can expand injury from its core into the surrounding at risk tissue (penumbra). This occurs in two phases of increased permeability of the blood-brain barrier, a physical barrier that under physiologic conditions regulates brain influx and efflux of substances and consists of tight junction forming endothelial cells (and transporter proteins), astrocytes, pericytes, extracellular matrix, and their integrin cellular receptors. During, embryonic development, maturity, and following stroke reperfusion, cerebral vasculature undergoes significant changes including changes in expression of integrins and degradation of surrounding extracellular matrix. Integrins, heterodimers with α and ß subunits, and their extracellular matrix ligands, a collection of proteoglycans, glycoproteins, and collagens, have been modestly studied in the context of stroke compared with other diseases (e.g., cancer). In this review, we describe the effect that various integrins and extracellular matrix components have in embryonic brain development, and how this changes in both maturity and in the poststroke environment. Particular focus will be on how these changes in integrins and the extracellular matrix affect blood-brain barrier components and their potential as diagnostic and therapeutic targets for ischemic stroke.


Asunto(s)
Barrera Hematoencefálica/embriología , Barrera Hematoencefálica/metabolismo , Matriz Extracelular/metabolismo , Integrinas/metabolismo , Accidente Cerebrovascular/metabolismo , Animales , Astrocitos/metabolismo , Astrocitos/patología , Barrera Hematoencefálica/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Matriz Extracelular/patología , Humanos , Permeabilidad , Accidente Cerebrovascular/patología , Uniones Estrechas/metabolismo , Uniones Estrechas/patología
5.
J Neuroinflammation ; 16(1): 222, 2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31727174

RESUMEN

BACKGROUND: Stroke remains a leading cause of death and disability worldwide despite recent treatment breakthroughs. A primary event in stroke pathogenesis is the development of a potent and deleterious local and peripheral inflammatory response regulated by the pro-inflammatory cytokine interleukin-1 (IL-1). While the role of IL-1ß (main released isoform) has been well studied in stroke, the role of the IL-1α isoform remains largely unknown. With increasing utilization of intravenous tissue plasminogen activator (t-PA) or thrombectomy to pharmacologically or mechanically remove ischemic stroke causing blood clots, respectively, there is interest in pairing successful cerebrovascular recanalization with neurotherapeutic pharmacological interventions (Fraser et al., J Cereb Blood Flow Metab 37:3531-3543, 2017; Hill et al., Lancet Neurol 11:942-950, 2012; Amaro et al., Stroke 47:2874-2876, 2016). METHODS: Transient stroke was induced in mice via one of two methods. One group of mice were subjected to tandem ipsilateral common carotid artery and middle cerebral artery occlusion, while another group underwent the filament-based middle cerebral artery occlusion. We have recently developed an animal model of intra-arterial (IA) drug administration after recanalization (Maniskas et al., J Neurosci Met 240:22-27, 2015). Sub groups of the mice were treated with either saline or Il-1α, wherein the drug was administered either acutely (immediately after surgery) or subacutely (on the third day after stroke). This was followed by behavioral and histological analyses. RESULTS: We now show in the above-mentioned mouse stroke models (transient tandem ipsilateral common carotid artery (CCA) and middle cerebral artery occlusion (MCA) occlusion, MCA suture occlusion) that IL-1α is neuroprotective when acutely given either intravenously (IV) or IA at low sub-pathologic doses. Furthermore, while IV administration induces transient hemodynamic side effects without affecting systemic markers of inflammation, IA delivery further improves overall outcomes while eliminating these side effects. Additionally, we show that delayed/subacute IV IL-1α administration ameliorates functional deficit and promotes neurorepair. CONCLUSIONS: Taken together, our present study suggests for the first time that IL-1α could, unexpectedly, be an effective ischemic stroke therapy with a broad therapeutic window.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Interleucina-1alfa/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Accidente Cerebrovascular/tratamiento farmacológico , Animales , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/patología , Isquemia Encefálica/patología , Modelos Animales de Enfermedad , Interleucina-1alfa/farmacología , Masculino , Ratones , Neuronas/efectos de los fármacos , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Recuperación de la Función/efectos de los fármacos , Accidente Cerebrovascular/patología
6.
Cerebrovasc Dis ; 48(3-6): 251-256, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31851968

RESUMEN

INTRODUCTION: Mechanical thrombectomy has become standard of care for emergent large vessel occlusive stroke. Estimates of incidence for thrombectomy eligibility vary significantly. National Institutes of Health Stroke Scale (NIHSS) of 10 or greater is highly predictive of large vessel occlusion. Using our Kentucky Appalachian Stroke Registry (KApSR), we evaluated temporal trends in stroke admissions with NIHSS ≥10 to determine patient characteristics among that group along with effects and needs in thrombectomy utilization. METHODS: Using the KApSR database that captures patients throughout the Appalachian region in our stroke network, we evaluated patients admitted with ischemic stroke with NIHSS ≥10. We recorded demographics, comorbidities, treatment (thrombectomy, decompressive craniectomy), and county of origin. Change in NIHSS from admission to discharge was used as an indicator of inpatient outcome. RESULTS: Between 2010 and 2016, 1,510 patients were admitted with NIHSS ≥10. 87.2% had high blood pressure, 69.6% had dyslipidemia, and 41.7% used tobacco. There were significant sex differences in the types of patients presenting with NIHSS ≥10 with females being older on average and having more atrial fibrillation and obesity. There was an increase in thrombectomy utilization from 2010 to 2016, but only 7.5% of the potentially eligible patients underwent the procedure. In comparison to the period 2010-2014, the 2015-2016 period had higher rates of obesity and tobacco abuse. CONCLUSION: Among patients with significant burden of ischemic stroke, the most common coexisting medical condition was high blood pressure. Patients who underwent thrombectomy had significantly better inpatient clinical improvement. These data support the need to maximize utilization of thrombectomy along with need to devote increased resources on modifiable stroke risk factors.


Asunto(s)
Isquemia Encefálica/terapia , Toma de Decisiones Clínicas , Técnicas de Apoyo para la Decisión , Evaluación de la Discapacidad , Selección de Paciente , Accidente Cerebrovascular/terapia , Trombectomía , Factores de Edad , Anciano , Anciano de 80 o más Años , Región de los Apalaches/epidemiología , Isquemia Encefálica/diagnóstico , Isquemia Encefálica/epidemiología , Isquemia Encefálica/fisiopatología , Comorbilidad , Estudios Transversales , Femenino , Estado de Salud , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Sistema de Registros , Estudios Retrospectivos , Medición de Riesgo , Factores de Riesgo , Factores Sexuales , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/fisiopatología , Trombectomía/efectos adversos , Resultado del Tratamiento
7.
Front Physiol ; 14: 1189731, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324385

RESUMEN

Perlecan is a 500 kDa proteoglycan residing in the extracellular matrix of endothelial basement membranes with five distinct protein domains and three heparan sulfate chains. The complex structure of perlecan and the interaction it has with its local environment accounts for its various cellular and tissue-related effects, to include cartilage, bone, neural and cardiac development, angiogenesis, and blood brain barrier stability. As perlecan is a key contributor to extracellular matrix health involved in many tissues and processes throughout the body, dysregulation of perlecan has the potential to contribute to various neurological and musculoskeletal diseases. Here we review key findings associated with perlecan dysregulation in the context of disease. This is a narrative review article examining perlecan’s role in diseases of neural and musucloskeletal pathology and its potential as a therapeutic index. Literature searches were conducted on the PubMed database, and were focused on perlecan's impact in neurological disease, to include ischemic stroke, Alzheimer's Disease (AD) and brain arteriovenous malformation (BAVM), as well as musculoskeletal pathology, including Dyssegmental Dysplasia Silverman-Handmaker type (DDSH), Schwartz-Jampel syndrome (SJS), sarcopenia, and osteoarthritis (OA). PRISMA guidelines were utilized in the search and final selection of articles.Increased perlecan levels were associated with sarcopenia, OA, and BAVM, while decreased perlecan was associated with DDSH, and SJS. We also examined the therapeutic potential of perlecan signaling in ischemic stroke, AD, and osteoarthritic animal models. Perlecan experimentally improved outcomes in such models of ischemic stroke and AD, and we found that it may be a promising component of future therapeutics for such pathology. In treating the pathophysiology of sarcopenia, OA, and BAVM, inhibiting the effect of perlecan may be beneficial. As perlecan binds to both α-5 integrin and VEGFR2 receptors, tissue specific inhibitors of these proteins warrant further study. In addition, analysis of experimental data revealed promising insight into the potential uses of perlecan domain V as a broad treatment for ischemic stroke and AD. As these diseases have limited therapeutic options, further study into perlecan or its derivatives and its potential to be used as novel therapeutic for these and other diseases should be seriously considered.

8.
Front Neurosci ; 17: 1177040, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37255752

RESUMEN

Injuries and disorders of the central nervous system (CNS) present a particularly difficult challenge for modern medicine to address, given the complex nature of the tissues, obstacles in researching and implementing therapies, and barriers to translating efficacious treatments into human patients. Recent advancements in neural stem cell (NSC) transplantation, endogenous neurogenesis, and in vivo reprogramming of non-neural cells into the neuronal lineage represent multiple approaches to resolving CNS injury. However, we propose that one practice that must be incorporated universally in neuroregeneration studies is the use of extracellular matrix (ECM)-mimicking biomaterials to supply the architectural support and cellular microenvironment necessary for partial or complete restoration of function. Through consideration of developmental processes including neurogenesis, cellular migration, and establishment of functional connectivity, as well as evaluation of process-specific interactions between cells and ECM components, insights can be gained to harness and modulate native and induced neurobiological processes to promote CNS tissue repair. Further, evaluation of the current landscape of regenerative medicine and tissue engineering techniques external to the neurosciences provides key perspectives into the role of the ECM in the use of stem cell-based therapies, and the potential directions future neuroregenerative approaches may take. If the most successful of these approaches achieve wide-spread adoption, innovative paired NSC-ECM strategies for neuroregeneration may become prominent in the near future, and with the rapid advances these techniques are poised to herald, a new era of treatment for CNS injury may dawn.

9.
Transl Stroke Res ; 14(6): 941-954, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36508132

RESUMEN

Despite recent therapeutic advancements, ischemic stroke remains a major cause of death and disability. It has been previously demonstrated that ~ 85-kDa recombinant human perlecan domain V (rhPDV) binds to upregulated integrin receptors (α2ß1 and α5ß1) associated with neuroprotective and functional improvements in various animal models of acute ischemic stroke. Recombinant human perlecan laminin-like globular domain 3 (rhPDVLG3), a 21-kDa C-terminal subdomain of rhPDV, has been demonstrated to more avidly bind to the α2ß1 integrin receptor than its parent molecule and consequently was postulated to evoke significant neuroprotective and functional effects. To test this hypothesis, fifty male C57Bl/6 J mice studied in a t-MCAO model were randomly allocated to either rhPDV treatment, rhPDVLG3, or equivalent volume of PBS at the time of reperfusion in a study where all procedures and analyses were conducted blind to treatment. On post-MCAO day 7, 2,3,5-triphenyltetrazolium chloride staining of brain slices was used to quantify infarct volume. We observed that treatment with rhPDVLG3 reduced infarct volume by 65.6% (p = 0.0001), improved weight loss (p < 0.05), and improved functional outcome measures (p < 0.05) when compared to PBS controls, improvements which were generally greater in magnitude than those observed for 2 mg/kg of rhPDV. In addition, treatment with 6 mg/kg of rhPDVLG3 was observed to significantly reduce mortality due to stroke in one model, an outcome not previously observed for rhPDV. Our initial findings suggest that treatment with rhPDVLG3 provides significant improvement in neuroprotective and functional outcomes in experimental stroke models and that further investigation of rhPDVLG3 as a novel neuroprotective therapy for patients with stroke is warranted.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Fármacos Neuroprotectores , Accidente Cerebrovascular , Ratones , Animales , Humanos , Masculino , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Modelos Animales de Enfermedad , Accidente Cerebrovascular/tratamiento farmacológico , Isquemia Encefálica/tratamiento farmacológico , Infarto/tratamiento farmacológico , Integrinas/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Infarto de la Arteria Cerebral Media/tratamiento farmacológico
10.
bioRxiv ; 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36945622

RESUMEN

Microglia are the primary phagocytes in the central nervous system and are responsible for clearing dead cells generated during development or disease. The phagocytic process shapes the phenotype of the microglia, which affects the local environment. A unique population of microglia reside in the ventricular-subventricular zone (V-SVZ) of neonatal mice, but how they influence this neurogenic niche is not well-understood. Here, we demonstrate that phagocytosis creates a pro-neurogenic microglial phenotype in the V-SVZ and that these microglia phagocytose apoptotic cells via the engulfment receptor Jedi-1. Deletion of Jedi-1 decreases apoptotic cell clearance, triggering the development of a neuroinflammatory phenotype, reminiscent of neurodegenerative and-age-associated microglia, that reduces neural precursor proliferation via elevated interleukin (IL)-1ß signaling; inhibition of IL-1 receptor rescues precursor proliferation in vivo. Together, these results reveal a critical role for Jedi-1 in connecting microglial phagocytic activity to a phenotype that promotes neurogenesis in the developing V-SVZ.

11.
Front Cell Dev Biol ; 10: 856261, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35433700

RESUMEN

This review highlights the multifunctional properties of perlecan (HSPG2) and its potential roles in repair biology. Perlecan is ubiquitous, occurring in vascular, cartilaginous, adipose, lymphoreticular, bone and bone marrow stroma and in neural tissues. Perlecan has roles in angiogenesis, tissue development and extracellular matrix stabilization in mature weight bearing and tensional tissues. Perlecan contributes to mechanosensory properties in cartilage through pericellular interactions with fibrillin-1, type IV, V, VI and XI collagen and elastin. Perlecan domain I - FGF, PDGF, VEGF and BMP interactions promote embryonic cellular proliferation, differentiation, and tissue development. Perlecan domain II, an LDLR-like domain interacts with lipids, Wnt and Hedgehog morphogens. Perlecan domain III binds FGF-7 and 18 and has roles in the secretion of perlecan. Perlecan domain IV, an immunoglobulin repeat domain, has cell attachment and matrix stabilizing properties. Perlecan domain V promotes tissue repair through interactions with VEGF, VEGF-R2 and α2ß1 integrin. Perlecan domain-V LG1-LG2 and LG3 fragments antagonize these interactions. Perlecan domain V promotes reconstitution of the blood brain barrier damaged by ischemic stroke and is neurogenic and neuroprotective. Perlecan-VEGF-VEGFR2, perlecan-FGF-2 and perlecan-PDGF interactions promote angiogenesis and wound healing. Perlecan domain I, III and V interactions with platelet factor-4 and megakaryocyte and platelet inhibitory receptor promote adhesion of cells to implants and scaffolds in vascular repair. Perlecan localizes acetylcholinesterase in the neuromuscular junction and is of functional significance in neuromuscular control. Perlecan mutation leads to Schwartz-Jampel Syndrome, functional impairment of the biomechanical properties of the intervertebral disc, variable levels of chondroplasia and myotonia. A greater understanding of the functional working of the neuromuscular junction may be insightful in therapeutic approaches in the treatment of neuromuscular disorders. Tissue engineering of salivary glands has been undertaken using bioactive peptides (TWSKV) derived from perlecan domain IV. Perlecan TWSKV peptide induces differentiation of salivary gland cells into self-assembling acini-like structures that express salivary gland biomarkers and secrete α-amylase. Perlecan also promotes chondroprogenitor stem cell maturation and development of pluripotent migratory stem cell lineages, which participate in diarthrodial joint formation, and early cartilage development. Recent studies have also shown that perlecan is prominently expressed during repair of adult human articular cartilage. Perlecan also has roles in endochondral ossification and bone development. Perlecan domain I hydrogels been used in tissue engineering to establish heparin binding growth factor gradients that promote cell migration and cartilage repair. Perlecan domain I collagen I fibril scaffolds have also been used as an FGF-2 delivery system for tissue repair. With the availability of recombinant perlecan domains, the development of other tissue repair strategies should emerge in the near future. Perlecan co-localization with vascular elastin in the intima, acts as a blood shear-flow endothelial sensor that regulates blood volume and pressure and has a similar role to perlecan in canalicular fluid, regulating bone development and remodeling. This complements perlecan's roles in growth plate cartilage and in endochondral ossification to form the appendicular and axial skeleton. Perlecan is thus a ubiquitous, multifunctional, and pleomorphic molecule of considerable biological importance. A greater understanding of its diverse biological roles and functional repertoires during tissue development, growth and disease will yield valuable insights into how this impressive proteoglycan could be utilized successfully in repair biology.

12.
Clin Transl Sci ; 15(1): 279-286, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34463026

RESUMEN

Acute ischemic stroke continues to devastate millions of individuals worldwide. Current treatments work to restore blood flow but not rescue affected tissue. Our goal was to develop a combination of neuroprotective agents administered intra-arterially following recanalization to target ischemic tissue. Using C57Bl/6J male mice, we performed tandem transient ipsilateral middle cerebral/common carotid artery occlusion, followed by immediate intra-arterial pharmacotherapy administration through a standardized protocol. Two pharmacotherapy agents, verapamil and lubeluzole, were selected based on their potential to modulate different aspects of the ischemic cascade; verapamil, a calcium channel blocker, works in an acute fashion blocking L-type calcium channels, whereas lubeluzole, an N-methyl-D-aspartate modulator, works in a delayed fashion blocking intracellular glutamate trafficking. We hypothesized that combination therapy would provide complimentary and potentially synergistic benefit treating brain tissue undergoing various stages of injury. Physiological measurements for heart rate and pulse distention (blood pressure) demonstrated no detrimental effects between groups, suggesting that the combination drug administration is safe. Tissue analysis demonstrated a significant difference between combination and control (saline) groups in infarct volume, neuronal health, and astrogliosis. Although a significant difference in functional outcome was not observed, we did note that the combination treatment group had a greater percent change from baseline in forced motor movement as compared with controls. This study demonstrates the safety and feasibility of intra-arterial combination therapy following successful recanalization and warrants further study.


Asunto(s)
Terapia Combinada , Infusiones Intraarteriales , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Animales , Bloqueadores de los Canales de Calcio/administración & dosificación , Bloqueadores de los Canales de Calcio/farmacología , Ratones , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/farmacología , Piperidinas/administración & dosificación , Piperidinas/farmacología , Tiazoles/administración & dosificación , Tiazoles/farmacología , Resultado del Tratamiento , Verapamilo/farmacología
13.
J Cereb Blood Flow Metab ; 42(8): 1410-1424, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35296173

RESUMEN

Mitochondrial and glycolytic energy pathways regulate the vascular functions. Aging impairs the cerebrovascular function and increases the risk of stroke and cognitive dysfunction. The goal of our study is to characterize the impact of aging on brain microvascular energetics. We measured the oxygen consumption and extracellular acidification rates of freshly isolated brain microvessels (BMVs) from young (2-4 months) and aged (20-22 months) C57Bl/6 male mice. Cellular ATP production in BMVs was predominantly dependent on oxidative phosphorylation (OXPHOS) with glucose as the preferred energy substrate. Aged BMVs exhibit lower ATP production rate with diminished OXPHOS and glycolytic rate accompanied by increased utilization of glutamine. Impairments of glycolysis displayed by aged BMVs included reduced compensatory glycolysis whereas impairments of mitochondrial respiration involved reduction of spare respiratory capacity and proton leak. Aged BMVs showed reduced levels of key glycolysis proteins including glucose transporter 1 and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 but normal lactate dehydrogenase activity. Mitochondrial protein levels were mostly unchanged whereas citrate synthase activity was reduced, and glutamate dehydrogenase was increased in aged BMVs. Thus, for the first time, we identified the dominant role of mitochondria in bioenergetics of BMVs and the alterations of the energy pathways that make the aged BMVs vulnerable to injury.


Asunto(s)
Metabolismo Energético , Fosforilación Oxidativa , Adenosina Trifosfato/metabolismo , Envejecimiento , Animales , Encéfalo/metabolismo , Glucólisis/fisiología , Masculino , Ratones , Consumo de Oxígeno
14.
Nat Commun ; 13(1): 1745, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365631

RESUMEN

Neurological manifestations are a significant complication of coronavirus disease (COVID-19), but underlying mechanisms aren't well understood. The development of animal models that recapitulate the neuropathological findings of autopsied brain tissue from patients who died from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are critical for elucidating the neuropathogenesis of infection and disease. Here, we show neuroinflammation, microhemorrhages, brain hypoxia, and neuropathology that is consistent with hypoxic-ischemic injury in SARS-CoV-2 infected non-human primates (NHPs), including evidence of neuron degeneration and apoptosis. Importantly, this is seen among infected animals that do not develop severe respiratory disease, which may provide insight into neurological symptoms associated with "long COVID". Sparse virus is detected in brain endothelial cells but does not associate with the severity of central nervous system (CNS) injury. We anticipate our findings will advance our current understanding of the neuropathogenesis of SARS-CoV-2 infection and demonstrate SARS-CoV-2 infected NHPs are a highly relevant animal model for investigating COVID-19 neuropathogenesis among human subjects.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Encéfalo , Células Endoteliales , Humanos , Primates
15.
Glia ; 59(12): 1822-40, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21850672

RESUMEN

Astrogliosis constitutes part of the central nervous system's physiological response to injury. Considered for decades to be a major challenge for brain repair, recent studies have highlighted it as a promoter of such repair mechanisms. Recently, our group demonstrated the ability of perlecan domain V (DV) to be a novel potential stroke therapy by its neuroprotective effects. However, the potential for DV to modulate astrogliosis has not been investigated. The aim of this study is to better understand the relevance of DV to astrogliosis using both in vitro and in vivo rodent models. Notably, under basal conditions, astrocytes express all three DV receptors described in the literature: integrin α2ß1, α5ß1, and α-dystroglycan (αDG). DV promoted astrocyte cell adhesion, cell migration as well as astrocyte stellation. Moreover, DV induced nerve growth factor (NGF) secretion through a αDG- and ERK-dependent pathway. In contrast, α2ß1 or α5ß1 mediated DV antiproliferative effects in astrocytes. NGF production after DV treatment acted as a strong anti-proliferative agent. Another remarkable effect of DV was that it decreased several markers of astrogliosis such as glial fibrillary acidic protein (GFAP), neurocan and phosphacan both in vitro and in vivo, suggesting the role of DV as a potential modulator of postinjury during late astrogliosis, and eventually the onset of glial scarring. Taken together, our study demonstrates the ability of DV to modulate key events of astrogliosis by promoting early astrogliosis and inhibiting glial scar formation, suggesting an additional therapeutic benefit of DV for recovery from stroke. © 2011 Wiley-Liss, Inc.


Asunto(s)
Astrocitos/metabolismo , Infarto Encefálico/metabolismo , Isquemia Encefálica/metabolismo , Gliosis/metabolismo , Proteoglicanos de Heparán Sulfato/fisiología , Factor de Crecimiento Nervioso/metabolismo , Fragmentos de Péptidos/fisiología , Animales , Astrocitos/patología , Infarto Encefálico/patología , Infarto Encefálico/prevención & control , Isquemia Encefálica/complicaciones , Isquemia Encefálica/patología , Modelos Animales de Enfermedad , Gliosis/patología , Proteoglicanos de Heparán Sulfato/química , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Factor de Crecimiento Nervioso/biosíntesis , Fragmentos de Péptidos/química , Cultivo Primario de Células , Estructura Terciaria de Proteína/fisiología , Ratas , Regulación hacia Arriba/fisiología
16.
J Neurochem ; 119(4): 760-71, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21919908

RESUMEN

Two of the main stresses faced by cells at the neurovascular unit (NVU) as an immediate result of cerebral ischemia are oxygen-glucose deprivation (OGD)/reperfusion and inflammatory stress caused by up regulation of IL-1. As a result of these stresses, perlecan, an important component of the NVU extracellular matrix, is highly proteolyzed. In this study, we describe that focal cerebral ischemia in rats results in increased generation of laminin globular domain 3 (LG3), the c-terminal bioactive fragment of perlecan. Further, in vitro study of the cells of the NVU was performed to locate the source of this increased perlecan-LG3. Neurons, astrocytes, brain endothelial cells and pericytes were exposed to OGD/reperfusion and IL-1α/ß. It was observed that neurons and pericytes showed increased levels of LG3 during OGD in their culture media. During in vitro reperfusion, neurons, astrocytes and pericytes showed elevated levels of LG3, but only after exposure to brief durations of OGD. IL-1α and IL-1ß treatment tended to have opposite effects on NVU cells. While IL-1α increased or had minimal to no effect on LG3 generation, high concentrations of IL-1ß decreased it in most cells studied. Finally, LG3 was determined to be neuroprotective and anti-proliferative in brain endothelial cells, suggesting a possible role for the generation of LG3 in the ischemic brain.


Asunto(s)
Glucosa/deficiencia , Proteoglicanos de Heparán Sulfato/metabolismo , Hipoxia/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Interleucina-1alfa/farmacología , Regulación hacia Arriba/efectos de los fármacos , Análisis de Varianza , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Embrión de Mamíferos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Proteoglicanos de Heparán Sulfato/genética , Humanos , Infarto de la Arteria Cerebral Media/patología , Interleucina-1beta/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Regulación hacia Arriba/fisiología
17.
Transl Stroke Res ; 12(1): 1-14, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32862401

RESUMEN

Stroke is a major cause of death and disability worldwide. Yet therapeutic strategies available to treat stroke are very limited. There is an urgent need to develop novel therapeutics that can effectively facilitate functional recovery. The injury that results from stroke is known to induce neurogenesis in penumbra of the infarct region. There is considerable interest in harnessing this response for therapeutic purposes. This review summarizes what is currently known about stroke-induced neurogenesis and the factors that have been identified to regulate it. Additionally, some key studies in this field have been highlighted and their implications on future of stroke therapy have been discussed. There is a complex interplay between neuroinflammation and neurogenesis that dictates stroke outcome and possibly recovery. This highlights the need for a better understanding of the neuroinflammatory process and how it affects neurogenesis, as well as the need to identify new mechanisms and potential modulators. Neuroinflammatory processes and their impact on post-stroke repair have therefore also been discussed.


Asunto(s)
Isquemia Encefálica/patología , Neurogénesis/fisiología , Recuperación de la Función/fisiología , Accidente Cerebrovascular/patología , Animales , Encéfalo/citología , Encéfalo/patología , Encéfalo/fisiología , Isquemia Encefálica/terapia , Humanos , Neurogénesis/efectos de los fármacos , Fármacos Neuroprotectores/administración & dosificación , Trasplante de Células Madre/tendencias , Accidente Cerebrovascular/terapia
18.
JACC Basic Transl Sci ; 6(1): 1-8, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33102950

RESUMEN

Many efforts to design and screen therapeutics for the current severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) pandemic have focused on inhibiting viral host cell entry by disrupting angiotensin-converting enzyme-2 (ACE2) binding with the SARS-CoV-2 spike protein. This work focuses on the potential to inhibit SARS-CoV-2 entry through a hypothesized α5ß1 integrin-based mechanism and indicates that inhibiting the spike protein interaction with α5ß1 integrin (+/- ACE2) and the interaction between α5ß1 integrin and ACE2 using a novel molecule (ATN-161) represents a promising approach to treat coronavirus disease-19.

19.
Transl Stroke Res ; 12(1): 72-86, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32253702

RESUMEN

The extracellular matrix fragment perlecan domain V is neuroprotective and functionally restorative following experimental stroke. As neurogenesis is an important component of chronic post-stroke repair, and previous studies have implicated perlecan in developmental neurogenesis, we hypothesized that domain V could have a broad therapeutic window by enhancing neurogenesis after stroke. We demonstrated that domain V is chronically increased in the brains of human stroke patients, suggesting that it is present during post-stroke neurogenic periods. Furthermore, perlecan deficient mice had significantly less neuroblast precursor cells after experimental stroke. Seven-day delayed domain V administration enhanced neurogenesis and restored peri-infarct excitatory synaptic drive to neocortical layer 2/3 pyramidal neurons after experimental stroke. Domain V's effects were inhibited by blockade of α2ß1 integrin, suggesting the importance of α2ß1 integrin to neurogenesis and domain V neurogenic effects. Our results demonstrate that perlecan plays a previously unrecognized role in post-stroke neurogenesis and that delayed DV administration after experimental stroke enhances neurogenesis and improves recovery in an α2ß1 integrin-mediated fashion. We conclude that domain V is a clinically relevant neuroprotective and neuroreparative novel stroke therapy with a broad therapeutic window.


Asunto(s)
Encéfalo/metabolismo , Proteoglicanos de Heparán Sulfato/biosíntesis , Neurogénesis/fisiología , Neuroprotección/fisiología , Accidente Cerebrovascular/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Células Cultivadas , Proteoglicanos de Heparán Sulfato/administración & dosificación , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neurogénesis/efectos de los fármacos , Neuroprotección/efectos de los fármacos , Técnicas de Cultivo de Órganos , Dominios Proteicos , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/prevención & control
20.
Front Physiol ; 11: 1046, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32982785

RESUMEN

Environmental stress during early life is an important factor that affects the postnatal renal development. We have previously shown that male rats exposed to maternal separation (MatSep), a model of early life stress, are normotensive but display a sex-specific reduced renal function and exacerbated angiotensin II (AngII)-mediated vascular responses as adults. Since optimal AngII levels during postnatal life are required for normal maturation of the kidney, this study was designed to investigate both short- and long-term effect of MatSep on (1) the renal vascular architecture and function, (2) the intrarenal renin-angiotensin system (RAS) components status, and (3) the genome-wide expression of genes in isolated renal vasculature. Renal tissue and plasma were collected from male rats at different postnatal days (P) for intrarenal RAS components mRNA and protein expression measurements at P2, 6, 10, 14, 21, and 90 and microCT analysis at P21 and 90. Although with similar body weight and renal mass trajectories from P2 to P90, MatSep rats displayed decreased renal filtration capacity at P90, while increased microvascular density at both P21 and P90 (p < 0.05). MatSep increased renal expression of renin, and angiotensin type 1 (AT1) and type 2 (AT2) receptors (p < 0.05), but reduced ACE2 mRNA expression and activity from P2-14 compared to controls. However, intrarenal levels of AngII peptide were reduced (p < 0.05) possible due to the increased degradation to AngIII by aminopeptidase A. In isolated renal vasculature from neonates, Enriched Biological Pathways functional clusters (EBPfc) from genes changed by MatSep reported to modulate extracellular structure organization, inflammation, and pro-angiogenic transcription factors. Our data suggest that male neonates exposed to MatSep could display permanent changes in the renal microvascular architecture in response to intrarenal RAS imbalance in the context of the atypical upregulation of angiogenic factors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA