Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Biol Sci ; 291(2028): 20240853, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39109968

RESUMEN

Phenotypic differences often stem from genetic/maternal differences and/or early-life adaptations to local environmental conditions. In colonial animals, little is known on how variation in the social environment is embedded into individual phenotypes, nor what the consequences are on individual fitness. We conducted an experimental cross-fostering study on king penguins (Aptenodytes patagonicus), exchanging eggs among 134 pairs breeding in high-density (67 pairs) or low-density (67 pairs) areas of the same breeding colony. We investigated differences in parent and chick phenotypes and survival in relation to the density of their origin and foster environment. Adults breeding in colony areas of high density exhibited decreased resting behaviour and increased aggression and vigilance, increased hypometabolism during incubation fasts, and more moderate corticosterone responses shaped by exposure to chronic stressors (e.g. constant aggression by neighbours). Chick phenotypes were more influenced by the environment in which they were raised than their genetic/maternal origin. Chicks raised in high-density colonial environments showed enhanced weight gain and survival rates regardless of the density of their genetic parents' breeding areas. Our study experimentally shows advantages to breeding in colonial areas of higher breeder densities in king penguins, and highlights the importance of social settings in shaping phenotype expression in colonial seabirds.


Asunto(s)
Spheniscidae , Estrés Fisiológico , Animales , Spheniscidae/fisiología , Femenino , Fenotipo , Masculino , Corticosterona , Conducta Social , Agresión , Densidad de Población
2.
Anim Cogn ; 27(1): 32, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607427

RESUMEN

Although problem-solving tasks are frequently used to assess innovative ability, the extent to which problem-solving performance reflects variation in cognitive skills has been rarely formally investigated. Using wild breeding great tits facing a new non-food motivated problem-solving task, we investigated the role of associative learning in finding the solution, compared to multiple other non-cognitive factors. We first examined the role of accuracy (the proportion of contacts made with the opening part of a string-pulling task), neophobia, exploration, activity, age, sex, body condition and participation time on the ability to solve the task. To highlight the effect of associative learning, we then compared accuracy between solvers and non-solvers, before and after the first cue to the solution (i.e., the first time they pulled the string opening the door). We finally compared accuracy over consecutive entrances for solvers. Using 884 observations from 788 great tits tested from 2010 to 2015, we showed that, prior to initial successful entrance, solvers were more accurate and more explorative than non-solvers, and that females were more likely to solve the task than males. The accuracy of solvers, but not of non-solvers, increased significantly after they had the opportunity to associate string pulling with the movement of the door, giving them a first cue to the task solution. The accuracy of solvers also increased over successive entrances. Our results demonstrate that variations in problem-solving performance primarily reflect inherent individual differences in associative learning, and are also to a lesser extent shaped by sex and exploratory behaviour.


Asunto(s)
Condicionamiento Clásico , Conducta Exploratoria , Animales , Femenino , Masculino , Cabeza , Individualidad , Motivación
3.
J Anim Ecol ; 93(5): 567-582, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38400559

RESUMEN

In most animals, body mass varies with ecological conditions and is expected to reflect how much energy can be allocated to reproduction and survival. Because the sexes often differ in their resource acquisition and allocation strategies, variations in adult body mass and their consequences on fitness can differ between the sexes. Assessing the relative contributions of environmental and genetic effects (i.e. heritability)-and whether these effects and their fitness consequences are sex-specific-is essential to gain insights into the evolution of sexual dimorphism and sexual conflicts. We used 20+ years of data to study the sources of variation in adult body mass and associated fitness consequences in a bird with biparental care, the Alpine swift (Tachymarptis melba). Swifts appear monomorphic to human observers, though subtle dimorphisms are present. We first investigated the effects of weather conditions on adult body mass using a sliding window analysis approach. We report a positive effect of temperature and a negative effect of rainfall on adult body mass, as expected for an aerial insectivorous bird. We then quantified the additive genetic variance and heritability of body mass in both sexes and assessed the importance of genetic constraints on mass evolution by estimating the cross-sex genetic correlation. Heritability was different from zero in both sexes at ~0.30. The positive cross-sex genetic correlation and comparable additive genetic variance between the sexes suggest the possibility for evolutionary constraints when it comes to body mass. Finally, we assessed the sex-specific selection on adjusted body mass using multiple fitness components. We report directional positive and negative selection trending towards stabilizing and diversifying selection on females and males respectively in relation to the weighted proportion of surviving fledglings. Overall, these results suggest that while body mass may be able to respond to environmental conditions and evolve, genetic constraints would result in similar changes in both sexes or an overall absence of response to selection. It remains unclear whether the weak (1%) dimorphism in Alpine swift body mass we report is simply a result of the similar fitness peaks between the sexes or of genetic constraints.


Asunto(s)
Aves , Selección Genética , Caracteres Sexuales , Animales , Masculino , Femenino , Aves/genética , Aves/fisiología , Peso Corporal
4.
J Therm Biol ; 121: 103850, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38608548

RESUMEN

Assessing the physiological stress responses of wild animals opens a window for understanding how organisms cope with environmental challenges. Since stress response is associated with changes in body temperature, the use of body surface temperature through thermal imaging could help to measure acute and chronic stress responses non-invasively. We used thermal imaging, acute handling-stress protocol and an experimental manipulation of corticosterone (the main glucocorticoid hormone in birds) levels in breeding king penguins (Aptenodytes patagonicus), to assess: 1. The potential contribution of the Hypothalamo-Pituitary-Adrenal (HPA) axis in mediating chronic and acute stress-induced changes in adult surface temperature, 2. The influence of HPA axis manipulation on parental investment through thermal imaging of eggs and brooded chicks, and 3. The impact of parental treatment on offspring thermal's response to acute handling. Maximum eye temperature (Teye) increased and minimum beak temperature (Tbeak) decreased in response to handling stress in adults, but neither basal nor stress-induced surface temperatures were significantly affected by corticosterone implant. While egg temperature was not significantly influenced by parental treatment, we found a surprising pattern for chicks: chicks brooded by the (non-implanted) partner of corticosterone-implanted individuals exhibited higher surface temperature (both Teye and Tbeak) than those brooded by glucocorticoid-implanted or control parents. Chick's response to handling in terms of surface temperature was characterized by a drop in both Teye and Tbeak independently of parental treatment. We conclude that the HPA axis seems unlikely to play a major role in determining chronic or acute changes in surface temperature in king penguins. Changes in surface temperature may primarily be mediated by the Sympathetic-Adrenal-Medullary (SAM) axis in response to stressful situations. Our experiment did not reveal a direct impact of parental HPA axis manipulation on parental investment (egg or chick temperature), but a potential influence on the partner's brooding behaviour.


Asunto(s)
Corticosterona , Sistema Hipotálamo-Hipofisario , Spheniscidae , Estrés Fisiológico , Animales , Spheniscidae/fisiología , Spheniscidae/sangre , Corticosterona/sangre , Sistema Hipotálamo-Hipofisario/fisiología , Sistema Hipotálamo-Hipofisario/metabolismo , Femenino , Masculino , Sistema Hipófiso-Suprarrenal/fisiología , Sistema Hipófiso-Suprarrenal/metabolismo , Temperatura Corporal
5.
Chemosphere ; 362: 142591, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38871191

RESUMEN

Persistent organic pollutants (POPs) bioaccumulate in the food chain and can cause ecotoxicity. In wild bird populations, various tissues are used to determine POP levels, including invasive (e.g., brain, fat, kidney, liver, muscle) and minimally-invasive tissues (e.g., blood, feather, preen oil). Minimally-invasive sampling, which does not require the death of the animal, opens new prospects for sampling birds as sentinels of environmental pollution and its consequences on fitness. However, POP variability between tissues is understudied, which is an essential prerequisite for making a reasoned choice about which tissues to sample. Here, we performed a meta-analysis of eight tissues across 115 studies comparing tissues across POP groups. We demonstrate increased use of minimally-invasive measures between 1974 and 2020. When grouping tissue correlations into three groups, "invasive:invasive", "invasive:minimally-invasive" and "minimally-invasive:minimally-invasive", we found that all three groups produced moderate to strong positive correlations with no difference seen between comparison groups. We demonstrate (1) lower POP concentrations in preen oil than fat, but no difference in detection frequencies, supporting preen oil use; (2) blood showed high concentration variability dependent on POP group but detection frequencies were comparable to liver and kidney; and (3) feathers demonstrated a significantly lower detection frequency than other matrices measured. By further researching minimally-invasive tissues, we increase our understanding of whether minimally-invasive tissues are ecologically representative of body-level toxicity. Our study supports blood and preen oil as substitutes for invasive measures when sampling living bird populations as they represent internal POP concentrations and provide significant benefits both practically and ethically.


Asunto(s)
Aves , Monitoreo del Ambiente , Contaminantes Orgánicos Persistentes , Animales , Monitoreo del Ambiente/métodos , Contaminación Ambiental/estadística & datos numéricos , Riñón/metabolismo , Contaminantes Ambientales/sangre , Contaminantes Ambientales/análisis , Hígado/metabolismo , Plumas/química , Cadena Alimentaria
6.
Ecol Evol ; 14(6): e11491, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38855314

RESUMEN

The size and growth patterns of nestling birds are key determinants of their survival up to fledging and long-term fitness. However, because traits such as feathers, skeleton and body mass can follow different developmental trajectories, our understanding of the impact of adverse weather on development requires insights into trait-specific sensitive developmental windows. We analysed data from nestling Alpine swifts in Switzerland measured throughout growth up to the age of 50 days (i.e. fledging between 50 and 70 days), for wing length and body mass (2693 nestlings in 25 years) and sternum length (2447 nestlings in 22 years). We show that the sensitive developmental windows for wing and sternum length corresponded to the periods of trait-specific peak growth, which span almost the whole developmental period for wings and the first half for the sternum. Adverse weather conditions during these periods slowed down growth and reduced size. Although nestling body mass at 50 days showed the greatest inter-individual variation, this was explained by weather in the two days before measurement rather than during peak growth. Interestingly, the relationship between temperature and body mass was not linear, and the initial sharp increase in body mass associated with the increase in temperature was followed by a moderate drop on hot days, likely linked to heat stress. Nestlings experiencing adverse weather conditions during wing growth had lower survival rates up to fledging and fledged at later ages, presumably to compensate for slower wing growth. Overall, our results suggest that measures of feather growth and, to some extent, skeletal growth best capture the consequences of adverse weather conditions throughout the whole development of offspring, while body mass better reflects the short, instantaneous effects of weather conditions on their body reserves (i.e. energy depletion vs. storage in unfavourable vs. favourable conditions).

7.
R Soc Open Sci ; 11(3): 231295, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38481987

RESUMEN

Although climate change is considered to be partly responsible for the size change observed in numerous species, the relevance of this hypothesis for ungulates remains debated. We used body mass measurements of 5635 yearlings (i.e. 1.5 years old) of Alpine chamois (Rupicapra rupicapra) harvested in September in the Swiss Alps (Ticino canton) from 1992 to 2018. In our study area, during this period, yearlings shrank by ca 3 kg while temperatures between May and July rose by 1.7°C. We identified that warmer temperatures during birth and the early suckling period (9 May to 2 July in the year of birth) had the strongest impact on yearling mass. Further analyses of year-detrended mass and temperature data indicate that this result was not simply due to changes in both variables over years, but that increases in temperature during this particularly sensitive time window for development and growth are responsible for the decrease in body mass of yearling chamois. Altogether, our results suggest that rising temperatures in the Alpine regions could significantly affect the ecology and evolution of this wild ungulate.

8.
Sci Total Environ ; 943: 173785, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38851349

RESUMEN

Chemical pollution is a major man-made environmental threat to ecosystems and natural animal populations. Of concern are persistent organic pollutants (POPs), which can persist in the environment for many years. While bioaccumulating throughout the lives of wild animals, POPs can affect their health, reproduction, and survival. However, measuring long-term effects of POPs in wild populations is challenging, and therefore appropriate biomarkers are required in wildlife ecotoxicology. One potential target is telomere length, since telomere preservation has been associated to survival and longevity, and stressors as chemical pollution can disrupt its maintenance. Here, we investigated the effects of different classes of POPs on relative telomere length (RTL) and its rate of change (TROC) in wild long-lived Alpine swifts (Tachymarptis melba). As both RTL and TROC are often reported to differ between sexes and with chronological age, we tested for sex- and age-specific (pre-senescent vs. senescent, ≥ 9 age of years, individuals) effects of POPs. Our results showed that senescent females presented longer RTL and elongated telomeres over time compared to pre-senescent females and males. These sex- and age-related differences in RTL and TROC were influenced by POPs, but differently depending on whether they were organochlorine pesticides (OCPs) or industrial polychlorinated biphenyls (PCBs). OCPs (particularly drins) were negatively associated with RTL, with the strongest negative effects being found in senescent females. Conversely, PCBs led to slower rates of telomere shortening, especially in females. Our study indicates diametrically opposed effects of OCPs on RTL and PCBs on TROC, and these effects were more pronounced in females and senescent individuals. The mechanisms behind these effects (e.g., increased oxidative stress by OCPs; upregulation of telomerase activity by PCBs) remain unknown. Our results highlight the importance in wildlife ecotoxicology to account for sex- and age-related effects when investigating the health effects of pollutants on biomarkers such as telomeres.


Asunto(s)
Aves , Contaminantes Orgánicos Persistentes , Telómero , Animales , Masculino , Femenino , Telómero/efectos de los fármacos , Contaminantes Orgánicos Persistentes/toxicidad , Longevidad/efectos de los fármacos , Factores Sexuales , Factores de Edad , Monitoreo del Ambiente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA