Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Genes Dev ; 28(14): 1578-91, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25030697

RESUMEN

Lineage or cell of origin of cancers is often unknown and thus is not a consideration in therapeutic approaches. Alveolar rhabdomyosarcoma (aRMS) is an aggressive childhood cancer for which the cell of origin remains debated. We used conditional genetic mouse models of aRMS to activate the pathognomonic Pax3:Foxo1 fusion oncogene and inactivate p53 in several stages of prenatal and postnatal muscle development. We reveal that lineage of origin significantly influences tumor histomorphology and sensitivity to targeted therapeutics. Furthermore, we uncovered differential transcriptional regulation of the Pax3:Foxo1 locus by tumor lineage of origin, which led us to identify the histone deacetylase inhibitor entinostat as a pharmacological agent for the potential conversion of Pax3:Foxo1-positive aRMS to a state akin to fusion-negative RMS through direct transcriptional suppression of Pax3:Foxo1.


Asunto(s)
Antineoplásicos/farmacología , Benzamidas/farmacología , Piridinas/farmacología , Rabdomiosarcoma Alveolar/patología , Animales , Línea Celular Tumoral , Linaje de la Célula , Modelos Animales de Enfermedad , Epigénesis Genética/efectos de los fármacos , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Factor de Transcripción PAX3 , Factores de Transcripción Paired Box/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
2.
Dev Biol ; 379(2): 195-207, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23639729

RESUMEN

Myf5 is a member of the muscle-specific determination genes and plays a critical role in skeletal muscle development. Whereas the expression of Myf5 during embryonic and fetal myogenesis has been extensively studied, its expression in progenitors that will ultimately give rise to adult satellite cells, the stem cells responsible for muscle repair, is still largely unexplored. To investigate this aspect, we have generated a mouse strain carrying a CreER coding sequence in the Myf5 locus. In this strain, Tamoxifen-inducible Cre activity parallels endogenous Myf5 expression. Combining Myf5(CreER) and Cre reporter alleles, we were able to evaluate the contribution of cells expressing Myf5 at distinct developmental stages to the pool of satellite cells in adult hindlimb muscles. Although it was possible to trace back the origin of some rare satellite cells to a subpopulation of Myf5(+ve) progenitors in the limb buds at the late embryonic stage (∼E12), a significant number of satellite cells arise from cells which expressed Myf5 for the first time at the fetal stage (∼E15). These studies provide direct evidence that adult satellite cells derive from progenitors that first express the myogenic determination gene Myf5 during fetal stages of myogenesis.


Asunto(s)
Linaje de la Célula/fisiología , Feto/fisiología , Desarrollo de Músculos/fisiología , Músculo Esquelético/citología , Factor 5 Regulador Miogénico/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Células Madre/metabolismo , Animales , Southern Blotting , Cartilla de ADN/genética , Citometría de Flujo , Galactósidos , Indoles , Integrasas , Ratones , Microscopía Fluorescente , Células Satélite del Músculo Esquelético/citología , Tamoxifeno
3.
Stem Cells ; 30(2): 232-42, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22045613

RESUMEN

Satellite cells (SCs) are myogenic stem cells found in skeletal muscle that function to repair tissue damaged by injury or disease. SCs are quiescent at rest, although the signaling pathways required to maintain quiescence are unknown. Using a transgenic Notch reporter mouse and quantitative reverse-transcription polymerase chain reaction analysis of Notch target genes, we determined that Notch signaling is active in quiescent SCs. SC-specific deletion of recombining binding protein-Jκ (RBP-Jκ), a nuclear factor required for Notch signaling, resulted in the depletion of the SC pool and muscles that lacked any ability to regenerate in response to injury. SC depletion was not due to apoptosis. Rather, RBP-Jκ-deficient SCs spontaneously activate, fail to self-renew, and undergo terminal differentiation. Intriguingly, most of the cells differentiate without first dividing. They then fuse with adjacent myofibers, leading to the gradual disappearance of SCs from the muscle. These results demonstrate the requirement of Notch signaling for the maintenance of the quiescent state and for muscle stem cell homeostasis by the regulation of self-renewal and differentiation, processes that are all critical for normal postnatal myogenesis.


Asunto(s)
Células Madre Adultas/fisiología , Puntos de Control del Ciclo Celular , Músculo Esquelético/citología , Receptores Notch/metabolismo , Transducción de Señal , Células Madre Adultas/metabolismo , Animales , Apoptosis , Linaje de la Célula , Proliferación Celular , Células Cultivadas , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Ratones , Ratones Transgénicos , Desarrollo de Músculos , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/metabolismo
4.
Dev Cell ; 9(4): 523-33, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16198294

RESUMEN

In zebrafish, endoderm induction occurs in marginal blastomeres and requires Casanova (Cas), the first endoderm-specific factor expressed in the embryo. Whereas the transcription factors Gata5 and Bon are necessary and sufficient for cas expression in marginal blastomeres, Bon and Gata5 are unable to induce cas in animal pole cells, suggesting that cas expression requires an additional, unidentified factor(s). Here, we show that cas expression depends upon the T box transcription factor Eomesodermin (Eomes), a maternal determinant that is localized to marginal blastomeres. Eomes synergizes potently with Bon and Gata5 to induce cas, even in animal pole blastomeres. We show that Eomes is required for endogenous endoderm induction, acting via an essential binding site in the cas promoter. Direct physical interactions between Eomes, Bon, and Gata5 suggest that Eomes promotes endoderm induction in marginal blastomeres by facilitating the assembly of a transcriptional activating complex on the cas promoter.


Asunto(s)
Inducción Embrionaria , Endodermo/fisiología , Proteínas del Grupo de Alta Movilidad/metabolismo , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Endodermo/citología , Factor de Transcripción GATA5/genética , Factor de Transcripción GATA5/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas del Grupo de Alta Movilidad/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Hibridación in Situ , Proteína Nodal , Oligorribonucleótidos Antisentido/genética , Oligorribonucleótidos Antisentido/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Factores de Transcripción SOX , Proteínas de Dominio T Box/genética , Factores de Transcripción/genética , Transcripción Genética , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Pez Cebra/anatomía & histología , Proteínas de Pez Cebra/genética
5.
FASEB J ; 23(8): 2681-90, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19332644

RESUMEN

Bioluminescent reporter genes are sensitive in situ tools for following disease progression in preclinical models, albeit they are subject to scattering and absorption in deep tissues. We have generated a bicistronic Cre/LoxP reporter mouse line that pairs the expression of firefly luciferase with quantifiable expression of a human placental alkaline phosphatase that is secreted into the serum (SeAP). With the use of this dual-modality bioreporter with a novel, inducible Pax7-CreER line for tracking muscle satellite cells, we demonstrate the longitudinal kinetics of muscle stem cell turnover, accounting for a doubling of the signal from satellite cell and progeny every 3.93 wk in the transition from adolescence to early adulthood. We also show that this dual-modality bioreporter can be incorporated in preclinical cancer models, whereby SeAP activity is reflective of tumor burden. Thus, this dual bioreporter permits both spatial localization and accurate quantification of biological processes in vivo even when the tissue of interest is deep within the animal.


Asunto(s)
Células Madre Adultas/metabolismo , Genes Reporteros , Sarcoma Experimental/genética , Sarcoma Experimental/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Fosfatasa Alcalina/genética , Animales , Secuencia de Bases , Cartilla de ADN/genética , Proteínas Ligadas a GPI , Humanos , Isoenzimas/genética , Luciferasas de Luciérnaga/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Factor de Transcripción PAX7/genética
6.
PLoS One ; 9(4): e96279, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24781921

RESUMEN

A cell therapy strategy utilizing genetically-corrected induced pluripotent stem cells (iPSC) may be an attractive approach for genetic disorders such as muscular dystrophies. Methods for genetic engineering of iPSC that emphasize precision and minimize random integration would be beneficial. We demonstrate here an approach in the mdx mouse model of Duchenne muscular dystrophy that focuses on the use of site-specific recombinases to achieve genetic engineering. We employed non-viral, plasmid-mediated methods to reprogram mdx fibroblasts, using phiC31 integrase to insert a single copy of the reprogramming genes at a safe location in the genome. We next used Bxb1 integrase to add the therapeutic full-length dystrophin cDNA to the iPSC in a site-specific manner. Unwanted DNA sequences, including the reprogramming genes, were then precisely deleted with Cre resolvase. Pluripotency of the iPSC was analyzed before and after gene addition, and ability of the genetically corrected iPSC to differentiate into myogenic precursors was evaluated by morphology, immunohistochemistry, qRT-PCR, FACS analysis, and intramuscular engraftment. These data demonstrate a non-viral, reprogramming-plus-gene addition genetic engineering strategy utilizing site-specific recombinases that can be applied easily to mouse cells. This work introduces a significant level of precision in the genetic engineering of iPSC that can be built upon in future studies.


Asunto(s)
Reprogramación Celular , Distrofina/genética , Ingeniería Genética/métodos , Células Madre Pluripotentes Inducidas/metabolismo , Integrasas/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Animales , Línea Celular , Terapia Genética/métodos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/trasplante , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx/genética , Desarrollo de Músculos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA