Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Molecules ; 29(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38731578

RESUMEN

In this work, various types of silica materials were used for the synthesis of chitosan-silica composites. The composites were obtained using the chitosan (Ch) immobilization process from an aqueous solution on various silica phases, i.e., amorphous diatomite (ChAD), crystalline diatomite (ChCD), mesoporous silica MCM-41 (ChMCM), and mesoporous silica SBA-15 (ChSBA). Textural, structural, morphological, and surface properties of the materials were determined by using various measurement techniques, i.e., low-temperature adsorption/desorption isotherms of nitrogen, X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), potentiometric titration, high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The adsorption properties towards various anionic dyes, i.e., acid red 88 (AR88), acid orange 8 (AO8), and orange G (OG), were evaluated based on kinetic and equilibrium measurements. The ChSBA, ChAD, and ChMCM composites were characterized by relatively high adsorption capacities (am) for AR88, with values equal to 0.78, 0.71, and 0.69 mmol/g, respectively. These composites were also distinguished by the rapid AR88 adsorption rate, with the values of half-time parameter t0.5 equal to 0.35, 2.84, and 1.53 min, respectively. The adsorption equilibrium and kinetic data were analyzed by applying the generalized Langmuir isotherm and the multi-exponential equation (m-exp), respectively. An interaction mechanism between the dyes and the obtained materials was proposed.

2.
Int J Mol Sci ; 24(14)2023 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-37511577

RESUMEN

A series of new types of composites (biopolymer-silica materials) are proposed as selective and effective adsorbents. A new procedure for the synthesis of chitosan-nanosilica composites (ChNS) and chitosan-silica gel composites (ChSG) using geometrical modification of silica and mechanosorption of chitosan is applied. The highest adsorption efficiency was achieved at pH = 2, hence the desirability of modifications aimed at stabilizing chitosan in such conditions. The amount of chitosan in the synthesis grew to 1.8 times the adsorption capacity for the nanosilica-supported materials and 1.6 times for the silica gel-based composites. The adsorption kinetics of anionic dyes (acid red AR88) was faster for ChNS than for ChSG, which results from a silica-type effect. The various structural, textural, and physicochemical aspects of the chitosan-silica adsorbents were analyzed via small-angle X-ray scattering, scanning electron microscopy, low-temperature gas (nitrogen) adsorption, and potentiometric titration, as well as their adsorption effectiveness towards selected dyes. This indicates the synergistic effect of the presence of dye-binding groups of the chitosan component, and the developed interfacial surface of the silica component in composites.


Asunto(s)
Quitosano , Contaminantes Químicos del Agua , Dióxido de Silicio/química , Agua , Aguas Residuales , Quitosano/química , Colorantes/química , Adsorción , Gel de Sílice , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno , Cinética
3.
Molecules ; 28(14)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37513275

RESUMEN

The increasing consumption of phenoxyacetic acid-derived herbicides is becoming a major public health and environmental concern, posing a serious challenge to existing conventional water treatment systems. Among the various physicochemical and biological purification processes, adsorption is considered one of the most efficient and popular techniques due to its high removal efficiency, ease of operation, and cost effectiveness. This review article provides extensive literature information on the adsorption of phenoxyacetic herbicides by various adsorbents. The purpose of this article is to organize the scattered information on the currently used adsorbents for herbicide removal from the water, such as activated carbons, carbon and silica adsorbents, metal oxides, and numerous natural and industrial waste materials known as low-cost adsorbents. The adsorption capacity of these adsorbents was compared for the two most popular phenoxyacetic herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid (MCPA). The application of various kinetic models and adsorption isotherms in describing the removal of these herbicides by the adsorbents was also presented and discussed. At the beginning of this review paper, the most important information on phenoxyacetic herbicides has been collected, including their classification, physicochemical properties, and occurrence in the environment.

4.
Molecules ; 28(6)2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36985532

RESUMEN

This paper reports the synthesis and structural analysis of mesoporous silica materials with the use of aluminum phyllosilicate clay (bentonite) as an alternative silica source. In the proposed synthesis, bentonite, as natural aluminosilicate, was used instead of commercially available and quite expensive tetraethyl orthosilicate (TEOS) silica source. The objective of the research study was to determine the effect of aluminum loading in the mesoporous silica body for ordering structure, porosity, and potential sorption capacity to thorium ions. The unique direction developed in this procedure is focused on preparing advanced materials from natural sources with their own desired functionality and general availability. The applied procedure based on the classic, one-step synthesis of SBA-15 silicates was modified by gradually increasing the bentonite amount with simultaneous reduction of the TEOS content. The structural and morphological characterization, as well as evaluation of the porous structure of the obtained materials, was performed using powder wide-angle X-ray diffraction (XRD), small-angle scattering (SAXS), transmission and scanning electron microscopy (TEM, SEM), low-temperature nitrogen adsorption-desorption methods and potentiometric titration. The new, cost-effective composites for the removal of Th(IV) ions are proposed. The synergistic effect of expanding the porous surface using bentonite as a silica precursor and the presence of thorium-binding groups (such as Al2O3) is indicated.

5.
Molecules ; 26(8)2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918588

RESUMEN

Mesoporous carbons with differentiated properties were synthesized by using the method of impregnation of mesoporous well-organized silicas. The obtained carbonaceous materials and microporous activated carbon were investigated by applying different methods in order to determine their structural, surface and adsorption properties towards selected dyes from aqueous solutions. In order to verify applicability of adsorbents for removing dyes the equilibrium and kinetic experimental data were measured and analyzed by applying various equations and models. The structural and acid-base properties of the investigated carbons were evaluated by Small-Angle X-ray Scattering (SAXS) technique, adsorption/desorption of nitrogen, potentiometric titration, and Transmission Electron Microscopy (TEM). The results of these techniques are complementary, indicating the type of porosity and structural ordering, e.g., the pore sizes determined from the SAXS data are in good agreement with those obtained from nitrogen sorption data. The SAXS and TEM data confirm the regularity of mesoporous carbon structure. The adsorption experiment, especially kinetic measurements, reveals the utility of mesoporous carbons in dye removing, taking into account not only the adsorption uptake but also the adsorption rate.

6.
Molecules ; 25(21)2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33153177

RESUMEN

Agricultural waste materials (strawberry seeds and pistachio shells) were used for preparation of activated carbons by two various methods. Chemical activation using acetic acid and physical activation with gaseous agents (carbon dioxide and water vapor) were chosen as mild and environmentally friendly methods. The effect of type of raw material, temperature, and activation agent on the porous structure characteristics of the materials was discussed applying various methods of analysis. The best obtained activated carbons were characterized by high values of specific surface area (555-685 m2/g). The Guinier analysis of small-angle X-ray scattering (SAXS) curves showed that a time of activation affects pore size. The samples activated using carbon dioxide were characterized mostly by the spherical morphology of pores. Adsorbents were utilized for removal of the model organic pollutants from the single- and multicomponent systems. The adsorption capacities for the 4-chloro-2-methyphenoxyacetic acid (MCPA) removal were equal to 1.43-1.56 mmol/g; however, for adsorbent from strawberry seeds it was much lower. Slight effect of crystal violet presence on the MCPA adsorption and inversely was noticed as a result of adsorption in different types of pores. For similar herbicides strong competition in capacity and adsorption rate was observed. For analysis of kinetic data various equations were used.


Asunto(s)
Agricultura , Carbón Orgánico/química , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua/química , Purificación del Agua , Adsorción
7.
Langmuir ; 34(6): 2258-2273, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29345945

RESUMEN

In this study, the influence of the chitosan immobilization method on the properties of final hybrid materials was performed. Chitosan was immobilized on the surface of mesoporous (ChS2) and fumed silica (ChS3) by physical adsorption and the sol-gel method (ChS1). It was found that physical immobilization of chitosan allows to obtain hybrid composites (ChS) with a homogeneous distribution of polymer on the surface, relatively wide pores, and specific surface area of about 170 m2/g, pHPZC = 5.7 for ChS3 and 356 m2/g and pHPZC = 6.0 for ChS2. The microporous chitosan-silica material with a specific surface area of 600 m2/g and a more negatively charged surface (pHPZC = 4.2) was obtained by the sol-gel reaction. The mechanisms of azo dye adsorption were studied, and the correlation with the composite structure was distinguished. The generalized Langmuir equation and its special cases, that is, Langmuir-Freundlich and Langmuir equations, were applied for the analysis of adsorption isotherm data. The adsorption study showed that physically adsorbed chitosan (ChS1 and ChS2) on a silica surface has a higher sorption capacity, for example, 0.48 mmol/g for the acid red 88 (AR88) dye (ChS2) and 0.23 mmol/g for the acid orange 8 (AO8) dye (ChS1), compared to the composite obtained by the sol-gel method [ChS1, 0.05 mmol/g for the AO8 dye]. For a deeper understanding of the behavior of immobilized chitosan in the adsorption processes, various kinetic equations were applied: first-order, second-order, mixed 1,2-order (MOE), multiexponential, and fractal-like MOE as well as intraparticle and pore diffusion model equations. In the case of AO8 dye, the adsorption rates were differentiated for three composites: for ChS3, 50% of the dye was removed from the solution after merely 5 min and almost 90% after 80 min. The slowest adsorption process controlled by the diffusion rate of dye molecules into the internal space of the pore structure was found for ChS1 (225 min halftime). In the case of ChS2, the rates for various dyes change in the following order: acid orange (AO7) > orange G (OG) > acid red 1 (AR1) > AR88 > AO8 (halftimes: 10.5 < 15.7 < 23.7 < 34.9 < 42.9 min).


Asunto(s)
Compuestos Azo/química , Quitosano/química , Nanocompuestos/química , Dióxido de Silicio/química , Bencenosulfonatos/química
8.
Gels ; 10(3)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38534577

RESUMEN

In this work, novel chitosan-silica hydrogels were synthesized and investigated by various complementary techniques. The hydrogels were obtained via the immobilization of chitosan (Ch) on the surface of mesoporous cellular foams (MCFs). The latter silica materials were obtained by a sol-gel process, varying the composition of the reaction mixture (copolymer Pluronic 9400 or Pluronic 10500) and the ageing temperature conditions (80 °C or 100 °C). The role of the silica phase in the hydrogels was the formation of a scaffold for the biopolymeric chitosan component and providing chemical, mechanical, and thermal stability. In turn, the chitosan phase enabled the binding of anionic pollutions from aqueous solutions based on electrostatic interaction mechanisms and hydrogen bonds. To provide information on structural, morphological, and surface properties of the chitosan-silica hydrogels, analyses such as the low-temperature adsorption/desorption of nitrogen, small-angle X-ray scattering (SAXS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and Fourier-transform infrared spectroscopy (FTIR) were performed. Moreover, the verification of the utility of the chitosan-silica hydrogels as adsorbents for water and wastewater treatment was carried out based on kinetic and equilibrium studies of the Acid Red 88 (AR88) adsorption. Adsorption data were analyzed by applying various equations and discussed in terms of the adsorption on heterogeneous solid-surfaces theory. The adsorption mechanism for the AR88 dye-chitosan-silica hydrogel systems was proposed.

9.
Materials (Basel) ; 17(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39274621

RESUMEN

The aim of this study is to examine the influence of various factors on the precision and repeatability of the experimental determination of herbicide adsorption isotherms. Studies were conducted for the activated carbon RIB as an adsorbent and three herbicides as adsorbates: 2,4-dichlorophenoxyacetic acid (2,4-D), 4-chlorophenoxyacetic acid (4-CPA), and 3-chlorophenoxypropionic acid (3-CPP). The herbicide adsorption process was carried out in single-component and multi-component modes (the herbicide was adsorbed in the presence of an accompanying substance, i.e., 4-nitroaniline (4-NA)). Due to the significant contribution of the competition phenomenon in the adsorption process, which is important, e.g., in multi-component environmental systems, a qualitative and quantitative analysis of herbicide adsorption in the presence of a competing substance was presented. This work presents, among other things, the influence of adsorbent heterogeneity (grain size) on measurement uncertainties. The spread of standard deviations for solutions requiring dilution during spectrophotometric measurements was discussed, indicating that dilutions contribute to increasing measurement uncertainties. The heterogeneity parameters of the Freundlich equation for the studied adsorption systems were analyzed; the 2,4-D/RIB system was indicated as the most energetically heterogeneous. Differentiation of the experimental conditions (pH, temperature) allowed us to assess their impact on the efficiency and mechanism of adsorption. A high repeatability of experimental isotherms was obtained for the multi-component system. The accuracy of quantitative determination of equilibrium concentrations for the tested two-component systems was assessed based on the measured UV-Vis spectra, and the adsorption of herbicides from single- and multi-component systems was compared.

10.
Materials (Basel) ; 17(6)2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38541529

RESUMEN

This study presents the results of applying the methods of synthesizing mesoporous carbon and mesoporous polymer materials with an extended porous mesostructure as adsorbents for cationic dye molecules. Both types of adsorbents are synthetic materials. The aim of the presented research was the preparation, characterisation, and utilisation of obtained mesoporous adsorbents. The physicochemical properties, morphology, and porous structure characteristics of the obtained materials were determined using low-temperature nitrogen sorption isotherms, X-ray diffraction (XRD), small angle X-ray scattering (SAXS), and potentiometric titration measurements. The morphology and microstructure were imaged using scanning electron microscopy (SEM). The chemical characterisation of the surface chemistry of the adsorbents, which provides information about the surface-active groups, the elemental composition, and the electronic state of the elements, was carried out using X-ray photoelectron spectroscopy (XPS). The adsorption properties of the mesoporous materials were determined using equilibrium and kinetic adsorption experiments for three selected cationic dyes (derivatives of thiazine (methylene blue) and triarylmethane (malachite green and crystal violet)). The adsorption capacity was analysed to the nanostructural and surface properties of used materials. The Generalized Langmuir equation was applied for the analysis of adsorption isotherm data. The adsorption study showed that the carbon materials have a higher sorption capacity for both methylene blue and crystal violet, e.g., 0.88-1.01 mmol/g and 0.33-0.44 mmol/g, respectively, compared to the polymer materials (e.g., 0.038-0.044 mmol/g and 0.038-0.050 mmol/g, respectively). The kinetics of dyes adsorption was closely correlated with the structural properties of the adsorbents. The kinetic data were analysed using various equations: first-order (FOE), second-order (SOE), mixed 1,2-order (MOE), multi-exponential (m-exp), and fractal-like MOE (f-MOE).

11.
Front Chem ; 11: 1176718, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37448854

RESUMEN

The aim of this work is the synthesis and characterization of the series of S,S'-thiodi-4,1-phenylene bis(thio-methacrylate)-co-divinylbenzene (DMSPS-co-DVB) nanomaterials. The series of new nanopolymers including three mixed systems with different ratios of DMSPS and DVB components, DMSPS-co-DVB = 1:1, DMSPS-co-DVB = 1:2, and DMSPS-co-DVB = 1:3, was synthesized in the polymerization reaction. The research task is to investigate the influence of the reaction mixture composition on morphological, textural, and structural properties of final nanosystems including size, shape, and agglomeration effect. The advanced biphasic nanomaterials enriched with thiol groups were successfully synthesized as potential sorbents for binding organic substances, heavy metals, or biomolecules. To determine the impact of the DMSPS monomer on the final properties of DMSPS-co-DVB nanocomposites, several techniques were applied to reveal the nano-dimensional structure (SAXS), texture (low-temperature nitrogen sorption), general morphology (SEM), acid-base properties (potentiometric titration), and surface chemistry and phase bonding effectiveness (FTIR/ATR spectroscopy). Finally, kinetic studies of aniline sorption on polymeric materials were performed.

12.
J Hazard Mater ; 412: 125138, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33556860

RESUMEN

In order to propose a novel, effective adsorbent of Cu(II) ions, hybrid carbon-mineral nanocomposites with metallic elements (Mn/Fe in the case of B-6, Mn - B-8) were examined. A combination of mechanochemical and pyrolytic methods was used to obtain these bimodal micro-mesopore systems. First, mechanochemical mixing of phenol-formaldehyde resin and inorganic compounds in a ball mill was carried out. Then, the pyrolysis of the mixture under inert atmosphere at 800 °C was performed. The obtained composites were characterized using nitrogen adsorption/desorption, Fourier transform infrared spectroscopy, electron microscopes as well as X-ray diffraction, X-ray fluorescence and X-ray photoelectron spectroscopy. Adsorption, electrokinetic and aggregation studies were also performed, in the absence and presence of poly(acrylic acid) (PAA) - a macromolecular compound commonly used in industry and agriculture, which may be present in wastewater together with copper(II) ions. Under examined conditions (at pH 5 and 6), Cu(II) adsorbed amount was higher on the B-8 surface than on the B-6 one. At pH 6 for the initial Cu(II) concentration 100 ppm, 51.74% of the ions was adsorbed on B-8% and 46.68% - on B-6. Heavy metal adsorption contributes to stronger aggregation of nanocomposite particles. Thus, the presented bimodal solids, especially that containing Mn (called B-8), can be considered as adsorbents in heavy metal removal from aqueous solutions.

13.
J Phys Chem C Nanomater Interfaces ; 124(28): 15312-15323, 2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32952774

RESUMEN

Chitosan was deposited on fumed silica without the addition of cross-linkers or activating agents. The chitosan surface layer has a high affinity toward organic molecules, e.g., Acid Orange 8 (AO8) dye, robust to a broad range of simulated conditions (variance with respect to temperature, time, and concentration of solute). Experimental equilibrium data were analyzed by the generalized Langmuir equation taking into consideration the energetic heterogeneity of the adsorption system. The effect of temperature on dye uptake and adsorption rate was studied. According to the calculated thermodynamic functions ΔG°, ΔH°, and ΔS° from the equilibrium data at different temperatures, the adsorption of AO8 onto chitosan-fumed silica composite is exothermic and spontaneous. The studies of temperature effect on adsorption equilibrium show that the maximum adsorption capacity (determined from the Langmuir-Freundlich equation) of synthesized composite toward AO8 is about one-third higher in the case of an isotherm measured at 5 °C than this value obtained for the isotherm measured at 45 °C. The quantitative binding of dye molecules to chitosan coating on the surface of silica was proved by 1H MAS NMR. The deep kinetics study through the application of various theoretical models-the first-order equation, pseudo-first-order equation, second-order equation, pseudo-second-order equation, mixed first, second-order equation, and multiexponential equation-was applied for getting inside the mechanism of AO8 binding to the chitosan coating. Structural characteristics of chitosan-coated silica were obtained from the low-temperature adsorption/desorption isotherms of nitrogen and imaging by scanning electron microscopy. The effects of a synthetic route for polymer coating on thermal stability and the ability to degrade were studied by differential scanning calorimetry.

14.
Chemosphere ; 214: 349-360, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30267908

RESUMEN

The adsorption of herbicides belonging to the group of halogenated phenoxyacids on the activated carbon was studied. They are differentiated in terms of quantity and type of functional groups (such as chloride, bromide, fluoride) and their position on an aromatic ring. The experimental equilibrium data were analyzed using adsorption isotherm equations taking into account energetic heterogeneity of the adsorption systems. The calculated concentration profiles from the kinetic data were discussed applying two diffusion models, MOE, f-MOE and multi-exponential equations. The dependences between the properties of adsorbates, adsorption uptake and rate were analyzed. The adsorption affinity of pesticides was correlated with adsorbate hydrophobicity, character of functional group, molecular structure. The applicability of kinetic models and equations was investigated; the assumptions of the models were analyzed with regard to consistency with adsorption mechanism. Similarity of adsorption mechanism was found for all adsorbates confirmed by similarity of kinetic curves and corresponding distributions of rate coefficients. The differences in kinetic profiles were attributed to differentiation of herbicide's molecules - number and type of functional groups and their positions on aromatic ring.


Asunto(s)
Herbicidas/aislamiento & purificación , Modelos Teóricos , Plaguicidas/aislamiento & purificación , Adsorción , Carbón Orgánico/química , Difusión , Herbicidas/química , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Estructura Molecular , Plaguicidas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA