Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 109(2): 210-222, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35065709

RESUMEN

Variable levels of gene expression between tissues complicates the use of RNA sequencing of patient biosamples to delineate the impact of genomic variants. Here, we describe a gene- and tissue-specific metric to inform the feasibility of RNA sequencing. This overcomes limitations of using expression values alone as a metric to predict RNA-sequencing utility. We have derived a metric, minimum required sequencing depth (MRSD), that estimates the depth of sequencing required from RNA sequencing to achieve user-specified sequencing coverage of a gene, transcript, or group of genes. We applied MRSD across four human biosamples: whole blood, lymphoblastoid cell lines (LCLs), skeletal muscle, and cultured fibroblasts. MRSD has high precision (90.1%-98.2%) and overcomes transcript region-specific sequencing biases. Applying MRSD scoring to established disease gene panels shows that fibroblasts, of these four biosamples, are the optimum source of RNA for 63.1% of gene panels. Using this approach, up to 67.8% of the variants of uncertain significance in ClinVar that are predicted to impact splicing could be assayed by RNA sequencing in at least one of the biosamples. We demonstrate the utility and benefits of MRSD as a metric to inform functional assessment of splicing aberrations, in particular in the context of Mendelian genetic disorders to improve diagnostic yield.


Asunto(s)
Enfermedades Genéticas Congénitas/genética , Empalme del ARN , ARN Mensajero/genética , Análisis de Secuencia de ARN/estadística & datos numéricos , Programas Informáticos , Linfocitos B/metabolismo , Linfocitos B/patología , Células Sanguíneas/metabolismo , Células Sanguíneas/patología , Línea Celular , Fibroblastos/metabolismo , Fibroblastos/patología , Enfermedades Genéticas Congénitas/clasificación , Enfermedades Genéticas Congénitas/metabolismo , Enfermedades Genéticas Congénitas/patología , Variación Genética , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , ARN Mensajero/metabolismo , Proyectos de Investigación , Secuenciación del Exoma/estadística & datos numéricos
2.
Proc Natl Acad Sci U S A ; 119(20): e2118510119, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35561216

RESUMEN

Age-related macular degeneration (AMD) is a leading cause of visual loss. It has a strong genetic basis, and common haplotypes on chromosome (Chr) 1 (CFH Y402H variant) and on Chr10 (near HTRA1/ARMS2) contribute the most risk. Little is known about the early molecular and cellular processes in AMD, and we hypothesized that analyzing submacular tissue from older donors with genetic risk but without clinical features of AMD would provide biological insights. Therefore, we used mass spectrometry­based quantitative proteomics to compare the proteins in human submacular stromal tissue punches from donors who were homozygous for high-risk alleles at either Chr1 or Chr10 with those from donors who had protective haplotypes at these loci, all without clinical features of AMD. Additional comparisons were made with tissue from donors who were homozygous for high-risk Chr1 alleles and had early AMD. The Chr1 and Chr10 risk groups shared common changes compared with the low-risk group, particularly increased levels of mast cell­specific proteases, including tryptase, chymase, and carboxypeptidase A3. Histological analyses of submacular tissue from donors with genetic risk of AMD but without clinical features of AMD and from donors with Chr1 risk and AMD demonstrated increased mast cells, particularly the tryptase-positive/chymase-negative cells variety, along with increased levels of denatured collagen compared with tissue from low­genetic risk donors. We conclude that increased mast cell infiltration of the inner choroid, degranulation, and subsequent extracellular matrix remodeling are early events in AMD pathogenesis and represent a unifying mechanistic link between Chr1- and Chr10-mediated AMD.


Asunto(s)
Cromosomas Humanos Par 10 , Cromosomas Humanos Par 1 , Degeneración Macular , Mastocitos , Péptido Hidrolasas , Alelos , Coroides/enzimología , Coroides/patología , Cromosomas Humanos Par 1/genética , Cromosomas Humanos Par 10/genética , Humanos , Degeneración Macular/genética , Degeneración Macular/patología , Mastocitos/patología , Péptido Hidrolasas/genética , Proteómica , Riesgo , Triptasas/metabolismo
3.
Clin Genet ; 104(4): 418-426, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37321975

RESUMEN

Four members of a three-generation Czech family with early-onset chorioretinal dystrophy were shown to be heterozygous carriers of the n.37C>T in MIR204. The identification of this previously reported pathogenic variant confirms the existence of a distinct clinical entity caused by a sequence change in MIR204. Chorioretinal dystrophy was variably associated with iris coloboma, congenital glaucoma, and premature cataracts extending the phenotypic range of the condition. In silico analysis of the n.37C>T variant revealed 713 novel targets. Additionally, four family members were shown to be affected by albinism resulting from biallelic pathogenic OCA2 variants. Haplotype analysis excluded relatedness with the original family reported to harbour the n.37C>T variant in MIR204. Identification of a second independent family confirms the existence of a distinct MIR204-associated clinical entity and suggests that the phenotype may also involve congenital glaucoma.


Asunto(s)
Catarata , Coloboma , Glaucoma , MicroARNs , Humanos , Coloboma/complicaciones , Coloboma/genética , Mutación , Linaje , Iris/anomalías , Glaucoma/complicaciones , Glaucoma/genética , Catarata/genética , Catarata/congénito
4.
PLoS Genet ; 15(5): e1008130, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31048900

RESUMEN

Nanophthalmos is a rare, potentially devastating eye condition characterized by small eyes with relatively normal anatomy, a high hyperopic refractive error, and frequent association with angle closure glaucoma and vision loss. The condition constitutes the extreme of hyperopia or farsightedness, a common refractive error that is associated with strabismus and amblyopia in children. NNO1 was the first mapped nanophthalmos locus. We used combined pooled exome sequencing and strong linkage data in the large family used to map this locus to identify a canonical splice site alteration upstream of the last exon of the gene encoding myelin regulatory factor (MYRF c.3376-1G>A), a membrane bound transcription factor that undergoes autoproteolytic cleavage for nuclear localization. This variant produced a stable RNA transcript, leading to a frameshift mutation p.Gly1126Valfs*31 in the C-terminus of the protein. In addition, we identified an early truncating MYRF frameshift mutation, c.769dupC (p.S264QfsX74), in a patient with extreme axial hyperopia and syndromic features. Myrf conditional knockout mice (CKO) developed depigmentation of the retinal pigment epithelium (RPE) and retinal degeneration supporting a role of this gene in retinal and RPE development. Furthermore, we demonstrated the reduced expression of Tmem98, another known nanophthalmos gene, in Myrf CKO mice, and the physical interaction of MYRF with TMEM98. Our study establishes MYRF as a nanophthalmos gene and uncovers a new pathway for eye growth and development.


Asunto(s)
Glaucoma de Ángulo Cerrado/genética , Hiperopía/genética , Proteínas de la Membrana/genética , Microftalmía/genética , Degeneración Retiniana/genética , Factores de Transcripción/genética , Adulto , Animales , Niño , Preescolar , Exones , Familia , Femenino , Mutación del Sistema de Lectura/genética , Variación Genética/genética , Glaucoma de Ángulo Cerrado/metabolismo , Humanos , Hiperopía/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microftalmía/metabolismo , Persona de Mediana Edad , Linaje , Sitios de Empalme de ARN/genética , Errores de Refracción/genética , Factores de Transcripción/metabolismo
5.
Hum Mutat ; 42(2): 164-176, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33252155

RESUMEN

Biallelic mutations in G-Protein coupled receptor kinase 1 (GRK1) cause Oguchi disease, a rare subtype of congenital stationary night blindness (CSNB). The purpose of this study was to identify disease causing GRK1 variants and use in-depth bioinformatic analyses to evaluate how their impact on protein structure could lead to pathogenicity. Patients' genomic DNA was sequenced by whole genome, whole exome or focused exome sequencing. Disease associated variants, published and novel, were compared to nondisease associated missense variants. The impact of GRK1 missense variants at the protein level were then predicted using a series of computational tools. We identified twelve previously unpublished cases with biallelic disease associated GRK1 variants, including eight novel variants, and reviewed all GRK1 disease associated variants. Further structure-based scoring revealed a hotspot for missense variants in the kinase domain. In addition, to aid future clinical interpretation, we identified the bioinformatics tools best able to differentiate disease associated from nondisease associated variants. We identified GRK1 variants in Oguchi disease patients and investigated how disease-causing variants may impede protein function in-silico.


Asunto(s)
Enfermedades Hereditarias del Ojo , Quinasa 1 del Receptor Acoplado a Proteína-G , Ceguera Nocturna , Enfermedades Hereditarias del Ojo/genética , Quinasa 1 del Receptor Acoplado a Proteína-G/genética , Humanos , Ceguera Nocturna/genética
6.
Hum Mol Genet ; 28(1): 96-104, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30239721

RESUMEN

Loss-of-function mutations in glutaminase (GLS), the enzyme converting glutamine into glutamate, and the counteracting enzyme glutamine synthetase (GS) cause disturbed glutamate homeostasis and severe neonatal encephalopathy. We report a de novo Ser482Cys gain-of-function variant in GLS encoding GLS associated with profound developmental delay and infantile cataract. Functional analysis demonstrated that this variant causes hyperactivity and compensatory downregulation of GLS expression combined with upregulation of the counteracting enzyme GS, supporting pathogenicity. Ser482Cys-GLS likely improves the electrostatic environment of the GLS catalytic site, thereby intrinsically inducing hyperactivity. Alignment of +/-12.000 GLS protein sequences from >1000 genera revealed extreme conservation of Ser482 to the same degree as catalytic residues. Together with the hyperactivity, this indicates that Ser482 is evolutionarily preserved to achieve optimal-but submaximal-GLS activity. In line with GLS hyperactivity, increased glutamate and decreased glutamine concentrations were measured in urine and fibroblasts. In the brain (both grey and white matter), glutamate was also extremely high and glutamine was almost undetectable, demonstrated with magnetic resonance spectroscopic imaging at clinical field strength and subsequently supported at ultra-high field strength. Considering the neurotoxicity of glutamate when present in excess, the strikingly high glutamate concentrations measured in the brain provide an explanation for the developmental delay. Cataract, a known consequence of oxidative stress, was evoked in zebrafish expressing the hypermorphic Ser482Cys-GLS and could be alleviated by inhibition of GLS. The capacity to detoxify reactive oxygen species was reduced upon Ser482Cys-GLS expression, providing an explanation for cataract formation. In conclusion, we describe an inborn error of glutamate metabolism caused by a GLS hyperactivity variant, illustrating the importance of balanced GLS activity.


Asunto(s)
Glutaminasa/genética , Glutaminasa/fisiología , Adolescente , Animales , Encéfalo/metabolismo , Catarata/genética , Preescolar , Discapacidades del Desarrollo/genética , Modelos Animales de Enfermedad , Femenino , Fibroblastos , Mutación con Ganancia de Función/genética , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/fisiología , Ácido Glutámico/genética , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Células HEK293 , Humanos , Masculino , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Pez Cebra
7.
J Neuroophthalmol ; 40(4): 558-565, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32991388

RESUMEN

BACKGROUND: Leber hereditary optic neuropathy (LHON) leads to bilateral central vision loss. In a clinical trial setting, idebenone has been shown to be safe and to provide a trend toward improved visual acuity, but long-term evidence of effectiveness in real-world clinical practice is sparse. METHODS: Open-label, multicenter, retrospective, noncontrolled analysis of long-term visual acuity and safety in 111 LHON patients treated with idebenone (900 mg/day) in an expanded access program. Eligible patients had a confirmed mitochondrial DNA mutation and had experienced the onset of symptoms (most recent eye) within 1 year before enrollment. Data on visual acuity and adverse events were collected as per normal clinical practice. Efficacy was assessed as the proportion of patients with either a clinically relevant recovery (CRR) or a clinically relevant stabilization (CRS) of visual acuity. In the case of CRR, time to and magnitude of recovery over the course of time were also assessed. RESULTS: At time of analysis, 87 patients had provided longitudinal efficacy data. Average treatment duration was 25.6 months. CRR was observed in 46.0% of patients. Analysis of treatment effect by duration showed that the proportion of patients with recovery and the magnitude of recovery increased with treatment duration. Average gain in best-corrected visual acuity for responders was 0.72 logarithm of the minimal angle of resolution (logMAR), equivalent to more than 7 lines on the Early Treatment Diabetic Retinopathy Study (ETDRS) chart. Furthermore, 50% of patients who had a visual acuity below 1.0 logMAR in at least one eye at initiation of treatment successfully maintained their vision below this threshold by last observation. Idebenone was well tolerated, with most adverse events classified as minor. CONCLUSIONS: These data demonstrate the benefit of idebenone treatment in recovering lost vision and maintaining good residual vision in a real-world setting. Together, these findings indicate that idebenone treatment should be initiated early and be maintained more than 24 months to maximize efficacy. Safety results were consistent with the known safety profile of idebenone.


Asunto(s)
Atrofia Óptica Hereditaria de Leber/tratamiento farmacológico , Ubiquinona/análogos & derivados , Agudeza Visual , Adolescente , Adulto , Anciano , Antioxidantes/uso terapéutico , Niño , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Atrofia Óptica Hereditaria de Leber/fisiopatología , Estudios Retrospectivos , Factores de Tiempo , Resultado del Tratamiento , Ubiquinona/uso terapéutico , Adulto Joven
8.
J Med Genet ; 55(2): 114-121, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29074561

RESUMEN

BACKGROUND: Diagnostic use of gene panel next-generation sequencing (NGS) techniques is commonplace for individuals with inherited retinal dystrophies (IRDs), a highly genetically heterogeneous group of disorders. However, these techniques have often failed to capture the complete spectrum of genomic variation causing IRD, including CNVs. This study assessed the applicability of introducing CNV surveillance into first-tier diagnostic gene panel NGS services for IRD. METHODS: Three read-depth algorithms were applied to gene panel NGS data sets for 550 referred individuals, and informatics strategies used for quality assurance and CNV filtering. CNV events were confirmed and reported to referring clinicians through an accredited diagnostic laboratory. RESULTS: We confirmed the presence of 33 deletions and 11 duplications, determining these findings to contribute to the confirmed or provisional molecular diagnosis of IRD for 25 individuals. We show that at least 7% of individuals referred for diagnostic testing for IRD have a CNV within genes relevant to their clinical diagnosis, and determined a positive predictive value of 79% for the employed CNV filtering techniques. CONCLUSION: Incorporation of CNV analysis increases diagnostic yield of gene panel NGS diagnostic tests for IRD, increases clarity in diagnostic reporting and expands the spectrum of known disease-causing mutations.


Asunto(s)
Variaciones en el Número de Copia de ADN , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Distrofias Retinianas/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Algoritmos , Proteínas del Citoesqueleto , Duplicación de Gen , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Humanos , Proteínas de la Membrana/genética , Ribonucleoproteínas Nucleares Pequeñas/genética , Flujo de Trabajo
9.
Proc Natl Acad Sci U S A ; 112(25): E3236-45, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-26056285

RESUMEN

Ocular developmental disorders, including the group classified as microphthalmia, anophthalmia, and coloboma (MAC) and inherited retinal dystrophies, collectively represent leading causes of hereditary blindness. Characterized by extreme genetic and clinical heterogeneity, the separate groups share many common genetic causes, in particular relating to pathways controlling retinal and retinal pigment epithelial maintenance. To understand these shared pathways and delineate the overlap between these groups, we investigated the genetic cause of an autosomal dominantly inherited condition of retinal dystrophy and bilateral coloboma, present in varying degrees in a large, five-generation family. By linkage analysis and exome sequencing, we identified a previously undescribed heterozygous mutation, n.37 C > T, in the seed region of microRNA-204 (miR-204), which segregates with the disease in all affected individuals. We demonstrated that this mutation determines significant alterations of miR-204 targeting capabilities via in vitro assays, including transcriptome analysis. In vivo injection, in medaka fish (Oryzias latipes), of the mutated miR-204 caused a phenotype consistent with that observed in the family, including photoreceptor alterations with reduced numbers of both cones and rods as a result of increased apoptosis, thereby confirming the pathogenic effect of the n.37 C > T mutation. Finally, knockdown assays in medaka fish demonstrated that miR-204 is necessary for normal photoreceptor function. Overall, these data highlight the importance of miR-204 in the regulation of ocular development and maintenance and provide the first evidence, to our knowledge, of its contribution to eye disease, likely through a gain-of-function mechanism.


Asunto(s)
Coloboma/genética , MicroARNs/genética , Distrofias Retinianas/genética , Secuencia de Bases , Coloboma/complicaciones , Exoma , Femenino , Ligamiento Genético , Humanos , Masculino , Linaje , Distrofias Retinianas/complicaciones , Homología de Secuencia de Ácido Nucleico
10.
Hum Mol Genet ; 24(20): 5789-804, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26231217

RESUMEN

Correct morphogenesis and differentiation are critical in development and maintenance of the lens, which is a classic model system for epithelial development and disease. Through germline genomic analyses in patients with lens and eye abnormalities, we discovered functional mutations in the Signal Induced Proliferation Associated 1 Like 3 (SIPA1L3) gene, which encodes a previously uncharacterized member of the Signal Induced Proliferation Associated 1 (SIPA1 or SPA1) family, with a role in Rap1 signalling. Patient 1, with a de novo balanced translocation, 46,XY,t(2;19)(q37.3;q13.1), had lens and ocular anterior segment abnormalities. Breakpoint mapping revealed transection of SIPA1L3 at 19q13.1 and reduced SIPA1L3 expression in patient lymphoblasts. SIPA1L3 downregulation in 3D cell culture revealed morphogenetic and cell polarity abnormalities. Decreased expression of Sipa1l3 in zebrafish and mouse caused severe lens and eye abnormalities. Sipa1l3(-/-) mice showed disrupted epithelial cell organization and polarity and, notably, abnormal epithelial to mesenchymal transition in the lens. Patient 2 with cataracts was heterozygous for a missense variant in SIPA1L3, c.442G>T, p.Asp148Tyr. Examination of the p.Asp148Tyr mutation in an epithelial cell line showed abnormal clustering of actin stress fibres and decreased formation of adherens junctions. Our findings show that abnormalities of SIPA1L3 in human, zebrafish and mouse contribute to lens and eye defects, and we identify a critical role for SIPA1L3 in epithelial cell morphogenesis, polarity, adhesion and cytoskeletal organization.


Asunto(s)
Catarata/fisiopatología , Polaridad Celular , Citoesqueleto/ultraestructura , Anomalías del Ojo/fisiopatología , Proteínas Activadoras de GTPasa/genética , Mutación , Proteínas de Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Catarata/genética , Catarata/metabolismo , Polaridad Celular/genética , Análisis Mutacional de ADN , Transición Epitelial-Mesenquimal/genética , Anomalías del Ojo/genética , Anomalías del Ojo/metabolismo , Humanos , Ratones , Datos de Secuencia Molecular , Transducción de Señal , Pez Cebra/genética , Proteínas de Unión al GTP rap1/metabolismo
11.
Genet Med ; 19(9): 1032-1039, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28301457

RESUMEN

PURPOSE: Broadening access to genomic testing and counseling will be necessary to realize the benefits of personalized health care. This study aimed to assess the feasibility of delivering a standardized genomic care model for inherited retinal dystrophy (IRD) and of using selected measures to quantify its impact on patients. METHODS: A pre-/post- prospective cohort study recruited 98 patients affected by IRD to receive standardized multidisciplinary care. A checklist was used to assess the fidelity of the care process. Three patient-reported outcome measures-the Genetic Counselling Outcome Scale (GCOS-24), the ICEpop CAPability measure for Adults (ICECAP-A), and the EuroQol 5-dimension questionnaire (EQ-5D)-and a resource-use questionnaire were administered to investigate rates of missingness, ceiling effects, and changes over time. RESULTS: The care model was delivered consistently. Higher rates of missingness were found for the genetic-specific measure (GCOS-24). Considerable ceiling effects were observed for the generic measure (EQ-5D). The ICECAP-A yielded less missing data without significant ceiling effects. It was feasible to use telephone interviews for follow-up data collection. CONCLUSION: The study highlighted challenges and solutions associated with efforts to standardize genomic care for IRD. The study identified appropriate methods for a future definitive study to assess the clinical effectiveness and cost-effectiveness of the care model.Genet Med advance online publication 02 March 2017.


Asunto(s)
Atención a la Salud , Genómica , Oftalmología , Nivel de Atención , Algoritmos , Estudios de Cohortes , Atención a la Salud/métodos , Atención a la Salud/normas , Manejo de la Enfermedad , Femenino , Asesoramiento Genético , Pruebas Genéticas/métodos , Pruebas Genéticas/normas , Genómica/métodos , Humanos , Masculino , Modelos Teóricos , Oftalmología/métodos , Oftalmología/normas , Aceptación de la Atención de Salud , Medición de Resultados Informados por el Paciente , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/genética
12.
J Med Genet ; 53(11): 761-767, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27208204

RESUMEN

BACKGROUND: Inherited retinal diseases (IRDs) are a clinically and genetically heterogeneous set of disorders, for which diagnostic second-generation sequencing (next-generation sequencing, NGS) services have been developed worldwide. METHODS: We present the molecular findings of 537 individuals referred to a 105-gene diagnostic NGS test for IRDs. We assess the diagnostic yield, the spectrum of clinical referrals, the variant analysis burden and the genetic heterogeneity of IRD. We retrospectively analyse disease-causing variants, including an assessment of variant frequency in Exome Aggregation Consortium (ExAC). RESULTS: Individuals were referred from 10 clinically distinct classifications of IRD. Of the 4542 variants clinically analysed, we have reported 402 mutations as a cause or a potential cause of disease in 62 of the 105 genes surveyed. These variants account or likely account for the clinical diagnosis of IRD in 51% of the 537 referred individuals. 144 potentially disease-causing mutations were identified as novel at the time of clinical analysis, and we further demonstrate the segregation of known disease-causing variants among individuals with IRD. We show that clinically analysed variants indicated as rare in dbSNP and the Exome Variant Server remain rare in ExAC, and that genes discovered as a cause of IRD in the post-NGS era are rare causes of IRD in a population of clinically surveyed individuals. CONCLUSIONS: Our findings illustrate the continued powerful utility of custom-gene panel diagnostic NGS tests for IRD in the clinic, but suggest clear future avenues for increasing diagnostic yields.

13.
Ophthalmology ; 123(5): 1143-50, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26872967

RESUMEN

PURPOSE: To compare the efficacy of whole genome sequencing (WGS) with targeted next-generation sequencing (NGS) in the diagnosis of inherited retinal disease (IRD). DESIGN: Case series. PARTICIPANTS: A total of 562 patients diagnosed with IRD. METHODS: We performed a direct comparative analysis of current molecular diagnostics with WGS. We retrospectively reviewed the findings from a diagnostic NGS DNA test for 562 patients with IRD. A subset of 46 of 562 patients (encompassing potential clinical outcomes of diagnostic analysis) also underwent WGS, and we compared mutation detection rates and molecular diagnostic yields. In addition, we compared the sensitivity and specificity of the 2 techniques to identify known single nucleotide variants (SNVs) using 6 control samples with publically available genotype data. MAIN OUTCOME MEASURES: Diagnostic yield of genomic testing. RESULTS: Across known disease-causing genes, targeted NGS and WGS achieved similar levels of sensitivity and specificity for SNV detection. However, WGS also identified 14 clinically relevant genetic variants through WGS that had not been identified by NGS diagnostic testing for the 46 individuals with IRD. These variants included large deletions and variants in noncoding regions of the genome. Identification of these variants confirmed a molecular diagnosis of IRD for 11 of the 33 individuals referred for WGS who had not obtained a molecular diagnosis through targeted NGS testing. Weighted estimates, accounting for population structure, suggest that WGS methods could result in an overall 29% (95% confidence interval, 15-45) uplift in diagnostic yield. CONCLUSIONS: We show that WGS methods can detect disease-causing genetic variants missed by current NGS diagnostic methodologies for IRD and thereby demonstrate the clinical utility and additional value of WGS.


Asunto(s)
Enfermedades Hereditarias del Ojo/genética , Genoma , Técnicas de Diagnóstico Molecular , Enfermedades de la Retina/genética , Análisis de Secuencia de ADN , Femenino , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Estudios Retrospectivos , Sensibilidad y Especificidad
14.
Nucleic Acids Res ; 42(Database issue): D966-74, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24217912

RESUMEN

The Human Phenotype Ontology (HPO) project, available at http://www.human-phenotype-ontology.org, provides a structured, comprehensive and well-defined set of 10,088 classes (terms) describing human phenotypic abnormalities and 13,326 subclass relations between the HPO classes. In addition we have developed logical definitions for 46% of all HPO classes using terms from ontologies for anatomy, cell types, function, embryology, pathology and other domains. This allows interoperability with several resources, especially those containing phenotype information on model organisms such as mouse and zebrafish. Here we describe the updated HPO database, which provides annotations of 7,278 human hereditary syndromes listed in OMIM, Orphanet and DECIPHER to classes of the HPO. Various meta-attributes such as frequency, references and negations are associated with each annotation. Several large-scale projects worldwide utilize the HPO for describing phenotype information in their datasets. We have therefore generated equivalence mappings to other phenotype vocabularies such as LDDB, Orphanet, MedDRA, UMLS and phenoDB, allowing integration of existing datasets and interoperability with multiple biomedical resources. We have created various ways to access the HPO database content using flat files, a MySQL database, and Web-based tools. All data and documentation on the HPO project can be found online.


Asunto(s)
Ontologías Biológicas , Bases de Datos Factuales , Enfermedades Genéticas Congénitas/genética , Fenotipo , Animales , Enfermedades Genéticas Congénitas/diagnóstico , Genómica , Humanos , Internet , Ratones
15.
Nat Genet ; 39(8): 957-9, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17632512

RESUMEN

Donnai-Barrow syndrome is associated with agenesis of the corpus callosum, congenital diaphragmatic hernia, facial dysmorphology, ocular anomalies, sensorineural hearing loss and developmental delay. By studying multiplex families, we mapped this disorder to chromosome 2q23.3-31.1 and identified LRP2 mutations in six families with Donnai-Barrow syndrome and one family with facio-oculo-acoustico-renal syndrome. LRP2 encodes megalin, a multiligand uptake receptor that regulates levels of diverse circulating compounds. This work implicates a pathway with potential pharmacological therapeutic targets.


Asunto(s)
Anomalías Múltiples/genética , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Agenesia del Cuerpo Calloso , Cromosomas Humanos Par 2 , Anomalías Craneofaciales/genética , Enfermedades Hereditarias del Ojo/genética , Familia , Pérdida Auditiva Sensorineural/genética , Hernia Diafragmática/genética , Humanos , Riñón/anomalías , Mutación , Síndrome
16.
Am J Hum Genet ; 90(1): 69-75, 2012 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-22197488

RESUMEN

Pterygium syndromes are complex congenital disorders that encompass several distinct clinical conditions characterized by multiple skin webs affecting the flexural surfaces often accompanied by craniofacial anomalies. In severe forms, such as in the autosomal-recessive Bartsocas-Papas syndrome, early lethality is common, complicating the identification of causative mutations. Using exome sequencing in a consanguineous family, we identified the homozygous mutation c.1127C>A in exon 7 of RIPK4 that resulted in the introduction of the nonsense mutation p.Ser376X into the encoded ankyrin repeat-containing kinase, a protein that is essential for keratinocyte differentiation. Subsequently, we identified a second mutation in exon 2 of RIPK4 (c.242T>A) that resulted in the missense variant p.Ile81Asn in the kinase domain of the protein. We have further demonstrated that RIPK4 is a direct transcriptional target of the protein p63, a master regulator of stratified epithelial development, which acts as a nodal point in the cascade of molecular events that prevent pterygium syndromes.


Asunto(s)
Labio Leporino/genética , Fisura del Paladar/genética , Exoma , Proteínas Serina-Treonina Quinasas/genética , Pterigion/congénito , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Niño , Labio Leporino/diagnóstico , Fisura del Paladar/diagnóstico , Consanguinidad , Anomalías Craneofaciales/genética , Exones , Genes Recesivos , Sitios Genéticos , Humanos , Queratinocitos/metabolismo , Masculino , Ratones , Datos de Secuencia Molecular , Mutación , Fosfoproteínas/metabolismo , Pterigion/diagnóstico , Pterigion/genética , Índice de Severidad de la Enfermedad , Anomalías Cutáneas , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo
17.
Lancet ; 383(9923): 1129-37, 2014 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-24439297

RESUMEN

BACKGROUND: Choroideremia is an X-linked recessive disease that leads to blindness due to mutations in the CHM gene, which encodes the Rab escort protein 1 (REP1). We assessed the effects of retinal gene therapy with an adeno-associated viral (AAV) vector encoding REP1 (AAV.REP1) in patients with this disease. METHODS: In a multicentre clinical trial, six male patients (aged 35-63 years) with choroideremia were administered AAV.REP1 (0·6-1·0×10(10) genome particles, subfoveal injection). Visual function tests included best corrected visual acuity, microperimetry, and retinal sensitivity tests for comparison of baseline values with 6 months after surgery. This study is registered with ClinicalTrials.gov, number NCT01461213. FINDINGS: Despite undergoing retinal detachment, which normally reduces vision, two patients with advanced choroideremia who had low baseline best corrected visual acuity gained 21 letters and 11 letters (more than two and four lines of vision). Four other patients with near normal best corrected visual acuity at baseline recovered to within one to three letters. Mean gain in visual acuity overall was 3·8 letters (SE 4·1). Maximal sensitivity measured with dark-adapted microperimetry increased in the treated eyes from 23·0 dB (SE 1·1) at baseline to 25·3 dB (1·3) after treatment (increase 2·3 dB [95% CI 0·8-3·8]). In all patients, over the 6 months, the increase in retinal sensitivity in the treated eyes (mean 1·7 [SE 1·0]) was correlated with the vector dose administered per mm(2) of surviving retina (r=0·82, p=0·04). By contrast, small non-significant reductions (p>0·05) were noted in the control eyes in both maximal sensitivity (-0·8 dB [1·5]) and mean sensitivity (-1·6 dB [0·9]). One patient in whom the vector was not administered to the fovea re-established variable eccentric fixation that included the ectopic island of surviving retinal pigment epithelium that had been exposed to vector. INTERPRETATION: The initial results of this retinal gene therapy trial are consistent with improved rod and cone function that overcome any negative effects of retinal detachment. These findings lend support to further assessment of gene therapy in the treatment of choroideremia and other diseases, such as age-related macular degeneration, for which intervention should ideally be applied before the onset of retinal thinning. FUNDING: UK Department of Health and Wellcome Trust.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/administración & dosificación , Coroideremia/terapia , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Proteínas Adaptadoras Transductoras de Señales/genética , Adenoviridae/genética , Adulto , Anciano , Coroideremia/fisiopatología , Fluorescencia , Técnicas de Transferencia de Gen , Humanos , Inyecciones Intraoculares , Masculino , Persona de Mediana Edad , Desprendimiento de Retina/fisiopatología , Desprendimiento de Retina/terapia , Transgenes/genética , Agudeza Visual/fisiología
18.
Mol Vis ; 21: 236-43, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25802487

RESUMEN

PURPOSE: To investigate the molecular basis of retinitis pigmentosa in two consanguineous families of Pakistani origin with multiple affected members. METHODS: Homozygosity mapping and Sanger sequencing of candidate genes were performed in one family while the other was analyzed with whole exome next-generation sequencing. A minigene splicing assay was used to confirm the splicing defects. RESULTS: In family MA48, a novel homozygous nucleotide substitution in C8orf37, c.244-2A>C, that disrupted the consensus splice acceptor site of exon 3 was found. The minigene splicing assay revealed that this mutation activated a cryptic splice site within exon 3, causing a 22 bp deletion in the transcript that is predicted to lead to a frameshift followed by premature protein truncation. In family MA13, a novel homozygous null mutation in C8orf37, c.555G>A, p.W185*, was identified. Both mutations segregated with the disease phenotype as expected in a recessive manner and were absent in 8,244 unrelated individuals of South Asian origin. CONCLUSIONS: In this report, we describe C8orf37 mutations that cause retinal dystrophy in two families of Pakistani origin, contributing further data on the phenotype and the spectrum of mutations in this form of retinitis pigmentosa.


Asunto(s)
Consanguinidad , Mutación , Proteínas/genética , Retinitis Pigmentosa/genética , Adolescente , Adulto , Niño , Análisis Mutacional de ADN , Exones , Femenino , Genes Recesivos , Homocigoto , Humanos , Masculino , Persona de Mediana Edad , Pakistán , Empalme del ARN , Retinitis Pigmentosa/patología
19.
Hum Hered ; 77(1-4): 118-37, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25060275

RESUMEN

The formation of the anterior segment of the eye is an intricate process that is dependent to a large degree on the normal development of the lens. Despite intensive study of the role of well-described eye genes, many causes of lenticular and anterior segment anomalies remain elusive. The majority of genes implicated thus far act in an autosomal dominant manner. Autosomal recessive causes are less well described; their diagnosis has been hindered by technological limitations, extreme genetic heterogeneity, a lack of understanding of eye biology and the role of many genes within the genome. The opportunity for the discovery of extremely rare autosomal recessive causes of ocular abnormalities from the study of consanguineous families is large, particularly through the powerful combination of next-generation sequencing with autozygosity mapping. Having begun to overcome the genetic heterogeneity bottleneck, it is increasingly recognised that the interpretation of genetic variants and the association of novel genes with a particular phenotype remain challenging. Nonetheless, increasing understanding of the genetic and mutational basis of lens and anterior segment abnormalities will be of enormous value to our comprehension of eye disease(s). Further, it will improve our ability to accurately interpret putative disease-causing variants with the aim of providing more personalised patient care and avoiding lifelong visual loss in children.


Asunto(s)
Consanguinidad , Anomalías del Ojo/genética , Anomalías del Ojo/patología , Ojo/embriología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Cristalino/anomalías , Cristalino/embriología , Mapeo Cromosómico , Homocigoto , Humanos , Polimorfismo de Nucleótido Simple/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
20.
Hum Mol Genet ; 21(2): 384-93, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22002996

RESUMEN

Fuchs endothelial corneal dystrophy (FECD) is a leading indication for corneal transplantation. FECD is characterized by progressive alterations in endothelial cell morphology, excrescences (guttae) and thickening of the endothelial basement membrane and cell death. Ultimately, these changes lead to corneal edema and vision loss. Due to the lack of vision loss in early disease stages and the decades long disease course, early pathophysiology in FECD is virtually unknown as studies of pathologic tissues have been limited to end-stage tissues obtained at transplant. The first genetic defect shown to cause FECD was a point mutation causing a glutamine to lysine substitution at amino acid position 455 (Q455K) in the alpha 2 collagen 8 gene (COL8A2) which results in an early onset form of the disease. Homozygous mutant knock-in mice with this mutation (Col8a2(Q455K/Q455K)) show features strikingly similar to human disease, including progressive alterations in endothelial cell morphology, cell loss and basement membrane guttae. Ultrastructural analysis shows the predominant defect as dilated endoplasmic reticulum (ER), suggesting ER stress and unfolded protein response (UPR) activation. Immunohistochemistry, western blotting, quantitative reverse transcriptase polymerase chain reaction and terminal deoxynucleotidyl transferase 2-deoxyuridine, 5-triphosphate nick end-labeling analyses support UPR activation and UPR-associated apoptosis in the Col8a2(Q455K/Q455K) mutant corneal endothelium. This study confirms the Q455K substitution in the COL8A2 gene as being sufficient to cause FECD in the first mouse model of this disease and supports the role of the UPR and UPR-associated apoptosis in the pathogenesis of FECD caused by COL8A2 mutations.


Asunto(s)
Apoptosis , Colágeno Tipo VIII/genética , Modelos Animales de Enfermedad , Endotelio Corneal/metabolismo , Distrofia Endotelial de Fuchs/patología , Animales , Endotelio Corneal/patología , Distrofia Endotelial de Fuchs/genética , Distrofia Endotelial de Fuchs/metabolismo , Ratones , Ratones Transgénicos , Microscopía Electrónica , Mutación , Desnaturalización Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA