Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 182(5): 1232-1251.e22, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32822576

RESUMEN

Lung cancer, the leading cause of cancer mortality, exhibits heterogeneity that enables adaptability, limits therapeutic success, and remains incompletely understood. Single-cell RNA sequencing (scRNA-seq) of metastatic lung cancer was performed using 49 clinical biopsies obtained from 30 patients before and during targeted therapy. Over 20,000 cancer and tumor microenvironment (TME) single-cell profiles exposed a rich and dynamic tumor ecosystem. scRNA-seq of cancer cells illuminated targetable oncogenes beyond those detected clinically. Cancer cells surviving therapy as residual disease (RD) expressed an alveolar-regenerative cell signature suggesting a therapy-induced primitive cell-state transition, whereas those present at on-therapy progressive disease (PD) upregulated kynurenine, plasminogen, and gap-junction pathways. Active T-lymphocytes and decreased macrophages were present at RD and immunosuppressive cell states characterized PD. Biological features revealed by scRNA-seq were biomarkers of clinical outcomes in independent cohorts. This study highlights how therapy-induced adaptation of the multi-cellular ecosystem of metastatic cancer shapes clinical outcomes.


Asunto(s)
Neoplasias Pulmonares/genética , Biomarcadores de Tumor/genética , Línea Celular , Ecosistema , Humanos , Neoplasias Pulmonares/patología , Macrófagos/patología , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Linfocitos T/patología , Microambiente Tumoral/genética
2.
J Natl Compr Canc Netw ; 21(6): 609-616.e4, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37308126

RESUMEN

BACKGROUND: Circulating tumor DNA (ctDNA) is used to select initial targeted therapy, identify mechanisms of therapeutic resistance, and measure minimal residual disease (MRD) after treatment. Our objective was to review private and Medicare coverage policies for ctDNA testing. METHODS: Policy Reporter was used to identify coverage policies (as of February 2022) from private payers and Medicare Local Coverage Determinations (LCDs) for ctDNA tests. We abstracted data regarding policy existence, ctDNA test coverage, cancer types covered, and clinical indications. Descriptive analyses were performed by payer, clinical indication, and cancer type. RESULTS: A total of 71 of 1,066 total policies met study inclusion criteria, of which 57 were private policies and 14 were Medicare LCDs; 70% of private policies and 100% of Medicare LCDs covered at least one indication. Among 57 private policies, 89% specified a policy for at least 1 clinical indication, with coverage for ctDNA for initial treatment selection most common (69%). Of 40 policies addressing progression, coverage was provided 28% of the time, and of 20 policies addressing MRD, coverage was provided 65% of the time. Non-small cell lung cancer (NSCLC) was the cancer type most frequently covered for initial treatment (47%) and progression (60%). Among policies with ctDNA coverage, coverage was restricted to patients without available tissue or in whom biopsy was contraindicated in 91% of policies. MRD was commonly covered for hematologic malignancies (30%) and NSCLC (25%). Of the 14 Medicare LCD policies, 64% provided coverage for initial treatment selection and progression, and 36% for MRD. CONCLUSIONS: Some private payers and Medicare LCDs provide coverage for ctDNA testing. Private payers frequently cover testing for initial treatment, especially for NSCLC, when tissue is insufficient or biopsy is contraindicated. Coverage remains variable across payers, clinical indications, and cancer types despite inclusion in clinical guidelines, which could impact delivery of effective cancer care.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , ADN Tumoral Circulante , Neoplasias Pulmonares , Anciano , Estados Unidos , Humanos , Medicare , Neoplasia Residual , Políticas
3.
J Natl Compr Canc Netw ; 19(12): 1441-1464, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34902832

RESUMEN

The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for Small Cell Lung Cancer (SCLC) provide recommended management for patients with SCLC, including diagnosis, primary treatment, surveillance for relapse, and subsequent treatment. This selection for the journal focuses on metastatic (known as extensive-stage) SCLC, which is more common than limited-stage SCLC. Systemic therapy alone can palliate symptoms and prolong survival in most patients with extensive-stage disease. Smoking cessation counseling and intervention should be strongly promoted in patients with SCLC and other high-grade neuroendocrine carcinomas. The "Summary of the Guidelines Updates" section in the SCLC algorithm outlines the most recent revisions for the 2022 update, which are described in greater detail in this revised Discussion text.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/terapia , Oncología Médica , Recurrencia Local de Neoplasia , Carcinoma Pulmonar de Células Pequeñas/diagnóstico , Carcinoma Pulmonar de Células Pequeñas/patología , Carcinoma Pulmonar de Células Pequeñas/terapia
4.
Future Oncol ; 17(31): 4045-4055, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34278827

RESUMEN

Osimertinib is a third-generation, irreversible oral EGFR-tyrosine kinase inhibitor), that potently inhibits EGFR-tyrosine kinase inhibitor-sensitizing mutations and T790M resistance mutations together with efficacy in CNS metastases in patients with non-small-cell lung cancer (NSCLC). Here we describe the rationale and design for the Phase III NeoADAURA study (NCT04351555), which will evaluate neoadjuvant osimertinib with or without chemotherapy versus chemotherapy alone prior to surgery, in patients with resectable stage II-IIIB N2 EGFR mutation-positive NSCLC. The primary end point is centrally assessed major pathological response at the time of resection. Secondary end points include event-free survival, pathological complete response, nodal downstaging at the time of surgery, disease-free survival, overall survival and health-related quality of life. Safety and tolerability will also be assessed. Trial Registration number: NCT04351555 (ClinicalTrials.gov).


Lay abstract A plain language version of this article is available and is published alongside the paper online: www.futuremedicine.com/doi/suppl/10.2217/fon-2021-0549.


Asunto(s)
Acrilamidas/uso terapéutico , Compuestos de Anilina/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Mutación , Acrilamidas/efectos adversos , Compuestos de Anilina/efectos adversos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/psicología , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/psicología , Terapia Neoadyuvante , Calidad de Vida
5.
Lancet Oncol ; 21(2): 271-282, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31838007

RESUMEN

BACKGROUND: Entrectinib is a potent inhibitor of tropomyosin receptor kinase (TRK) A, B, and C, which has been shown to have anti-tumour activity against NTRK gene fusion-positive solid tumours, including CNS activity due to its ability to penetrate the blood-brain barrier. We present an integrated efficacy and safety analysis of patients with metastatic or locally advanced solid tumours harbouring oncogenic NTRK1, NTRK2, and NTRK3 gene fusions treated in three ongoing, early-phase trials. METHODS: An integrated database comprised the pivotal datasets of three, ongoing phase 1 or 2 clinical trials (ALKA-372-001, STARTRK-1, and STARTRK-2), which enrolled patients aged 18 years or older with metastatic or locally advanced NTRK fusion-positive solid tumours who received entrectinib orally at a dose of at least 600 mg once per day in a capsule. All patients had an Eastern Cooperative Oncology Group performance status of 0-2 and could have received previous anti-cancer therapy (except previous TRK inhibitors). The primary endpoints, the proportion of patients with an objective response and median duration of response, were evaluated by blinded independent central review in the efficacy-evaluable population (ie, patients with NTRK fusion-positive solid tumours who were TRK inhibitor-naive and had received at least one dose of entrectinib). Overall safety evaluable population included patients from STARTRK-1, STARTRK-2, ALKA-372-001, and STARTRK-NG (NCT02650401; treating young adult and paediatric patients [aged ≤21 years]), who received at least one dose of entrectinib, regardless of tumour type or gene rearrangement. NTRK fusion-positive safety evaluable population comprised all patients who have received at least one dose of entrectinib regardless of dose or follow-up. These ongoing studies are registered with ClinicalTrials.gov, NCT02097810 (STARTRK-1) and NCT02568267 (STARTRK-2), and EudraCT, 2012-000148-88 (ALKA-372-001). FINDINGS: Patients were enrolled in ALKA-372-001 from Oct 26, 2012, to March 27, 2018; in STARTRK-1 from Aug 7, 2014, to May 10, 2018; and in STARTRK-2 from Nov 19, 2015 (enrolment is ongoing). At the data cutoff date for this analysis (May 31, 2018) the efficacy-evaluable population comprised 54 adults with advanced or metastatic NTRK fusion-positive solid tumours comprising ten different tumour types and 19 different histologies. Median follow-up was 12.9 months (IQR 8·77-18·76). 31 (57%; 95% CI 43·2-70·8) of 54 patients had an objective response, of which four (7%) were complete responses and 27 (50%) partial reponses. Median duration of response was 10 months (95% CI 7·1 to not estimable). The most common grade 3 or 4 treatment-related adverse events in both safety populations were increased weight (seven [10%] of 68 patients in the NTRK fusion-positive safety population and in 18 [5%] of 355 patients in the overall safety-evaluable population) and anaemia (8 [12%] and 16 [5%]). The most common serious treatment-related adverse events were nervous system disorders (three [4%] of 68 patients and ten [3%] of 355 patients). No treatment-related deaths occurred. INTERPRETATION: Entrectinib induced durable and clinically meaningful responses in patients with NTRK fusion-positive solid tumours, and was well tolerated with a manageable safety profile. These results show that entrectinib is a safe and active treatment option for patients with NTRK fusion-positive solid tumours. These data highlight the need to routinely test for NTRK fusions to broaden the therapeutic options available for patients with NTRK fusion-positive solid tumours. FUNDING: Ignyta/F Hoffmann-La Roche.


Asunto(s)
Antineoplásicos/uso terapéutico , Benzamidas/uso terapéutico , Biomarcadores de Tumor/genética , Fusión Génica , Indazoles/uso terapéutico , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptores de Factor de Crecimiento Nervioso/antagonistas & inhibidores , Receptores de Factor de Crecimiento Nervioso/genética , Anciano , Antineoplásicos/efectos adversos , Benzamidas/efectos adversos , Ensayos Clínicos Fase I como Asunto , Ensayos Clínicos Fase II como Asunto , Femenino , Humanos , Indazoles/efectos adversos , Masculino , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/genética , Persona de Mediana Edad , Metástasis de la Neoplasia , Neoplasias/genética , Neoplasias/mortalidad , Neoplasias/patología , Inhibidores de Proteínas Quinasas/efectos adversos , Receptor trkA/antagonistas & inhibidores , Receptor trkA/genética , Receptor trkB/antagonistas & inhibidores , Receptor trkB/genética , Receptor trkC/antagonistas & inhibidores , Receptor trkC/genética , Factores de Tiempo , Resultado del Tratamiento
6.
Curr Oncol Rep ; 21(3): 21, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30806814

RESUMEN

PURPOSE OF REVIEW: Lung cancer remains the leading cause of cancer-related mortality worldwide. Genetic and molecular profiling of non-small cell lung cancer (NSCLC) has led to the discovery of actionable oncogenic driver alterations, which has revolutionized treatment for this disease. This review will move beyond traditional mutational drivers such as EGFR and ALK and will instead focus on emerging targets and the efficacy of new precision therapies. RECENT FINDINGS: Here, we discuss both established and emerging targeted therapy approaches, as well as ongoing challenges for the treatment of NSCLC patients harboring oncogenic alterations of the following types-gene fusions (ROS1, RET, NTRK), receptor tyrosine kinases (MET amplification and exon 14 mutations and EGFR/HER2 exon 20 insertion mutations), and MAPK signaling (SHP2 and altered BRAF and NF1). The treatment of lung cancer is increasingly biomarker-driven, as patients are selected for targeted agents based on the identification of genetic alterations amenable to inhibition. Our ability to further improve patient outcomes with this precision medicine approach will require continued efforts to identify, characterize, and target lesions driving lung cancer tumorigenesis and progression.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Terapia Molecular Dirigida , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Medicina de Precisión , Pronóstico
7.
Bioconjug Chem ; 29(1): 96-103, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29125731

RESUMEN

High sensitivity imaging tools could provide a more holistic view of target antigen expression to improve the identification of patients who might benefit from cancer immunotherapy. We developed for immunoPET a novel recombinant human IgG1 (termed C4) that potently binds an extracellular epitope on human and mouse PD-L1 and radiolabeled the antibody with zirconium-89. Small animal PET/CT studies showed that 89Zr-C4 detected antigen levels on a patient derived xenograft (PDX) established from a non-small-cell lung cancer (NSCLC) patient before an 8-month response to anti-PD-1 and anti-CTLA4 therapy. Importantly, the concentration of antigen is beneath the detection limit of previously developed anti-PD-L1 radiotracers, including radiolabeled atezolizumab. We also show that 89Zr-C4 can specifically detect antigen in human NSCLC and prostate cancer models endogenously expressing a broad range of PD-L1. 89Zr-C4 detects mouse PD-L1 expression changes in immunocompetent mice, suggesting that endogenous PD-1/2 will not confound human imaging. Lastly, we found that 89Zr-C4 could detect acute changes in tumor expression of PD-L1 due to standard of care chemotherapies. In summary, we present evidence that low levels of PD-L1 in clinically relevant cancer models can be imaged with immunoPET using a novel recombinant human antibody.


Asunto(s)
Antígeno B7-H1/análisis , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Inmunoconjugados/química , Inmunoglobulina G/química , Neoplasias Pulmonares/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Radioisótopos/química , Circonio/química , Animales , Línea Celular Tumoral , Células HEK293 , Humanos , Pulmón/diagnóstico por imagen , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Recombinantes/química
8.
Curr Probl Cancer ; 49: 101065, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38341356

RESUMEN

The mitogen-activated protein kinase (MAPK or MEK) pathway modulates tumor cell survival and proliferation in non-small cell lung cancer (NSCLC). Unlike RAS or EGFR, activating mutations in MEK are exceedingly rare in NSCLC. Instead, enhanced activation of the MEK pathway is often linked to increased signaling by upstream oncogenic driver mutations. Thus far, MEK inhibitor monotherapy has shown little promise. However, treatment strategies involving MEK inhibition in combination with other targeted therapies in other oncogene-driven NSCLC has proven to be encouraging. For example, MEK inhibition - when combined with BRAF inhibition, - has shown strong anti-tumor activity in BRAF V600 mutated NSCLC. In this review, recent data on MEK inhibitor strategies in NSCLC are summarized. Furthermore, ongoing early phase trials investigating MEK inhibitor combination therapy with immunotherapy, chemotherapy and other oncogene drivers are highlighted. These and other studies could help inform future rational combination strategies of MEK-ERK inhibition in oncogene-driven NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Inhibidores de Proteínas Quinasas , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Terapia Molecular Dirigida/métodos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Mutación
9.
Nat Cancer ; 5(6): 938-952, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38637658

RESUMEN

Tailoring optimal treatment for individual cancer patients remains a significant challenge. To address this issue, we developed PERCEPTION (PERsonalized Single-Cell Expression-Based Planning for Treatments In ONcology), a precision oncology computational pipeline. Our approach uses publicly available matched bulk and single-cell (sc) expression profiles from large-scale cell-line drug screens. These profiles help build treatment response models based on patients' sc-tumor transcriptomics. PERCEPTION demonstrates success in predicting responses to targeted therapies in cultured and patient-tumor-derived primary cells, as well as in two clinical trials for multiple myeloma and breast cancer. It also captures the resistance development in patients with lung cancer treated with tyrosine kinase inhibitors. PERCEPTION outperforms published state-of-the-art sc-based and bulk-based predictors in all clinical cohorts. PERCEPTION is accessible at https://github.com/ruppinlab/PERCEPTION . Our work, showcasing patient stratification using sc-expression profiles of their tumors, will encourage the adoption of sc-omics profiling in clinical settings, enhancing precision oncology tools based on sc-omics.


Asunto(s)
Resistencia a Antineoplásicos , Medicina de Precisión , Análisis de la Célula Individual , Transcriptoma , Humanos , Análisis de la Célula Individual/métodos , Medicina de Precisión/métodos , Resistencia a Antineoplásicos/genética , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Perfilación de la Expresión Génica/métodos , Femenino , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Biología Computacional/métodos
10.
Nat Commun ; 15(1): 3741, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702301

RESUMEN

Targeted therapy is effective in many tumor types including lung cancer, the leading cause of cancer mortality. Paradigm defining examples are targeted therapies directed against non-small cell lung cancer (NSCLC) subtypes with oncogenic alterations in EGFR, ALK and KRAS. The success of targeted therapy is limited by drug-tolerant persister cells (DTPs) which withstand and adapt to treatment and comprise the residual disease state that is typical during treatment with clinical targeted therapies. Here, we integrate studies in patient-derived and immunocompetent lung cancer models and clinical specimens obtained from patients on targeted therapy to uncover a focal adhesion kinase (FAK)-YAP signaling axis that promotes residual disease during oncogenic EGFR-, ALK-, and KRAS-targeted therapies. FAK-YAP signaling inhibition combined with the primary targeted therapy suppressed residual drug-tolerant cells and enhanced tumor responses. This study unveils a FAK-YAP signaling module that promotes residual disease in lung cancer and mechanism-based therapeutic strategies to improve tumor response.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Resistencia a Antineoplásicos , Neoplasias Pulmonares , Transducción de Señal , Factores de Transcripción , Proteínas Señalizadoras YAP , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteínas Señalizadoras YAP/metabolismo , Línea Celular Tumoral , Animales , Resistencia a Antineoplásicos/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Neoplasia Residual , Ratones , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/genética , Receptores ErbB/metabolismo , Receptores ErbB/genética , Quinasa de Linfoma Anaplásico/metabolismo , Quinasa de Linfoma Anaplásico/genética , Quinasa de Linfoma Anaplásico/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Nat Genet ; 56(1): 60-73, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38049664

RESUMEN

In this study, the impact of the apolipoprotein B mRNA-editing catalytic subunit-like (APOBEC) enzyme APOBEC3B (A3B) on epidermal growth factor receptor (EGFR)-driven lung cancer was assessed. A3B expression in EGFR mutant (EGFRmut) non-small-cell lung cancer (NSCLC) mouse models constrained tumorigenesis, while A3B expression in tumors treated with EGFR-targeted cancer therapy was associated with treatment resistance. Analyses of human NSCLC models treated with EGFR-targeted therapy showed upregulation of A3B and revealed therapy-induced activation of nuclear factor kappa B (NF-κB) as an inducer of A3B expression. Significantly reduced viability was observed with A3B deficiency, and A3B was required for the enrichment of APOBEC mutation signatures, in targeted therapy-treated human NSCLC preclinical models. Upregulation of A3B was confirmed in patients with NSCLC treated with EGFR-targeted therapy. This study uncovers the multifaceted roles of A3B in NSCLC and identifies A3B as a potential target for more durable responses to targeted cancer therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación , Regulación hacia Arriba/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Citidina Desaminasa/genética , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/metabolismo
12.
Nat Commun ; 15(1): 4871, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871738

RESUMEN

The phenomenon of mixed/heterogenous treatment responses to cancer therapies within an individual patient presents a challenging clinical scenario. Furthermore, the molecular basis of mixed intra-patient tumor responses remains unclear. Here, we show that patients with metastatic lung adenocarcinoma harbouring co-mutations of EGFR and TP53, are more likely to have mixed intra-patient tumor responses to EGFR tyrosine kinase inhibition (TKI), compared to those with an EGFR mutation alone. The combined presence of whole genome doubling (WGD) and TP53 co-mutations leads to increased genome instability and genomic copy number aberrations in genes implicated in EGFR TKI resistance. Using mouse models and an in vitro isogenic p53-mutant model system, we provide evidence that WGD provides diverse routes to drug resistance by increasing the probability of acquiring copy-number gains or losses relative to non-WGD cells. These data provide a molecular basis for mixed tumor responses to targeted therapy, within an individual patient, with implications for therapeutic strategies.


Asunto(s)
Inestabilidad Cromosómica , Receptores ErbB , Neoplasias Pulmonares , Mutación , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Ratones , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Receptores ErbB/genética , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inhibidores , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/patología , Terapia Molecular Dirigida/métodos , Femenino , Variaciones en el Número de Copia de ADN , Masculino
13.
Lung Cancer ; 177: 59-72, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36736076

RESUMEN

While the discovery of oncogenic driver mutations has personalized the metastatic non-small cell lung cancer (NSCLC) treatment landscape with effective targeted therapies, implementation of new treatments in resectable NSCLC has been limited due to the long follow-up needed for overall survival (OS). Until recently, treatment for patients with early-stage resectable NSCLC has been limited to perioperative chemotherapy, which provides modest benefits. However, the regulatory acceptance of two surrogate endpoints for OS has allowed recent approval of both adjuvant osimertinib and atezolizumab, providing patients with new treatment options to improve outcomes. In phase 3 oncology trials, OS has historically been viewed as the gold-standard efficacy measure, but disease-free survival and event-free survival (EFS) are now validated surrogate endpoints for OS in clinical trials and should be considered when mature OS data is unavailable. Another potential surrogate endpoint in the adjuvant NSCLC setting is circulating tumor DNA (ctDNA)-based minimal residual disease (MRD), although prospective validation is needed. For neoadjuvant targeted therapies, EFS, major pathologic response and ctDNA-based MRD are potential surrogate endpoints. To fully translate the success of the personalized treatment advances in the metastatic setting to earlier-stage disease, prospective validation studies of these potential surrogate endpoints that can accelerate the evaluation of drug efficacy are needed. A collaborative effort is also needed from all clinical and regulatory parties to collate surrogate endpoint data for large-scale validation. In this review we discuss the trends in surrogate endpoints used in oncology trials, with a focus on considerations for selecting appropriate primary endpoints in early-stage resectable EGFR-mutant NSCLC, an area of unmet need for novel treatment options.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Supervivencia sin Enfermedad , Biomarcadores , Receptores ErbB/genética
14.
JTO Clin Res Rep ; 4(3): 100459, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36879929

RESUMEN

Introduction: EGFR mutations drive a subset of NSCLC. Patients harboring the common EGFR mutations, deletion of exon 19 and L858R, respond well to osimertinib, a third-generation tyrosine kinase inhibitor. Nevertheless, the effect of osimertinib on NSCLC with atypical EGFR mutations is not well described. This multicenter retrospective study evaluates the efficacy of osimertinib among patients with NSCLC harboring atypical EGFR mutations. Methods: Patients with metastatic NSCLC treated with osimertinib, harboring at least one atypical EGFR mutation, excluding concurrent deletion of exon 19, L858R, or T790M mutations, from six U.S. academic cancer centers were included. Baseline clinical characteristics were collected. The primary end point was the time to treatment discontinuation (TTD) of osimertinib. Objective response rate by the Response Evaluation Criteria in Solid Tumors version 1.1 was also assessed. Results: A total of 50 patients with NSCLC with uncommon EGFR mutations were identified. The most frequent EGFR mutations were L861Q (40%, n = 18), G719X (28%, n = 14), and exon 20 insertion (14%, n = 7). The median TTD of osimertinib was 9.7 months (95% confidence interval [CI]: 6.5-12.9 mo) overall and 10.7 months (95% CI: 3.2-18.1 mo) in the first-line setting (n = 20). The objective response rate was 31.7% (95% CI: 18.1%-48.1%) overall and 41.2% (95% CI: 18.4%-67.1%) in the first-line setting. The median TTD varied among patients with L861Q (17.2 mo), G719X (7.8 mo), and exon 20 insertion (1.5 mo) mutations. Conclusions: Osimertinib has activity in patients with NSCLC harboring atypical EGFR mutations. Osimertinib activity differs by the type of atypical EGFR-activating mutation.

15.
J Thorac Oncol ; 18(5): 650-656, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36641093

RESUMEN

INTRODUCTION: CD73 is overexpressed in EGFR-mutated NSCLC and may promote immune evasion, suggesting potential for combining CD73 blockers with EGFR tyrosine kinase inhibitors (TKIs). This phase 1b-2 study (NCT03381274) evaluated the anti-CD73 antibody oleclumab plus the third-generation EGFR TKI osimertinib in advanced EGFR-mutated NSCLC. METHODS: Patients had tissue T790M-negative NSCLC with TKI-sensitive EGFR mutations after progression on a first- or second-generation EGFR TKI and were osimertinib naive. They received osimertinib 80 mg orally once daily plus oleclumab 1500 mg (dose level 1 [DL1]) or 3000 mg (DL2) intravenously every 2 weeks. Primary end points included safety and objective response rate by Response Evaluation Criteria in Solid Tumors version 1.1. RESULTS: By July 9, 2021, five patients received DL1 and 21 received DL2. Of these patients, 60.0% and 85.7% had any-grade treatment-related adverse events (TRAEs) and 20.0% and 14.3% had grade 3 TRAEs, respectively. No dose-limiting toxicities, serious TRAEs, or deaths occurred. Four patients were T790M positive on retrospective circulating tumor DNA (ctDNA) testing; three had objective partial responses. In patients who were T790M negative in tumor and ctDNA, objective response rate was 25.0% at DL1 and 11.8% at DL2 (all partial responses); response durations at DL2 were 14.8 and 16.6 months. In patients receiving DL2, excluding those who were T790M positive by ctDNA, median progression-free survival was 7.4 months, and median overall survival was 24.8 months. DL2 was the recommended phase 2 dose. CONCLUSIONS: Oleclumab plus osimertinib was found to have moderate activity with acceptable tolerability in previously treated patients with advanced EGFR-mutated NSCLC.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Compuestos de Anilina , Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Receptores ErbB , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Estudios Retrospectivos , 5'-Nucleotidasa/antagonistas & inhibidores
16.
J Thorac Oncol ; 18(7): 907-921, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36842467

RESUMEN

INTRODUCTION: Sitravatinib, a receptor tyrosine kinase inhibitor targeting TYRO3, AXL, MERTK receptors, and vascular epithelial growth factor receptor 2, can shift the tumor microenvironment toward an immunostimulatory state. Combining sitravatinib with checkpoint inhibitors (CPIs) may augment antitumor activity. METHODS: The phase 2 MRTX-500 study evaluated sitravatinib (120 mg daily) with nivolumab (every 2 or 4 wk) in patients with advanced nonsquamous NSCLC who progressed on or after previous CPI (CPI-experienced) or chemotherapy (CPI-naive). CPI-experienced patients had a previous clinical benefit (PCB) (complete response, partial response, or stable disease for at least 12 weeks then disease progression) or no PCB (NPCB) from CPI. The primary end point was objective response rate (ORR); secondary objectives included safety and secondary efficacy end points. RESULTS: Overall, 124 CPI-experienced (NPCB, n = 35; PCB, n = 89) and 32 CPI-naive patients were treated. Investigator-assessed ORR was 11.4% in patients with NPCB, 16.9% with PCB, and 25.0% in CPI-naive. The median progression-free survival was 3.7, 5.6, and 7.1 months with NPCB, PCB, and CPI-naive, respectively; the median overall survival was 7.9 and 13.6 months with NPCB and PCB, respectively (not reached in CPI-naive patients; median follow-up 20.4 mo). Overall, (N = 156), any grade treatment-related adverse events (TRAEs) occurred in 93.6%; grade 3/4 in 58.3%. One grade 5 TRAE occurred in a CPI-naive patient. TRAEs led to treatment discontinuation in 14.1% and dose reduction or interruption in 42.9%. Biomarker analyses supported an immunostimulatory mechanism of action. CONCLUSIONS: Sitravatinib with nivolumab had a manageable safety profile. Although ORR was not met, this combination exhibited antitumor activity and encouraged survival in CPI-experienced patients with nonsquamous NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Nivolumab/farmacología , Nivolumab/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Anilidas/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Microambiente Tumoral
17.
Cancer Discov ; 13(7): 1556-1571, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37068173

RESUMEN

Molecular modifiers of KRASG12C inhibitor (KRASG12Ci) efficacy in advanced KRASG12C-mutant NSCLC are poorly defined. In a large unbiased clinicogenomic analysis of 424 patients with non-small cell lung cancer (NSCLC), we identified and validated coalterations in KEAP1, SMARCA4, and CDKN2A as major independent determinants of inferior clinical outcomes with KRASG12Ci monotherapy. Collectively, comutations in these three tumor suppressor genes segregated patients into distinct prognostic subgroups and captured ∼50% of those with early disease progression (progression-free survival ≤3 months) with KRASG12Ci. Pathway-level integration of less prevalent coalterations in functionally related genes nominated PI3K/AKT/MTOR pathway and additional baseline RAS gene alterations, including amplifications, as candidate drivers of inferior outcomes with KRASG12Ci, and revealed a possible association between defective DNA damage response/repair and improved KRASG12Ci efficacy. Our findings propose a framework for patient stratification and clinical outcome prediction in KRASG12C-mutant NSCLC that can inform rational selection and appropriate tailoring of emerging combination therapies. SIGNIFICANCE: In this work, we identify co-occurring genomic alterations in KEAP1, SMARCA4, and CDKN2A as independent determinants of poor clinical outcomes with KRASG12Ci monotherapy in advanced NSCLC, and we propose a framework for patient stratification and treatment personalization based on the comutational status of individual tumors. See related commentary by Heng et al., p. 1513. This article is highlighted in the In This Issue feature, p. 1501.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Mutación , Factor 2 Relacionado con NF-E2/metabolismo , ADN Helicasas/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética
18.
JTO Clin Res Rep ; 3(12): 100436, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36545322

RESUMEN

Introduction: In patients with NSCLC harboring oncogenic ALK or ROS1 rearrangements, tyrosine kinase inhibitors have yielded high response rates and improvements in progression-free survival compared with cytotoxic chemotherapy; however, acquired resistance eventually develops. In preclinical models, ALK and MEK coinhibition was able to overcome ALK inhibitor resistance. Methods: A phase 1 study of the ALK/ROS1 inhibitor ceritinib and the MEK inhibitor trametinib in patients with refractory NSCLC harboring ALK or ROS1 fusions was initiated. A three plus three dose-escalation scheme was used. Two dose levels were investigated. The primary end point was to determine the safety and tolerability of the combination. Results: Nine patients (n = 8 ALK+, n = 1 ROS1+) were enrolled in the study and completed at least one cycle of therapy. The most common adverse events (all grades) were diarrhea (n = 9; 100%), rash (n = 8; 89%), abdominal pain (n = 5; 56%), and elevated aspartate transaminase/alanine transaminase level (n = 4; 44%). The overall response rate was 22%, whereas disease control rate was 56%. Median duration of response was 7.85 months. The median progression-free survival was 3.0 months (95% confidence interval: 1.5-7.0 mo). The median overall survival was 8.9 months (95% confidence interval: 2.0-not reached). Conclusions: Data from this trial indicate that the combination of ceritinib and trametinib had no unexpected toxicities and that a tolerable dose could be identified. A subset of patients seemed to obtain clinical benefit from this treatment after progression on prior ALK/ROS1 inhibitor treatment.ClinicalTrials.gov Identifier: NCT03087448.

19.
Sci Transl Med ; 14(638): eabc7480, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35353542

RESUMEN

Residual cancer cells that survive drug treatments with targeted therapies act as a reservoir from which eventual resistant disease emerges. Although there is great interest in therapeutically targeting residual cells, efforts are hampered by our limited knowledge of the vulnerabilities existing in this cell state. Here, we report that diverse oncogene-targeted therapies, including inhibitors of epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), KRAS, and BRAF, induce DNA double-strand breaks and, consequently, ataxia-telangiectasia mutated (ATM)-dependent DNA repair in oncogene-matched residual tumor cells. This DNA damage response, observed in cell lines, mouse xenograft models, and human patients, is driven by a pathway involving the activation of caspases 3 and 7 and the downstream caspase-activated deoxyribonuclease (CAD). CAD is, in turn, activated through caspase-mediated degradation of its endogenous inhibitor, ICAD. In models of EGFR mutant non-small cell lung cancer (NSCLC), tumor cells that survive treatment with small-molecule EGFR-targeted therapies are thus synthetically dependent on ATM, and combined treatment with an ATM kinase inhibitor eradicates these cells in vivo. This led to more penetrant and durable responses in EGFR mutant NSCLC mouse xenograft models, including those derived from both established cell lines and patient tumors. Last, we found that rare patients with EGFR mutant NSCLC harboring co-occurring, loss-of-function mutations in ATM exhibit extended progression-free survival on first generation EGFR inhibitor therapy relative to patients with EGFR mutant NSCLC lacking deleterious ATM mutations. Together, these findings establish a rationale for the mechanism-based integration of ATM inhibitors alongside existing targeted therapies.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , ADN , Reparación del ADN , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Neoplasia Residual
20.
J Am Geriatr Soc ; 70(1): 136-149, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34611887

RESUMEN

BACKGROUND: Maintenance of function during cancer treatment is important to older adults. Characteristics associated with pretreatment life-space mobility and changes during non-small cell lung cancer (NSCLC) treatment remain unknown. METHODS: This mixed methods cohort study recruited adults age ≥65 with advanced NSCLC starting palliative chemotherapy, immunotherapy, and/or targeted therapy from a Comprehensive Cancer Center, Veterans Affairs, and safety-net clinic. Patients completed geriatric assessments including Life-Space Assessment (LSA) pretreatment and at 1, 2, 4, and 6 months after treatment initiation. LSA scores range from 0 to 120 (greater mobility); LSA <60 is considered restricted. We used mixed-effects models to examine pretreatment LSA, change from 0 to 1 month, and change from 1 to 6 months. A subgroup participated in semistructured interviews pretreatment and at 2 and 6 months to understand the patient experience of life-space change. For each interview participant, we created joint displays of longitudinal LSA scores juxtaposed with illustrative quotes. RESULTS: Among 93 patients, median age was 73 (range 65-94). Mean pretreatment LSA score was 67.1. On average, LSA declined 10.1 points from pretreatment to 1 month and remained stable at 6 months. Pretreatment LSA score was associated with several demographic, clinical, geriatric assessment, and symptom characteristics. LSA decline at 1 month was greater among patients with high anxiety (slope = -12.6 vs. -2.3, p = 0.048). Pretreatment body mass index <21 kg/m2 was associated with LSA improvement from 1 to 6 months (slope = 4.1 vs. -0.04, p = 0.003). Joint displays illustrated the impact of different life-space trajectories on patients' lives in their words. CONCLUSION: Older adults with NSCLC have low pretreatment life space with many developing restricted life space during treatment. Incorporating life-space assessments into clinical cancer care may help older adults concretely visualize how treatment might impact their daily function to allow for informed decision making and identify early changes in mobility to implement supportive interventions.


Asunto(s)
Actividades Cotidianas , Carcinoma de Pulmón de Células no Pequeñas/terapia , Evaluación Geriátrica , Neoplasias Pulmonares/terapia , Anciano , Anciano de 80 o más Años , Carcinoma de Pulmón de Células no Pequeñas/psicología , Femenino , Humanos , Neoplasias Pulmonares/psicología , Masculino , Limitación de la Movilidad , Estudios Prospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA