Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(21): e2217189120, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37186841

RESUMEN

Protonation reactions involving organometallic complexes are ubiquitous in redox chemistry and often result in the generation of reactive metal hydrides. However, some organometallic species supported by η5-pentamethylcyclopentadienyl (Cp*) ligands have recently been shown to undergo ligand-centered protonation by direct proton transfer from acids or tautomerization of metal hydrides, resulting in the generation of complexes bearing the uncommon η4-pentamethylcyclopentadiene (Cp*H) ligand. Here, time-resolved pulse radiolysis (PR) and stopped-flow spectroscopic studies have been applied to examine the kinetics and atomistic details involved in the elementary electron- and proton-transfer steps leading to complexes ligated by Cp*H, using Cp*Rh(bpy) as a molecular model (where bpy is 2,2'-bipyridyl). Stopped-flow measurements coupled with infrared and UV-visible detection reveal that the sole product of initial protonation of Cp*Rh(bpy) is [Cp*Rh(H)(bpy)]+, an elusive hydride complex that has been spectroscopically and kinetically characterized here. Tautomerization of the hydride leads to the clean formation of [(Cp*H)Rh(bpy)]+. Variable-temperature and isotopic labeling experiments further confirm this assignment, providing experimental activation parameters and mechanistic insight into metal-mediated hydride-to-proton tautomerism. Spectroscopic monitoring of the second proton transfer event reveals that both the hydride and related Cp*H complex can be involved in further reactivity, showing that [(Cp*H)Rh] is not necessarily an off-cycle intermediate, but, instead, depending on the strength of the acid used to drive catalysis, an active participant in hydrogen evolution. Identification of the mechanistic roles of the protonated intermediates in the catalysis studied here could inform design of optimized catalytic systems supported by noninnocent cyclopentadienyl-type ligands.

2.
J Am Chem Soc ; 146(14): 9597-9604, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38546271

RESUMEN

Although crown ethers can selectively bind many metal cations, little is known regarding the solution properties of crown ether complexes of the uranyl dication, UO22+. Here, the synthesis and characterization of isolable complexes in which the uranyl dication is bound in an 18-crown-6-like moiety are reported. A tailored macrocyclic ligand, templated with a Pt(II) center, captures UO22+ in the crown moiety, as demonstrated by results from single-crystal X-ray diffraction analysis. The U(V) oxidation state becomes accessible at a quite positive potential (E1/2) of -0.18 V vs Fc+/0 upon complexation, representing the most positive UVI/UV potential yet reported for the UO2n+ core. Isolation and characterization of the U(V) form of the crown complex are also reported here; there are no prior reports of reduced uranyl crown ether complexes, but U(V) is clearly stabilized by crown chelation. Joint computational studies show that the electronic structure of the U(V) form results in significant weakening of U-Ooxo bonding despite the quite positive reduction potential at which this species can be accessed, underscoring that crown-ligated uranyl species could demonstrate unique reactivity under only modestly reducing conditions.

3.
J Am Chem Soc ; 146(4): 2398-2410, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38252883

RESUMEN

Electrolyte conductivity contributes to the efficiency of devices for electrochemical conversion of carbon dioxide (CO2) into useful chemicals, but the effect of the dissolution of CO2 gas on conductivity has received little attention. Here, we report a joint experimental-theoretical study of the properties of acetonitrile-based CO2-expanded electrolytes (CXEs) that contain high concentrations of CO2 (up to 12 M), achieved by CO2 pressurization. Cyclic voltammetry data and paired simulations show that high concentrations of dissolved CO2 do not impede the kinetics of outer-sphere electron transfer but decrease the solution conductivity at higher pressures. In contrast with conventional behaviors, Jones reactor-based measurements of conductivity show a nonmonotonic dependence on CO2 pressure: a plateau region of constant conductivity up to ca. 4 M CO2 and a region showing reduced conductivity at higher [CO2]. Molecular dynamics simulations reveal that while the intrinsic ionic strength decreases as [CO2] increases, there is a concomitant increase in ionic mobility upon CO2 addition that contributes to stable solution conductivities up to 4 M CO2. Taken together, these results shed light on the mechanisms underpinning electrolyte conductivity in the presence of CO2 and reveal that the dissolution of CO2, although nonpolar by nature, can be leveraged to improve mass transport rates, a result of fundamental and practical significance that could impact the design of next-generation systems for CO2 conversion. Additionally, these results show that conditions in which ample CO2 is available at the electrode surface are achievable without sacrificing the conductivity needed to reach high electrocatalytic currents.

4.
Inorg Chem ; 63(19): 8710-8729, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38669449

RESUMEN

Incorporation of secondary redox-inactive cations into heterobimetallic complexes is an attractive strategy for modulation of metal-centered redox chemistry, but quantification of the consequences of incorporating strongly Lewis acidic trivalent cations has received little attention. Here, a family of seven heterobimetallic complexes that pair a redox-active nickel center with La3+, Y3+, Lu3+, Sr2+, Ca2+, K+, and Na+ (in the form of their triflate salts) have been prepared on a heteroditopic ligand platform to understand how chemical behavior varies across the comprehensive series. Structural data from X-ray diffraction analysis demonstrate that the positions adopted by the secondary cations in the crown-ether-like site of the ligand relative to nickel are dependent primarily on the secondary cations' ionic radii and that the triflate counteranions are bound to the cations in all cases. Electrochemical data, in concert with electron paramagnetic resonance studies, show that nickel(II)/nickel(I) redox is modulated by the secondary metals; the heterogeneous electron-transfer rate is diminished for the derivatives incorporating trivalent metals, an effect that is dependent on steric crowding about the nickel metal center and that was quantified here with a topographical free-volume analysis. As related analyses carried out here on previously reported systems bear out similar relationships, we conclude that the placement and identity of both the secondary metal cations and their associated counteranions can afford unique changes in the (electro)chemical behavior of heterobimetallic species.

5.
Inorg Chem ; 62(25): 9765-9780, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-36943934

RESUMEN

Gutmann-Beckett-type measurements with phosphine oxide probes can be used to estimate effective Lewis acidity with 31P nuclear magnetic resonance spectroscopy, but the influence of the molecular structure of a given probe on the quantification of Lewis acidity remains poorly documented in experimental work. Here, a quantitative comparison of triethyl (E), trioctyl (O), and triphenyl (P) phosphine oxides as molecular probes of Lewis acidity has been carried out via titration studies in MeCN with a test set of six mono- and divalent metal triflate salts. In comparison to E, the bulkier O displays a similar range of chemical shift values and binding affinities for the various test metal ions. Spectral linewidths and speciation properties vary for individual cation-to-probe ratios, however, confirming probe-specific properties that can impact the data quality. Importantly, P displays a consistently narrower dynamic range than both E and O, illustrating how electronic changes at phosphorus can influence the NMR response. Comparative parametrizations of the effective Lewis acidities of a broader range of metal ions, including the trivalent rare earth ions Y3+, Lu3+, and Sc3+ as well as the uranyl ion (UO22+), can be understood in light of these results, providing insight into the fundamental chemical processes underlying the useful approach of single-point measurements for quantification of effective Lewis acidity. Together with a study of counteranion effects reported here, these data clarify the diverse ensemble of factors that can influence the measurement of Lewis acid/base interactions.

6.
Inorg Chem ; 62(25): 9827-9843, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37315176

RESUMEN

Incorporation of secondary metal ions into heterobimetallic complexes has emerged as an attractive strategy for rational tuning of compounds' properties and reactivity, but direct solution-phase spectroscopic interrogation of tuning effects has received less attention than it deserves. Here, we report the assembly and study of a series of heterobimetallic complexes containing the vanadyl ion, [VO]2+, paired with monovalent cations (Cs+, Rb+, K+, Na+, and Li+) and a divalent cation (Ca2+). These complexes, which can be isolated in pure form or generated in situ from a common monometallic vanadyl-containing precursor, enable experimental spectroscopic and electrochemical quantification of the influence of the incorporated cations on the properties of the vanadyl moiety. The data reveal systematic shifts in the V-O stretching frequency, isotropic hyperfine coupling constant for the vanadium center, and V(V)/V(IV) reduction potential in the complexes. These shifts can be interpreted as charge density effects parametrized through the Lewis acidities of the cations, suggesting broad potential for the vanadyl ion to serve as a spectroscopic probe in multimetallic species.

7.
Inorg Chem ; 62(39): 16131-16148, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37721409

RESUMEN

The 2,2'-bipyridyl-6,6'-dicarboxylate ligand (bdc) has been shown in prior work to effectively capture the uranyl(VI) ion, UO22+, from aqueous solutions. However, the redox properties of the uranyl complex of this ligand have not been addressed despite the relevance of uranium-centered reduction to the nuclear fuel cycle and the presence of a bipyridyl core in bdc, a motif long recognized for its ability to support redox chemistry. Here, the bdc complex of UO22+ (1-UO2) has been synthetically prepared and isolated under nonaqueous conditions for the study of its reductive chemical and electrochemical behavior. Spectrochemical titration data collected using decamethylcobaltocene (Cp*2Co) as the reductant demonstrate that 1e- reduction of 1-UO2 is accessible, and companion near-infrared and infrared spectroscopic data, along with theoretical findings from density functional theory, provide evidence that supports the accessibility of the U(V) oxidation state. Data obtained for control ruthenium complexes of bdc and related polypyridyl dicarboxylate ligands provide a counterpoint to these findings; ligand-centered reduction of bdc in these control compounds occurs at potentials more negative than those measured for reduction of 1-UO2, further supporting the generation of uranium(V) in 1-UO2. Taken together, these results underscore the usefulness of bdc as a ligand for actinyl ions and suggest that it could be useful for further studies of the reductive activation of these unique species.

8.
J Phys Chem A ; 127(29): 6020-6031, 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37436832

RESUMEN

This work reports a computational investigation of the effect of ancillary ligands on the activity of an Rh catalyst for hydrogen evolution based on the [Cp*Rh] motif (Cp* = η5-pentamethylcyclopentadienyl). Specifically, we investigate why a bipyridyl (bpy) ligand leads to H2 generation but diphenylphosphino-based (dpp) ligands do not. We compare the full ligands to simplified models and systematically vary structural features to ascertain their effect on the reaction energy of each catalytic step. The calculations based on density functional theory show that the main effect on reactivity is the choice of linker atom, followed by its coordination. In particular, P stabilizes the intermediate Rh-hydride species by donating electron density to the Rh, thus inhibiting the reaction toward H2 generation. Conversely, N, a more electron-withdrawing center, favors H2 generation at the price of destabilizing the hydride intermediate, which cannot be isolated experimentally and makes determining the mechanism of this reaction more difficult. We also find that the steric effects of bulky substituents on the main ligand scaffold can lead to large effects on the reactivity, which may be challenging to fine-tune. On the other hand, structural features like the bite angle of the bidentate ligand have a much smaller impact on reactivity. Therefore, we propose that the choice of linker atom is key for the catalytic activity of this species, which can be further fine-tuned by a proper choice of electron-directing groups on the ligand scaffold.

9.
Chemistry ; 28(9): e202103970, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35006643

RESUMEN

Ligands based upon the 4,5-diazafluorene core are an important class of emerging ligands in organometallic chemistry, but the structure and electronic properties of these ligands have received less attention than they deserve. Here, we show that 9,9'-dimethyl-4,5-diazafluorene (Me2 daf) can stabilize low-valent complexes through charge delocalization into its conjugated π-system. Using a new platform of [Cp*Rh] complexes with three accessible formal oxidation states (+III, +II, and +I), we show that the methylation in Me2 daf is protective, blocking Brønsted acid-base chemistry commonly encountered with other daf-based ligands. Electronic absorption spectroscopy and single-crystal X-ray diffraction analysis of a family of eleven new compounds, including the unusual Cp*Rh(Me2 daf), reveal features consistent with charge delocalization driven by π-backbonding into the LUMO of Me2 daf, reminiscent of behavior displayed by the workhorse 2,2'-bipyridyl ligand. Taken together with spectrochemical data demonstrating clean conversion between oxidation states, our findings show that 9,9'-dialkylated daf-type ligands are promising building blocks for applications in reductive chemistry and catalysis.

10.
Chemistry ; 28(38): e202200344, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35390210

RESUMEN

Incorporation of redox-inactive metals into redox-active complexes and catalysts attracts attention for engendering new reactivity modes, but this strategy has not been extensively investigated beyond the first-row of the transition metals. Here, the isolation and characterization of the first series of heterobimetallic complexes of palladium with mono-, di-, and tri-valent redox-inactive metal ions are reported. A Reinhoudt-type heteroditopic ligand with a salen-derived [N2 ,O2 ] binding site for Pd and a crown-ether-derived [O6 ] site has been used to prepare isolable adducts of the Lewis acidic redox-inactive metal ions (Mn+ ). Comprehensive data from single-crystal X-ray diffraction analysis reveal distinctive trends in the structural properties of the heterobimetallic species, including an uncommon dependence of the Pd⋅⋅⋅M distance on Lewis acidity. The reorganization energy associated with reduction of the heterobimetallic species is strongly modulated by Lewis acidity, with the slowest heterogeneous electron transfer kinetics associated with the strongest incorporated Lewis acids. This hitherto unexplored reorganization energy penalty for electron transfer contrasts with prior thermodynamic studies, revealing that kinetic parameters should be considered in studies of reactivity involving heterobimetallic species.

11.
Chemistry ; 28(13): e202104389, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35038188

RESUMEN

Half-sandwich rhodium monohydrides are often proposed as intermediates in catalysis, but little is known regarding the redox-induced reactivity accessible to these species. Herein, the bis(diphenylphosphino)ferrocene (dppf) ligand has been used to explore the reactivity that can be induced when a [Cp*Rh] monohydride undergoes remote (dppf-centered) oxidation by 1e- . Chemical and electrochemical studies show that one-electron redox chemistry is accessible to Cp*Rh(dppf), including a unique quasi-reversible RhII/I process at -0.96 V vs. ferrocenium/ferrocene (Fc+/0 ). This redox manifold was confirmed by isolation of an uncommon RhII species, [Cp*Rh(dppf)]+ , that was characterized by electron paramagnetic resonance (EPR) spectroscopy. Protonation of Cp*Rh(dppf) with anilinium triflate yielded an isolable and inert monohydride, [Cp*Rh(dppf)H]+ , and this species was found to undergo a quasireversible electrochemical oxidation at +0.41 V vs. Fc+/0 that corresponds to iron-centered oxidation in the dppf backbone. Thermochemical analysis predicts that this dppf-centered oxidation drives a dramatic increase in acidity of the Rh-H moiety by 23 pKa units, a reactivity pattern confirmed by in situ 1 H NMR studies. Taken together, these results show that remote oxidation can effectively induce M-H activation and suggest that ligand-centered redox activity could be an attractive feature for the design of new systems relying on hydride intermediates.

12.
Inorg Chem ; 60(2): 1107-1115, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33405902

RESUMEN

The behavior of Lewis acidic metal ions in multimetallic systems has become a subject of intense interest in recent years. Parametrizing the behavior of these ions in nonaqueous conditions, commonly used in the field, is challenging due to the lack of direct measures of the Lewis acidity of metal ions in polar organic solvents. Here, we report the use of triphenylphosphine oxide (TPPO) as a 31P nuclear magnetic resonance (NMR) probe to quantify the Lewis acidity of a library of metal triflate salts using the Gutmann-Beckett method. Plots of the pKa values of the corresponding metal-aqua species, [M(H2O)m]n+, measured in H2O vs the 31P NMR shifts of TPPO in the presence of these metals in deuterated acetonitrile (d3-MeCN) and deuterated dichloromethane (CD2Cl2), display tightly colinear relationships, suggesting similar behavior for these ions in water, d3-MeCN, and CD2Cl2. This colinearity reinforces the utility of the common approach of using the aqueous pKa values as a descriptor of Lewis acidity, regardless of the solvent used in the immediate experiments, and provides an insight into the usefulness of this descriptor in wide-ranging applications. Titration studies in d3-MeCN suggest a 1:1 binding of TPPO with monovalent ions, greater than 1:1 binding with divalent ions, and formation of multiple species with the highly Lewis acidic trivalent ions. Together, these data suggest that both aqueous pKa values and other single-measurement descriptors, while useful, provide only a snapshot of the influence of Lewis acidity on multimetallic chemical systems.

13.
Inorg Chem ; 60(18): 14047-14059, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34455788

RESUMEN

The synthesis of multimetallic compounds can enable the placement of two or more metals in close proximity, but efforts in this area are often hindered by reagent incompatibilities and a lack of selectivity. Here, we show that organometallic half-sandwich [Cp*M] (M = Rh, Ir) fragments (where Cp* is η5-pentamethylcyclopentadienyl) can be cleanly installed into metallomacrocyclic structures based on the workhorse diimine-monooxime-monooximato ligand system. Six new heterobimetallic compounds have been prepared to explore this synthetic chemistry, which relies on in situ protonolysis reactivity with precursor Ni(II) or Co(III) monometallic complexes in the presence of suitable [Cp*M] species. Solid-state X-ray diffraction studies confirm installation of the [Cp*M] fragments into the metallomacrocycles via effective chelation of the Rh(III) and Ir(III) centers by the nascent dioximato site. Contrasting with square-planar Ni(II) centers, the Co(III) centers prefer octahedral geometry in the heterobimetallic compounds, promoting bridging ligation of acetate across the two metals. Spectroscopic and electrochemical studies reveal subtle influences of the metals on each other's properties, consistent with the moderate M'···M distances of ca. 3.6-3.7 Å in the modular compounds. Taken together, our results show that heterobimetallic complexes can be assembled with organometallic [Cp*M] fragments on the diimine-dioximato platform.

14.
Phys Chem Chem Phys ; 23(16): 9921-9929, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33908502

RESUMEN

The attachment of the 2,2'-bipyridine (bpy) moieties to the surface of planar silicon(111) (photo)electrodes was investigated using ab initio simulations performed on a new cluster model for methyl-terminated silicon. Density functional theory (B3LYP) with implicit solvation techniques indicated that adventitious chlorine atoms, when present in the organic linker backbone, led to instability at very negative potentials of the surface-modified electrode. In prior experimental work, chlorine atoms were present as a trace surface impurity due to required surface processing chemistry, and thus could plausibly result in the observed surface instability of the linker. Free energy calculations for the Cl-atom release process with model silyl-linker constructs revealed a modest barrier (14.9 kcal mol-1) that decreased as the electrode potential became more negative. A small library of new bpy-derived structures has additionally been explored computationally to identify strategies that could minimize chlorine-induced linker instability. Structures with fluorine substituents are predicted to be more stable than their chlorine analogues, whereas fully non-halogenated structures are predicted to exhibit the highest stability. The behavior of a hydrogen-evolving molecular catalyst Cp*Rh(bpy) (Cp* = pentamethylcyclopentadienyl) immobilized on a silicon(111) cluster was explored theoretically to evaluate differences between the homogeneous and surface-attached behavior of this species in a tautomerization reaction observed under reductive conditions for catalytic H2 evolution. The calculated free energy difference between the tautomers is small, hence the results suggest that use of reductively stable linkers can enable robust attachment of catalysts while maintaining chemical behavior on the electrode similar to that exhibited in homogeneous solution.

15.
J Am Chem Soc ; 142(6): 3032-3041, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-31927996

RESUMEN

Capture and activation of the water-soluble uranyl dication (UO22+) remains a challenging problem, as few rational approaches are available for modulating the reactivity of this species. Here, we report the divergent synthesis of heterobimetallic complexes in which UO22+ is held in close proximity to a range of redox-inactive metals by a tailored macrocyclic ligand. Crystallographic and spectroscopic studies confirm assembly of homologous UVI(µ-OAr)2Mn+ cores with a range of mono-, di-, and trivalent Lewis acids (Mn+). Cyclic voltammetry data demonstrate that the UVI/UV reduction potential in these complexes is modulated over a span of 600 mV, depending linearly on the Lewis acidity of the redox-inactive metal with a sensitivity of 61 ± 9 mV/pKa unit. These findings suggest that interactions with Lewis acids could be effectively leveraged for rational tuning of the electronic and thermochemical properties of the 5f elements, reminiscent of strategies more commonly employed with 3d transition metals.


Asunto(s)
Compuestos Macrocíclicos/química , Metales/química , Uranio/química , Cationes , Ácidos de Lewis/química , Oxidación-Reducción , Elementos de Transición/química
16.
Analyst ; 145(2): 466-477, 2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-31750451

RESUMEN

Homoleptic acetonitrile complexes of first-row transition metal ions are a common product of the detrimental speciation of coordination complexes and organometallic compounds. However, the electrochemical properties of such species are mostly unknown, introducing ambiguities into interpretation of electroanalytical data associated with studies of molecular electrocatalysis. Here, we have cataloged the cyclic voltammetric properties of the solvento complexes of Mn(ii), Fe(ii), Co(ii), Ni(ii), Cu(i), and Zn(ii) in acetonitrile electrolyte, providing information on the cathodic electrodeposition and anodic stripping processes occuring with each ion. The electrochemical quartz crystal microbalance (EQCM) has been used to quantify these processes, as well as the rates of the in situ corrosion of electrodeposited materials by the strong organic acid dimethylforamidinium, [DMFH]+. Ex situ X-ray photoelectron spectroscopic results confirm the interpretations of the voltammetric and gravimetric data, and confirm the periodic relationship between the metals. Taken together, the results described here provide an electrochemical roadmap useful in distinguishing currents arising from homogeneous electrocatalysis from currents associated with the redox cycling of secondary heterogeneous materials.

17.
Inorg Chem ; 59(4): 2178-2187, 2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-31990533

RESUMEN

Manganese tricarbonyl complexes are promising catalysts for CO2 reduction, but complexes in this family are often photosensitive and decompose rapidly upon exposure to visible light. In this report, synthetic and photochemical studies probe the initial steps of light-driven speciation for Mn(CO)3(Rbpy)Br complexes bearing a range of 4,4'-disubstituted 2,2'-bipyridyl ligands (Rbpy, where R = tBu, H, CF3, NO2). Transient absorption spectroscopy measurements for Mn(CO)3(Rbpy)Br coordination compounds with R = tBu, H, and CF3 in acetonitrile reveal ultrafast loss of a CO ligand on the femtosecond time scale, followed by solvent coordination on the picosecond time scale. The Mn(CO)3(NO2bpy)Br complex is unique among the four compounds in having a longer-lived excited state that does not undergo CO release or subsequent solvent coordination. The kinetics of photolysis and solvent coordination for light-sensitive complexes depend on the electronic properties of the disubstituted bipyridyl ligand. The results indicate that both metal-to-ligand charge-transfer (MLCT) and dissociative ligand-field (d-d) excited states play a role in the ultrafast photochemistry. Taken together, the findings suggest that more robust catalysts could be prepared with appropriately designed complexes that avoid crossing between the excited states that drive photochemical CO loss.

18.
J Organomet Chem ; 9212020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32773887

RESUMEN

[Cp*Rh] complexes (Cp* = η 5-pentamethylcyclopentadienyl) supported by bidentate chelating ligands are useful in studies of redox chemistry and catalysis, but little information is available for derivatives bearing "hybrid" [P,N] chelates. Here, the preparation, structural characterization, and chemical and electrochemical properties of a [Cp*Rh] complex bearing the κ2-[P,N]-2-[(diphenylphosphino)methyl]pyridine ligand (PN) are reported. Cyclic voltammetry data reveal that [Cp*Rh(PN)Cl]PF6 (1) undergoes a chemically reversible, net two-electron reduction at -1.28 V vs. ferrocenium/ferrocene, resulting in generation of a rhodium(I) complex (3) that is stable on the timescale of the voltammetry. However, 1H and 31P{1H} NMR studies reveal that chemical reduction of 1 generates a mixture of products over a 1 h timescale; this mixture forms as a result of deprotonation of the methylene group of 1 by 3 followed by further reactivity. The analogous complex [Cp*Rh(PQN)Cl]PF6 (2; PQN = κ2-[P,N]-8-(diphenylphosphino)quinoline) does not undergo self-deprotonation or further reactivity upon two-electron reduction, confirming the reactivity of the acidic backbone methylene C-H bonds in the PN complexes. Comparison of the electrochemical properties 1 and 2 also shows that the extended conjugated system of PQN contributes to an additional ligand-centered redox event for 2 that is absent for 1.

19.
Molecules ; 25(14)2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32668660

RESUMEN

4,5-diazafluorene (daf) and 9,9'-dimethyl-4,5-diazafluorene (Me2daf) are structurally similar to the important ligand 2,2'-bipyridine (bpy), but significantly less is known about the redox and spectroscopic properties of metal complexes containing Me2daf as a ligand than those containing bpy. New complexes Mn(CO)3Br(daf) (2), Mn(CO)3Br(Me2daf) (3), and [Ru(Me2daf)3](PF6)2 (5) have been prepared and fully characterized to understand the influence of the Me2daf framework on their chemical and electrochemical properties. Structural data for 2, 3, and 5 from single-crystal X-ray diffraction analysis reveal a distinctive widening of the daf and Me2daf chelate angles in comparison to the analogous Mn(CO)3(bpy)Br (1) and [Ru(bpy)3]2+ (4) complexes. Electronic absorption data for these complexes confirm the electronic similarity of daf, Me2daf, and bpy, as spectra are dominated in each case by metal-to-ligand charge transfer bands in the visible region. However, the electrochemical properties of 2, 3, and 5 reveal that the redox-active Me2daf framework in 3 and 5 undergoes reduction at a slightly more negative potential than that of bpy in 1 and 4. Taken together, the results indicate that Me2daf could be useful for preparation of a variety of new redox-active compounds, as it retains the useful redox-active nature of bpy but lacks the acidic, benzylic C-H bonds that can induce secondary reactivity in complexes bearing daf.

20.
Inorg Chem ; 58(6): 3606-3615, 2019 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-30256096

RESUMEN

Monomeric half-sandwich rhodium hydride complexes are often proposed as intermediates in catalytic cycles, but relatively few such compounds have been isolated and studied, limiting understanding of their properties. Here, we report preparation and isolation of a monomeric rhodium(III) hydride complex bearing the pentamethylcyclopentadienyl (Cp*) and bis(diphenylphosphino)benzene (dppb) ligands. The hydride complex is formed rapidly upon addition of weak acid to a reduced precursor complex, Cp*Rh(dppb). Single-crystal X-ray diffraction data for the [Cp*Rh] hydride, which were previously unavailable for this class of compounds, provide evidence of the direct Rh-H interaction. Complementary infrared spectra show the Rh-H stretching frequency at 1986 cm-1. In contrast to results with other [Cp*Rh] complexes bearing diimine ligands, treatment of the isolated hydride with strong acid does not result in H2 evolution. Electrochemical studies reveal that the hydride complex can be reduced only at very negative potentials (ca. -2.5 V vs ferrocenium/ferrocene), resulting in Rh-H bond cleavage and H2 generation. These results are discussed in the context of catalytic H2 generation, and development of design rules for improved catalysts bearing the [Cp*] ligand.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA