Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(24): e2403054121, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38838017

RESUMEN

Chronic Toxoplasma gondii infection induces brain-resident CD8+ T cells (bTr), but the protective functions and differentiation cues of these cells remain undefined. Here, we used a mouse model of latent infection by T. gondii leading to effective CD8+ T cell-mediated parasite control. Thanks to antibody depletion approaches, we found that peripheral circulating CD8+ T cells are dispensable for brain parasite control during chronic stage, indicating that CD8+ bTr are able to prevent brain parasite reactivation. We observed that the retention markers CD69, CD49a, and CD103 are sequentially acquired by brain parasite-specific CD8+ T cells throughout infection and that a majority of CD69/CD49a/CD103 triple-positive (TP) CD8+ T cells also express Hobit, a transcription factor associated with tissue residency. This TP subset develops in a CD4+ T cell-dependent manner and is associated with effective parasite control during chronic stage. Conditional invalidation of Transporter associated with Antigen Processing (TAP)-mediated major histocompatibility complex (MHC) class I presentation showed that presentation of parasite antigens by glutamatergic neurons and microglia regulates the differentiation of CD8+ bTr into TP cells. Single-cell transcriptomic analyses revealed that resistance to encephalitis is associated with the expansion of stem-like subsets of CD8+ bTr. In summary, parasite-specific brain-resident CD8+ T cells are a functionally heterogeneous compartment which autonomously ensure parasite control during T. gondii latent infection and which differentiation is shaped by neuronal and microglial MHC I presentation. A more detailed understanding of local T cell-mediated immune surveillance of this common parasite is needed for harnessing brain-resident CD8+ T cells in order to enhance control of chronic brain infections.


Asunto(s)
Encéfalo , Linfocitos T CD8-positivos , Diferenciación Celular , Toxoplasma , Toxoplasmosis , Animales , Linfocitos T CD8-positivos/inmunología , Toxoplasma/inmunología , Ratones , Encéfalo/inmunología , Encéfalo/parasitología , Diferenciación Celular/inmunología , Toxoplasmosis/inmunología , Toxoplasmosis/parasitología , Infección Latente/inmunología , Infección Latente/parasitología , Antígenos CD/metabolismo , Antígenos CD/inmunología , Antígenos CD/genética , Ratones Endogámicos C57BL , Femenino
2.
Cell ; 147(6): 1355-68, 2011 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-22153078

RESUMEN

Antigen (Ag) crosspresentation by dendritic cells (DCs) involves the presentation of internalized Ags on MHC class I molecules to initiate CD8+ T cell-mediated immunity in response to certain pathogens and tumor cells. Here, we identify the SNARE Sec22b as a specific regulator of Ag crosspresentation. Sec22b localizes to the ER-Golgi intermediate compartment (ERGIC) and pairs to the plasma membrane SNARE syntaxin 4, which is present in phagosomes (Phgs). Depletion of Sec22b inhibits the recruitment of ER-resident proteins to Phgs and to the vacuole containing the Toxoplasma gondii parasite. In Sec22b-deficient DCs, crosspresentation is compromised after Ag phagocytosis or endocytosis and after invasion by T. gondii. Sec22b silencing inhibited Ag export to the cytosol and increased phagosomal degradation by accelerating lysosomal recruitment. Our findings provide insight into an intracellular traffic pathway required for crosspresentation and show that Sec22b-dependent recruitment of ER proteins to Phgs critically influences phagosomal functions in DCs.


Asunto(s)
Presentación de Antígeno , Células Dendríticas/inmunología , Infecciones por Escherichia coli/inmunología , Escherichia coli , Fagosomas/inmunología , Proteínas R-SNARE/metabolismo , Toxoplasma , Toxoplasmosis/inmunología , Animales , Reacciones Cruzadas , Células Dendríticas/citología , Ratones , Ratones Endogámicos C57BL
3.
Proc Natl Acad Sci U S A ; 120(34): e2309043120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37590416

RESUMEN

Toxoplasma gondii is responsible for toxoplasmosis, a disease that can be serious when contracted during pregnancy, but can also be a threat for immunocompromised individuals. Acute infection is associated with the tachyzoite form that spreads rapidly within the host. However, under stress conditions, some parasites can differentiate into cyst-forming bradyzoites, residing mainly in the central nervous system, retina and muscle. Because this latent form of the parasite is resistant to all currently available treatments, and is central to persistence and transmission of the parasite, specific therapeutic strategies targeting this developmental stage need to be found. T. gondii contains a plastid of endosymbiotic origin called the apicoplast, which is an appealing drug target because it is essential for tachyzoite viability and contains several key metabolic pathways that are largely absent from the mammalian host. Its function in bradyzoites, however, is unknown. Our objective was thus to study the contribution of the apicoplast to the viability and persistence of bradyzoites during chronic toxoplasmosis. We have used complementary strategies based on stage-specific promoters to generate conditional bradyzoite mutants of essential apicoplast genes. Our results show that specifically targeting the apicoplast in both in vitro or in vivo-differentiated bradyzoites leads to a loss of long-term bradyzoite viability, highlighting the importance of this organelle for this developmental stage. This validates the apicoplast as a potential area to look for therapeutic targets in bradyzoites, with the aim to interfere with this currently incurable parasite stage.


Asunto(s)
Apicoplastos , Quistes , Toxoplasma , Toxoplasmosis , Animales , Femenino , Embarazo , Humanos , Toxoplasma/genética , Sistema Nervioso Central , Mamíferos
4.
Nat Chem Biol ; 19(9): 1063-1071, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37169959

RESUMEN

The Sec61 complex forms a protein-conducting channel in the endoplasmic reticulum membrane that is required for secretion of soluble proteins and production of many membrane proteins. Several natural and synthetic small molecules specifically inhibit Sec61, generating cellular effects that are useful for therapeutic purposes, but their inhibitory mechanisms remain unclear. Here we present near-atomic-resolution structures of human Sec61 inhibited by a comprehensive panel of structurally distinct small molecules-cotransin, decatransin, apratoxin, ipomoeassin, mycolactone, cyclotriazadisulfonamide and eeyarestatin. All inhibitors bind to a common lipid-exposed pocket formed by the partially open lateral gate and plug domain of Sec61. Mutations conferring resistance to the inhibitors are clustered at this binding pocket. The structures indicate that Sec61 inhibitors stabilize the plug domain in a closed state, thereby preventing the protein-translocation pore from opening. Our study provides the atomic details of Sec61-inhibitor interactions and the structural framework for further pharmacological studies and drug design.


Asunto(s)
Retículo Endoplásmico , Proteínas de la Membrana , Humanos , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Transporte de Proteínas/fisiología , Canales de Translocación SEC/antagonistas & inhibidores , Canales de Translocación SEC/química , Canales de Translocación SEC/metabolismo
5.
Immunity ; 45(1): 159-71, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27421704

RESUMEN

Highly functional CD8(+) effector T (Teff) cells can persist in large numbers during controlled persistent infections, as exemplified by rare HIV-infected individuals who control the virus. Here we examined the cellular mechanisms that maintain ongoing T effector responses using a mouse model for persistent Toxoplasma gondii infection. In mice expressing the protective MHC-I molecule, H-2L(d), a dominant T effector response against a single parasite antigen was maintained without a contraction phase, correlating with ongoing presentation of the dominant antigen. Large numbers of short-lived Teff cells were continuously produced via a proliferative, antigen-dependent intermediate (Tint) population with a memory-effector hybrid phenotype. During an acute, resolved infection, decreasing antigen load correlated with a sharp drop in the Tint cell population and subsequent loss of the ongoing effector response. Vaccination approaches aimed at the development of Tint populations might prove effective against pathogens that lead to chronic infection.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Diferenciación Celular , Subgrupos Linfocitarios/inmunología , Toxoplasma/inmunología , Toxoplasmosis/inmunología , Animales , Presentación de Antígeno , Antígenos de Protozoos/inmunología , Antígenos de Protozoos/metabolismo , Linfocitos T CD8-positivos/parasitología , Proliferación Celular , Células Cultivadas , Enfermedad Crónica , Citotoxicidad Inmunológica , Antígenos de Histocompatibilidad Clase I/metabolismo , Epítopos Inmunodominantes/inmunología , Epítopos Inmunodominantes/metabolismo , Memoria Inmunológica , Subgrupos Linfocitarios/parasitología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores de Antígenos de Linfocitos T/genética
6.
PLoS Pathog ; 18(2): e1010212, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35113966

RESUMEN

It is well established that by modulating various immune functions, host infection may alter the course of concomitant inflammatory diseases, of both infectious and autoimmune etiologies. Beyond the major impact of commensal microbiota on the immune status, host exposure to viral, bacterial, and/or parasitic microorganisms also dramatically influences inflammatory diseases in the host, in a beneficial or harmful manner. Moreover, by modifying pathogen control and host tolerance to tissue damage, a coinfection can profoundly affect the development of a concomitant infectious disease. Here, we review the diverse mechanisms that underlie the impact of (co)infections on inflammatory disorders. We discuss epidemiological studies in the context of the hygiene hypothesis and shed light on the sometimes dual impact of germ exposure on human susceptibility to inflammatory disease. We then summarize the immunomodulatory mechanisms at play, which can involve pleiotropic effects of immune players and discuss the possibility to harness pathogen-derived compounds to the host benefit.


Asunto(s)
Interacciones Huésped-Patógeno , Hipótesis de la Higiene , Inmunomodulación , Inflamación , Microbiota , Animales , Coinfección , Humanos , Tolerancia Inmunológica , Simbiosis
7.
Angew Chem Int Ed Engl ; 63(7): e202315909, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38116823

RESUMEN

A palladium-catalyzed synthesis of 2-SF5 -indenols has been developed by reacting commercially available boronic acid derivatives and readily accessible SF5 -alkynes. The present methodology is fully regioselective thanks to the intrinsic polarization of SF5 -alkynes. A selection of downstream functionalizations has been performed to highlight the versatility of 2-SF5 -indenols and indenones as platforms for the design of more complex SF5 -containing molecules.

8.
Chemistry ; 29(67): e202302914, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37698052

RESUMEN

In the vibrant field of SF5 chemistry, SF5 X reagents (X=F, Cl, Br) are at the heart of current investigations in radical pentafluorosulfanylation reactions. SF5 I is the missing link whose existence has not been reported despite its potential as SF5 donor. This study reports the formal addition of the hitherto unknown SF5 I reagent to alkynes by means of a combination of SF5 Cl/KI/18-crown-6 ether. The exclusive regio- and stereoselective synthesis of unprecedented (E)-1-iodo-2-(pentafluoro-λ6 -sulfanyl) alkenes was achieved. A consensus was reached through computational and mechanistic studies for the realistic formation of SF5 - anion but not SF5 I in solution and the rational involvement of SF5 ⋅ and iodine radicals in the iodo pentafluorosulfanylation reaction.

9.
Trends Immunol ; 41(12): 1072-1082, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33214056

RESUMEN

Infections of the nervous system elicit neuroimmune responses and alter neurotransmission, affecting host neurological functions. Chronic infection with the apicomplexan parasite Toxoplasma correlates with certain neurological disorders in humans and alters behavior in rodents. Here, we propose that the crosstalk between neurotransmission and neuroinflammation may underlie some of these cognitive changes. We discuss how T. gondii infection suppresses noradrenergic signaling and how the restoration of this pathway improves behavioral aberrations, suggesting that altered neurotransmission and neuroimmune responses may act in concert to perturb behavior. This interaction might apply to other infectious agents, such as viruses, that elicit cognitive changes. We hypothesize that neurotransmitter signaling in immune cells can contribute to behavioral changes associated with brain infection, offering opportunities for potential therapeutic targeting.


Asunto(s)
Síntomas Conductuales , Enfermedades del Sistema Nervioso , Transducción de Señal , Toxoplasma , Toxoplasmosis , Animales , Síntomas Conductuales/etiología , Síntomas Conductuales/parasitología , Encéfalo/parasitología , Humanos , Inflamación/etiología , Enfermedades del Sistema Nervioso/etiología , Neurotransmisores/metabolismo , Toxoplasmosis/complicaciones , Toxoplasmosis/fisiopatología
10.
EMBO Rep ; 22(3): e49617, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33586853

RESUMEN

The unfolded protein response (UPR) has emerged as a central regulator of immune cell responses in several pathologic contexts including infections. However, how intracellular residing pathogens modulate the UPR in dendritic cells (DCs) and thereby affect T cell-mediated immunity remains uncharacterized. Here, we demonstrate that infection of DCs with Toxoplasma gondii (T. gondii) triggers a unique UPR signature hallmarked by the MyD88-dependent activation of the IRE1α pathway and the inhibition of the ATF6 pathway. Induction of XBP1s controls pro-inflammatory cytokine secretion in infected DCs, while IRE1α promotes MHCI antigen presentation of secreted parasite antigens. In mice, infection leads to a specific activation of the IRE1α pathway, which is restricted to the cDC1 subset. Mice deficient for IRE1α and XBP1 in DCs display a severe susceptibility to T. gondii and succumb during the acute phase of the infection. This early mortality is correlated with increased parasite burden and a defect in splenic T-cell responses. Thus, we identify the IRE1α/XBP1s branch of the UPR as a key regulator of host defense upon T. gondii infection.


Asunto(s)
Toxoplasma , Toxoplasmosis , Animales , Células Dendríticas/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Ratones , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Respuesta de Proteína Desplegada
11.
Angew Chem Int Ed Engl ; 62(19): e202300685, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-36891990

RESUMEN

Herein is described a fully regio- and stereoselective hydroelementation reaction of SF5 -alkynes with N, O and S-nucleophiles and further functionalization of the corresponding Z-(hetero)vinyl-SF5 intermediates, a suitable platform to access α-SF5 ketones and esters, ß-SF5 amines and alcohols under mild reaction conditions. Experimental and computational comparative studies between SF5 - and CF3 -alkynes have been performed to highlight and explain the difference of reactivity and selectivity observed between these two fluorinated motifs.

12.
J Am Chem Soc ; 142(25): 11153-11164, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32483965

RESUMEN

Ynamides are fascinating small molecules with complementary reactivities under radical, ionic, and metal-catalyzed conditions. We report herein synthetic and DFT investigations of palladium-catalyzed ligand-controlled regiodivergent hydrometalation reactions of ynamides. Germylated and stannylated enamides are obtained with excellent α,E- or ß,E-selectivities and a broad functional group tolerance. Such a regiodivergent palladium-catalyzed process is unique in ynamide chemistry and allows for the elaboration of metalated enamides that are useful building blocks for cross-coupling reactions or heterocyclic chemistry. DFT calculations fully support the experimental data and demonstrate the crucial roles of the trans-geometry of the [H-Pd(L)-Ge] complex, as well as of the steric requirements of the phosphine ligand. In addition, these calculations support the prevalence of a hydro-palladation pathway over a metal palladation of the π system of the ynamide.

13.
Nat Immunol ; 9(8): 937-44, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18587399

RESUMEN

The parasite Toxoplasma gondii replicates in a specialized intracellular vacuole and causes disease in many species. Protection from toxoplasmosis is mediated by CD8(+) T cells, but the T. gondii antigens and host genes required for eliciting protective immunity are poorly defined. Here we identified GRA6, a polymorphic protein secreted in the parasitophorous vacuole, as the source of the immunodominant and protective decapeptide HF10 presented by the H-2L(d) major histocompatibility complex class I molecule. Presentation of the HF10-H-2L(d) ligand required proteolysis by ERAAP, the endoplasmic reticulum aminopeptidase associated with antigen processing. Consequently, expansion of protective CD8(+) T cell populations was impaired in T. gondii-infected ERAAP-deficient mice, which were more susceptible to toxoplasmosis. Thus, endoplasmic reticulum proteolysis is critical for eliciting protective immunity to a vacuolar parasite.


Asunto(s)
Antígenos de Protozoos/metabolismo , Retículo Endoplásmico/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Leucil Aminopeptidasa/deficiencia , Proteínas Protozoarias/metabolismo , Toxoplasma/inmunología , Toxoplasmosis/inmunología , Animales , Presentación de Antígeno , Leucil Aminopeptidasa/inmunología , Leucil Aminopeptidasa/metabolismo , Ratones , Toxoplasma/fisiología , Vacuolas/inmunología
14.
J Am Chem Soc ; 141(40): 15901-15909, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31475527

RESUMEN

Pyrimidines are almost unreactive partners in Diels-Alder cycloadditions with alkenes and alkynes, and only reactions under drastic conditions have previously been reported. We describe how 2-hydrazonylpyrimidines, easily obtained in two steps from commercially available 2-halopyrimidines, can be exceptionally activated by trifluoroacetylation. This allows a Diels-Alder cycloaddition under very mild reaction conditions, leading to a large diversity of aza-indazoles, a ubiquitous scaffold in medicinal chemistry. This reaction is general and scalable and has an excellent functional group tolerance. A straightforward synthesis of a key intermediate of Bayer's Vericiguat illustrates the potential of this cycloaddition strategy. Quantum mechanical calculations show how the simple N-trifluoroacetylation of 2-hydrazonylpyrimidines distorts the substrate into a transition-state-like geometry that readily undergoes the intramolecular Diels-Alder cycloaddition.

15.
J Am Chem Soc ; 141(21): 8450-8461, 2019 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-31059257

RESUMEN

Ipomoeassin F is a potent natural cytotoxin that inhibits growth of many tumor cell lines with single-digit nanomolar potency. However, its biological and pharmacological properties have remained largely unexplored. Building upon our earlier achievements in total synthesis and medicinal chemistry, we used chemical proteomics to identify Sec61α (protein transport protein Sec61 subunit alpha isoform 1), the pore-forming subunit of the Sec61 protein translocon, as a direct binding partner of ipomoeassin F in living cells. The interaction is specific and strong enough to survive lysis conditions, enabling a biotin analogue of ipomoeassin F to pull down Sec61α from live cells, yet it is also reversible, as judged by several experiments including fluorescent streptavidin staining, delayed competition in affinity pulldown, and inhibition of TNF biogenesis after washout. Sec61α forms the central subunit of the ER protein translocation complex, and the binding of ipomoeassin F results in a substantial, yet selective, inhibition of protein translocation in vitro and a broad ranging inhibition of protein secretion in live cells. Lastly, the unique resistance profile demonstrated by specific amino acid single-point mutations in Sec61α provides compelling evidence that Sec61α is the primary molecular target of ipomoeassin F and strongly suggests that the binding of this natural product to Sec61α is distinctive. Therefore, ipomoeassin F represents the first plant-derived, carbohydrate-based member of a novel structural class that offers new opportunities to explore Sec61α function and to further investigate its potential as a therapeutic target for drug discovery.


Asunto(s)
Glicoconjugados/farmacología , Canales de Translocación SEC/antagonistas & inhibidores , Sitios de Unión/efectos de los fármacos , Glicoconjugados/química , Humanos , Estructura Molecular , Transporte de Proteínas/efectos de los fármacos , Canales de Translocación SEC/metabolismo
16.
Bioorg Chem ; 92: 103203, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31446238

RESUMEN

Discovery of antibiotics of a novel mode of action is highly required in the fierce battlefield with multi-drug resistant bacterial infections. Previously we have validated the protein-protein interaction between bacterial NusB and NusE proteins as an unprecedented antimicrobial target and reported the identification of a first-in-class inhibitor of bacterial ribosomal RNA synthesis with antimicrobial activities. In this paper, derivatives of the hit compound were rationally designed based on the pharmacophore model for chemical synthesis, followed by biological evaluations. Some of the derivatives demonstrated the improved antimicrobial activity with the minimum inhibitory concentration (MIC) at 1-2 µg/mL against clinically significant bacterial pathogens. Time-kill kinetics, confocal microscope, ATP production, cytotoxicity, hemolytic property and cell permeability using Caco-2 cells of a representative compound were also measured. This series of compounds were named "nusbiarylins" based on their target protein NusB and the biaryl structure and were expected to be further developed towards novel antimicrobial drug candidates in the near future.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Proteínas Bacterianas/antagonistas & inhibidores , Diseño de Fármacos , Transcripción Genética/efectos de los fármacos , Células A549 , Antibacterianos/síntesis química , Antibacterianos/química , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Células CACO-2 , Línea Celular , Relación Dosis-Respuesta a Droga , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad , Transcripción Genética/genética
17.
Angew Chem Int Ed Engl ; 58(21): 6814-6817, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-30964591

RESUMEN

Several recent reports outlined the singular reactivity of acid fluorides as excellent electrophiles in transition-metal catalysis. These species undergo oxidative addition of the metal into the C-F bond; then, retention or release of the CO moiety can occur and be controlled by tuning the catalytic system and the reaction parameters. Acid fluorides, which can be derived from carboxylic acids, show good stability and high reactivity in a wide range of possible functionalizations with nucleophiles. Their use provides an interesting alternative to that of the parent carboxylic acid derivatives (acid chlorides, esters, amides, acids, or aldehydes).

18.
Eur J Immunol ; 47(7): 1160-1170, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28508576

RESUMEN

The intracellular Toxoplasma gondii parasite replicates within a parasitophorous vacuole (PV). T. gondii secretes proteins that remain soluble in the PV space, are inserted into PV membranes or are exported beyond the PV boundary. In addition to supporting T. gondii growth, these proteins can be processed and presented by MHC I for CD8+ T-cell recognition. Yet it is unclear whether membrane binding influences the processing pathways employed and if topology of membrane antigens impacts their MHC I presentation. Here we report that the MHC I pathways of soluble and membrane-bound antigens differ in their requirement for host ER recruitment. In contrast to the soluble SAG1-OVA model antigen, we find that presentation of the membrane-bound GRA6 is independent from the SNARE Sec22b, a key molecule for transfer of host endoplasmic reticulum components onto the PV. Using parasites modified to secrete a transmembrane antigen with opposite orientations, we further show that MHC I presentation is highly favored when the C-terminal epitope is exposed to the host cell cytosol, which corresponds to GRA6 natural orientation. Our data suggest that the biochemical properties of antigens released by intracellular pathogens critically guide their processing pathway and are valuable parameters to consider for vaccination strategies.


Asunto(s)
Presentación de Antígeno , Antígenos de Protozoos/inmunología , Antígenos de Histocompatibilidad Clase I , Proteínas Protozoarias/inmunología , Proteínas R-SNARE/metabolismo , Toxoplasma/inmunología , Animales , Antígenos de Protozoos/química , Linfocitos T CD8-positivos/inmunología , Citosol/inmunología , Citosol/parasitología , Células Dendríticas/inmunología , Epítopos Inmunodominantes , Ratones , Proteínas Protozoarias/química , Toxoplasma/química , Vacuolas/inmunología
19.
EMBO Rep ; 17(12): 1753-1765, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27861124

RESUMEN

Cross-presentation by MHC class I molecules allows the detection of exogenous antigens by CD8+ T lymphocytes. This process is crucial to initiate cytotoxic immune responses against many pathogens (i.e., Toxoplasma gondii) and tumors. To achieve efficient cross-presentation, dendritic cells (DCs) have specialized endocytic pathways; however, the molecular effectors involved are poorly understood. In this work, we identify the small GTPase Rab22a as a key regulator of MHC-I trafficking and antigen cross-presentation by DCs. Our results demonstrate that Rab22a is recruited to DC endosomes and phagosomes, as well as to the vacuole containing T. gondii parasites. The silencing of Rab22a expression did not affect the uptake of exogenous antigens or parasite invasion, but it drastically reduced the intracellular pool and the recycling of MHC-I molecules. The knockdown of Rab22a also hampered the cross-presentation of soluble, particulate and T. gondii-associated antigens, but not the endogenous MHC-I antigen presentation through the classical secretory pathway. Our findings provide compelling evidence that Rab22a plays a central role in the MHC-I endocytic trafficking, which is crucial for efficient cross-presentation by DCs.


Asunto(s)
Presentación de Antígeno , Proteínas Portadoras/metabolismo , Células Dendríticas/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Proteínas Nucleares/metabolismo , Toxoplasma/inmunología , Animales , Presentación de Antígeno/genética , Presentación de Antígeno/fisiología , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/parasitología , Linfocitos T CD8-positivos/inmunología , Proteínas Portadoras/genética , Reactividad Cruzada , Proteínas de Unión al ADN , Células Dendríticas/parasitología , Endocitosis , Endosomas/metabolismo , Endosomas/parasitología , Regulación de la Expresión Génica , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Ratones , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Fagosomas/metabolismo , Fagosomas/parasitología , Transporte de Proteínas , Proteínas de Unión al ARN , Toxoplasma/fisiología , Vacuolas/metabolismo , Vacuolas/parasitología
20.
Haematologica ; 102(1): 60-68, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27658439

RESUMEN

Malaria, a major global health challenge worldwide, is accompanied by a severe anemia secondary to hemolysis and increased erythrophagocytosis. Iron is an essential functional component of erythrocyte hemoglobin and its availability is controlled by the liver-derived hormone hepcidin. We examined the regulation of hepcidin during malarial infection in mice using the rodent parasite Plasmodium berghei K173. Mice infected with Plasmodium berghei K173 develop a severe anemia and die after 18 to 22 days without cerebral malaria. During the early phase of blood-stage infection (days 1 to 5), a strong inflammatory signature was associated with an increased production of hepcidin. Between days 7 and 18, while infection progressed, red blood cell count, hemoglobin and hematocrit dramatically decreased. In the late phase of malarial infection, hepcidin production was reduced concomitantly to an increase in the messenger RNA expression of the hepcidin suppressor erythroferrone in the bone marrow and the spleen. Compared with wild-type mice, Erfe-/- mice failed to adequately suppress hepcidin expression after infection with Plasmodium berghei K173. Importantly, the sustained production of hepcidin allowed by erythroferrone ablation was associated with decreased parasitemia, providing further evidence that transient iron restriction could be beneficial in the treatment of malaria.


Asunto(s)
Anemia/sangre , Anemia/etiología , Citocinas/metabolismo , Hepcidinas/sangre , Malaria/complicaciones , Proteínas Musculares/metabolismo , Anemia/diagnóstico , Animales , Biomarcadores , Citocinas/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Eritropoyesis , Regulación de la Expresión Génica , Malaria/parasitología , Masculino , Ratones , Ratones Noqueados , Proteínas Musculares/genética , Parasitemia , Plasmodium berghei , ARN Mensajero/genética , ARN Mensajero/metabolismo , Índice de Severidad de la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA