Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nature ; 607(7920): 784-789, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35859175

RESUMEN

The RNA-editing enzyme adenosine deaminase acting on RNA 1 (ADAR1) limits the accumulation of endogenous immunostimulatory double-stranded RNA (dsRNA)1. In humans, reduced ADAR1 activity causes the severe inflammatory disease Aicardi-Goutières syndrome (AGS)2. In mice, complete loss of ADAR1 activity is embryonically lethal3-6, and mutations similar to those found in patients with AGS cause autoinflammation7-12. Mechanistically, adenosine-to-inosine (A-to-I) base modification of endogenous dsRNA by ADAR1 prevents chronic overactivation of the dsRNA sensors MDA5 and PKR3,7-10,13,14. Here we show that ADAR1 also inhibits the spontaneous activation of the left-handed Z-nucleic acid sensor ZBP1. Activation of ZBP1 elicits caspase-8-dependent apoptosis and MLKL-mediated necroptosis of ADAR1-deficient cells. ZBP1 contributes to the embryonic lethality of Adar-knockout mice, and it drives early mortality and intestinal cell death in mice deficient in the expression of both ADAR and MAVS. The Z-nucleic-acid-binding Zα domain of ADAR1 is necessary to prevent ZBP1-mediated intestinal cell death and skin inflammation. The Zα domain of ADAR1 promotes A-to-I editing of endogenous Alu elements to prevent dsRNA formation through the pairing of inverted Alu repeats, which can otherwise induce ZBP1 activation. This shows that recognition of Alu duplex RNA by ZBP1 may contribute to the pathological features of AGS that result from the loss of ADAR1 function.


Asunto(s)
Adenosina Desaminasa , Inflamación , Proteínas de Unión al ARN , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Adenosina/metabolismo , Adenosina Desaminasa/química , Adenosina Desaminasa/deficiencia , Adenosina Desaminasa/metabolismo , Animales , Apoptosis , Enfermedades Autoinmunes del Sistema Nervioso , Caspasa 8/metabolismo , Humanos , Inflamación/metabolismo , Inflamación/prevención & control , Inosina/metabolismo , Intestinos/patología , Ratones , Necroptosis , Malformaciones del Sistema Nervioso , Edición de ARN , ARN Bicatenario , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Piel/patología
2.
Nature ; 596(7871): 262-267, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34349263

RESUMEN

Regulated cell death is an integral part of life, and has broad effects on organism development and homeostasis1. Malfunctions within the regulated cell death process, including the clearance of dying cells, can manifest in diverse pathologies throughout various tissues including the gastrointestinal tract2. A long appreciated, yet elusively defined relationship exists between cell death and gastrointestinal pathologies with an underlying microbial component3-6, but the direct effect of dying mammalian cells on bacterial growth is unclear. Here we advance a concept that several Enterobacteriaceae, including patient-derived clinical isolates, have an efficient growth strategy to exploit soluble factors that are released from dying gut epithelial cells. Mammalian nutrients released after caspase-3/7-dependent apoptosis boosts the growth of multiple Enterobacteriaceae and is observed using primary mouse colonic tissue, mouse and human cell lines, several apoptotic triggers, and in conventional as well as germ-free mice in vivo. The mammalian cell death nutrients induce a core transcriptional response in pathogenic Salmonella, and we identify the pyruvate formate-lyase-encoding pflB gene as a key driver of bacterial colonization in three contexts: a foodborne infection model, a TNF- and A20-dependent cell death model, and a chemotherapy-induced mucositis model. These findings introduce a new layer to the complex host-pathogen interaction, in which death-induced nutrient release acts as a source of fuel for intestinal bacteria, with implications for gut inflammation and cytotoxic chemotherapy treatment.


Asunto(s)
Apoptosis , Enterobacteriaceae/crecimiento & desarrollo , Enterobacteriaceae/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Intestinos/citología , Intestinos/microbiología , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Animales , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Células Epiteliales/patología , Femenino , Enfermedades Transmitidas por los Alimentos/microbiología , Vida Libre de Gérmenes , Interacciones Huésped-Patógeno , Inflamación/metabolismo , Inflamación/microbiología , Inflamación/patología , Masculino , Ratones , Mucositis/inducido químicamente , Salmonella/enzimología , Salmonella/genética , Salmonella/crecimiento & desarrollo , Salmonella/metabolismo , Transcriptoma , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
3.
Nat Chem Biol ; 19(3): 292-300, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36280791

RESUMEN

Glutamine synthetase (GS) activity is conserved from prokaryotes to humans, where the ATP-dependent production of glutamine from glutamate and ammonia is essential for neurotransmission and ammonia detoxification. Here, we show that mammalian GS uses glutamate and methylamine to produce a methylated glutamine analog, N5-methylglutamine. Untargeted metabolomics revealed that liver-specific GS deletion and its pharmacological inhibition in mice suppress hepatic and circulating levels of N5-methylglutamine. This alternative activity of GS was confirmed in human recombinant enzyme and cells, where a pathogenic mutation in the active site (R324C) promoted the synthesis of N5-methylglutamine over glutamine. N5-methylglutamine is detected in the circulation, and its levels are sustained by the microbiome, as demonstrated by using germ-free mice. Finally, we show that urine levels of N5-methylglutamine correlate with tumor burden and GS expression in a ß-catenin-driven model of liver cancer, highlighting the translational potential of this uncharacterized metabolite.


Asunto(s)
Glutamina , Neoplasias , Humanos , Ratones , Animales , Glutamina/metabolismo , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Amoníaco , Ácido Glutámico/metabolismo , Hígado/metabolismo , Neoplasias/metabolismo , Homeostasis , Mamíferos
4.
Cardiovasc Res ; 120(6): 612-622, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38400709

RESUMEN

AIMS: Heart failure (HF) and cancer are the leading causes of death worldwide. Epidemiological studies revealed that HF patients are prone to develop cancer. Preclinical studies provided some insights into this connection, but the exact mechanisms remain elusive. In colorectal cancer (CRC), gut microbial dysbiosis is linked to cancer progression and recent studies have shown that HF patients display microbial dysbiosis. This current study focussed on the effects of HF-induced microbial dysbiosis on colonic tumour formation. METHODS AND RESULTS: C57BL/6J mice were subjected to myocardial infarction (MI), with sham surgery as control. After six weeks faeces were collected, processed for 16 s rRNA sequencing, and pooled for faecal microbiota transplantation. CRC tumour growth was provoked in germ-free mice by treating them with Azoxymethane/Dextran sodium sulphate. The CRC mice were transplanted with faeces from MI or sham mice. MI-induced HF resulted in microbial dysbiosis, characterized by a decreased α-diversity and microbial alterations on the genus level, several of which have been associated with CRC. We then performed faecal microbiota transplantation with faeces from HF mice in CRC mice, which resulted in a higher endoscopic disease score and an increase in the number of tumours in CRC mice. CONCLUSION: We demonstrated that MI-induced HF contributes to colonic tumour formation by altering the gut microbiota composition, providing a mechanistic explanation for the observed association between HF and increased risk for cancer. Targeting the microbiome may present as a tool to mitigate HF-associated co-morbidities, especially cancer.


Asunto(s)
Colon , Modelos Animales de Enfermedad , Disbiosis , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Insuficiencia Cardíaca , Ratones Endogámicos C57BL , Infarto del Miocardio , Animales , Infarto del Miocardio/patología , Infarto del Miocardio/microbiología , Insuficiencia Cardíaca/microbiología , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/etiología , Masculino , Colon/microbiología , Colon/patología , Ribotipificación , Neoplasias del Colon/patología , Neoplasias del Colon/microbiología , Bacterias/genética , Heces/microbiología , Interacciones Huésped-Patógeno
5.
Front Immunol ; 15: 1373745, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38680500

RESUMEN

Background: Protective immunity against intestinal helminths requires induction of robust type-2 immunity orchestrated by various cellular and soluble effectors which promote goblet cell hyperplasia, mucus production, epithelial proliferation, and smooth muscle contractions to expel worms and re-establish immune homeostasis. Conversely, defects in type-2 immunity result in ineffective helminth clearance, persistent infection, and inflammation. Macrophages are highly plastic cells that acquire an alternatively activated state during helminth infection, but they were previously shown to be dispensable for resistance to Trichuris muris infection. Methods: We use the in vivo mouse model A20myel-KO, characterized by the deletion of the potent anti-inflammatory factor A20 (TNFAIP3) specifically in the myeloid cells, the excessive type-1 cytokine production, and the development of spontaneous arthritis. We infect A20myel-KO mice with the gastrointestinal helminth Trichuris muris and we analyzed the innate and adaptive responses. We performed RNA sequencing on sorted myeloid cells to investigate the role of A20 on macrophage polarization and type-2 immunity. Moreover, we assess in A20myel-KO mice the pharmacological inhibition of type-1 cytokine pathways on helminth clearance and the infection with Salmonella typhimurium. Results: We show that proper macrophage polarization is essential for helminth clearance, and we identify A20 as an essential myeloid factor for the induction of type-2 immune responses against Trichuris muris. A20myel-KO mice are characterized by persistent Trichuris muris infection and intestinal inflammation. Myeloid A20 deficiency induces strong classical macrophage polarization which impedes anti-helminth type-2 immune activation; however, it promotes detrimental Th1/Th17 responses. Antibody-mediated neutralization of the type-1 cytokines IFN-γ, IL-18, and IL-12 prevents myeloid-orchestrated Th1 polarization and re-establishes type-2-mediated protective immunity against T. muris in A20myel-KO mice. In contrast, the strong Th1-biased immunity in A20myel-KO mice offers protection against Salmonella typhimurium infection. Conclusions: We hereby identify A20 as a critical myeloid factor for correct macrophage polarization and appropriate adaptive mucosal immunity in response to helminth and enteric bacterial infection.


Asunto(s)
Resistencia a la Enfermedad , Activación de Macrófagos , Macrófagos , Tricuriasis , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa , Animales , Ratones , Citocinas/metabolismo , Citocinas/inmunología , Modelos Animales de Enfermedad , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Inmunidad Innata , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Células Mieloides/inmunología , Células Th2/inmunología , Tricuriasis/inmunología , Trichuris/inmunología , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/inmunología , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/genética
6.
bioRxiv ; 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37645947

RESUMEN

Various bacteria are suggested to contribute to colorectal cancer (CRC) development, including pks+ E. coli which produce the genotoxin colibactin that induces characteristic mutational signatures in host epithelial cells. It remains unclear how the highly unstable colibactin molecule is able to access host epithelial cells and its DNA to cause harm. Using the microbiota-dependent ZEB2-transgenic mouse model of invasive CRC, we found that pks+ E. coli drives CRC exacerbation and tissue invasion in a colibactin-dependent manner. Using isogenic mutant strains, we further demonstrate that CRC exacerbation critically depends on expression of the E. coli type-1 pilus adhesin FimH and the F9-pilus adhesin FmlH. Blocking bacterial adhesion using a pharmacological FimH inhibitor attenuates colibactin-mediated genotoxicity and CRC exacerbation. Together, we show that the oncogenic potential of pks+ E. coli critically depends on bacterial adhesion to host epithelial cells and is critically mediated by specific bacterial adhesins. Adhesin-mediated epithelial binding subsequently allows production of the genotoxin colibactin in close proximity to host epithelial cells, which promotes DNA damage and drives CRC development. These findings present promising therapeutic avenues for the development of anti-adhesive therapies aiming at mitigating colibactin-induced DNA damage and inhibiting the initiation and progression of CRC, particularly in individuals at risk for developing CRC.

7.
Cell Death Dis ; 14(8): 534, 2023 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-37598207

RESUMEN

The intestinal epithelium is a single cell layer that is constantly renewed and acts as a physical barrier that separates intestinal microbiota from underlying tissues. In inflammatory bowel disease (IBD) in humans, as well as in experimental mouse models of IBD, this barrier is impaired, causing microbial infiltration and inflammation. Deficiency in OTU deubiquitinase with linear linkage specificity (OTULIN) causes OTULIN-related autoinflammatory syndrome (ORAS), a severe inflammatory pathology affecting multiple organs including the intestine. We show that mice with intestinal epithelial cell (IEC)-specific OTULIN deficiency exhibit increased susceptibility to experimental colitis and are highly sensitive to TNF toxicity, due to excessive apoptosis of OTULIN deficient IECs. OTULIN deficiency also increases intestinal pathology in mice genetically engineered to secrete excess TNF, confirming that chronic exposure to TNF promotes epithelial cell death and inflammation in OTULIN deficient mice. Mechanistically we demonstrate that upon TNF stimulation, OTULIN deficiency impairs TNF receptor complex I formation and LUBAC recruitment, and promotes the formation of the cytosolic complex II inducing epithelial cell death. Finally, we show that OTULIN deficiency in IECs increases susceptibility to Salmonella infection, further confirming the importance of OTULIN for intestinal barrier integrity. Together, these results identify OTULIN as a major anti-apoptotic protein in the intestinal epithelium and provide mechanistic insights into how OTULIN deficiency drives gastrointestinal inflammation in ORAS patients.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Mucosa Intestinal , Animales , Humanos , Ratones , Apoptosis , Muerte Celular , Inflamación
8.
EMBO Mol Med ; 15(10): e17691, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37694693

RESUMEN

Arthritis is the most common extra-intestinal complication in inflammatory bowel disease (IBD). Conversely, arthritis patients are at risk for developing IBD and often display subclinical gut inflammation. These observations suggest a shared disease etiology, commonly termed "the gut-joint-axis." The clinical association between gut and joint inflammation is further supported by the success of common therapeutic strategies and microbiota dysbiosis in both conditions. Most data, however, support a correlative relationship between gut and joint inflammation, while causative evidence is lacking. Using two independent transgenic mouse arthritis models, either TNF- or IL-1ß dependent, we demonstrate that arthritis develops independently of the microbiota and intestinal inflammation, since both lines develop full-blown articular inflammation under germ-free conditions. In contrast, TNF-driven gut inflammation is fully rescued in germ-free conditions, indicating that the microbiota is driving TNF-induced gut inflammation. Together, our study demonstrates that although common inflammatory pathways may drive both gut and joint inflammation, the molecular triggers initiating such pathways are distinct in these tissues.

9.
Cell Death Dis ; 13(4): 347, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35422482

RESUMEN

Cancers acquire several capabilities to survive the multistep process in carcinogenesis. Resisting cell death is one of them. Silencing of the necroptosis initiator Ripk3 occurs in a wide variety of cancer types including melanoma. Little is known about the role of the necroptosis executioner MLKL in tumor development. Studies often indicate opposing roles for MLKL as a tumor-suppressing or a tumor-promoting protein. This study investigates the role of MLKL during melanoma initiation and progression using a tamoxifen-inducible melanoma mouse model driven by melanocyte-specific overexpression of mutated Braf and simultaneous deletion of Pten (BrafV600EPten-/-). In this model we observed a clear sex difference: melanoma initiation and progression were faster in females mice. Mlkl deficiency in male mice resulted in a modest but significant reduction of nevi growth rate compared to the littermate control. In these mice, infiltration and expansion of melanoma cells in the inguinal lymph node were also modestly decreased. This is likely to be a consequence of the delay in nevi development. No significant difference was observed in the Mlkl-deficient condition in female mice in which melanoma development was faster. Overall, our results indicate that in this genetic model MLKL has a minor role during melanoma initiation and progression.


Asunto(s)
Melanoma , Nevo , Neoplasias Cutáneas , Animales , Femenino , Ganglios Linfáticos/metabolismo , Masculino , Melanocitos/metabolismo , Melanoma/genética , Melanoma/patología , Ratones , Proteínas Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Neoplasias Cutáneas/genética
10.
Mol Cancer Res ; 20(10): 1532-1547, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-35749080

RESUMEN

High-grade serous ovarian cancer (HGSOC) is responsible for the largest number of ovarian cancer deaths. The frequent therapy-resistant relapses necessitate a better understanding of mechanisms driving therapy resistance. Therefore, we mapped more than a hundred thousand cells of HGSOC patients in different phases of the disease, using single-cell RNA sequencing. Within patients, we compared chemonaive with chemotreated samples. As such, we were able to create a single-cell atlas of different HGSOC lesions and their treatment. This revealed a high intrapatient concordance between spatially distinct metastases. In addition, we found remarkable baseline differences in transcriptomics of ascitic and solid cancer cells, resulting in a different response to chemotherapy. Moreover, we discovered different robust subtypes of cancer-associated fibroblasts (CAF) in all patients. Besides inflammatory CAFs, vascular CAFs, and matrix CAFs, we identified a new CAF subtype that was characterized by high expression of STAR, TSPAN8, and ALDH1A1 and clearly enriched after chemotherapy. Together, tumor heterogeneity in both cancer and stromal cells contributes to therapy resistance in HGSOC and could form the basis of novel therapeutic strategies that differentiate between ascitic and solid disease. IMPLICATIONS: The newly characterized differences between ascitic and solid cancer cells before and after chemotherapy could inform novel treatment strategies for metastatic HGSOC.


Asunto(s)
Fibroblastos Asociados al Cáncer , Cistadenocarcinoma Seroso , Neoplasias Ováricas , Fibroblastos Asociados al Cáncer/metabolismo , Línea Celular Tumoral , Cistadenocarcinoma Seroso/tratamiento farmacológico , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Femenino , Humanos , Recurrencia Local de Neoplasia , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Tetraspaninas
11.
J Immunother Cancer ; 9(2)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33589525

RESUMEN

BACKGROUND: Modulation and depletion strategies of regulatory T cells (Tregs) constitute valid approaches in antitumor immunotherapy but suffer from severe adverse effects due to their lack of selectivity for the tumor-infiltrating (ti-)Treg population, indicating the need for a ti-Treg specific biomarker. METHODS: We employed single-cell RNA-sequencing in a mouse model of non-small cell lung carcinoma (NSCLC) to obtain a comprehensive overview of the tumor-infiltrating T-cell compartment, with a focus on ti-Treg subpopulations. These findings were validated by flow cytometric analysis of both mouse (LLC-OVA, MC38 and B16-OVA) and human (NSCLC and melanoma) tumor samples. We generated two CCR8-specific nanobodies (Nbs) that recognize distinct epitopes on the CCR8 extracellular domain. These Nbs were formulated as tetravalent Nb-Fc fusion proteins for optimal CCR8 binding and blocking, containing either an antibody-dependent cell-mediated cytotoxicity (ADCC)-deficient or an ADCC-prone Fc region. The therapeutic use of these Nb-Fc fusion proteins was evaluated, either as monotherapy or as combination therapy with anti-programmed cell death protein-1 (anti-PD-1), in both the LLC-OVA and MC38 mouse models. RESULTS: We were able to discern two ti-Treg populations, one of which is characterized by the unique expression of Ccr8 in conjunction with Treg activation markers. Ccr8 is also expressed by dysfunctional CD4+ and CD8+ T cells, but the CCR8 protein was only prominent on the highly activated and strongly T-cell suppressive ti-Treg subpopulation of mouse and human tumors, with no major CCR8-positivity found on peripheral Tregs. CCR8 expression resulted from TCR-mediated Treg triggering in an NF-κB-dependent fashion, but was not essential for the recruitment, activation nor suppressive capacity of these cells. While treatment of tumor-bearing mice with a blocking ADCC-deficient Nb-Fc did not influence tumor growth, ADCC-prone Nb-Fc elicited antitumor immunity and reduced tumor growth in synergy with anti-PD-1 therapy. Importantly, ADCC-prone Nb-Fc specifically depleted ti-Tregs in a natural killer (NK) cell-dependent fashion without affecting peripheral Tregs. CONCLUSIONS: Collectively, our findings highlight the efficacy and safety of targeting CCR8 for the depletion of tumor-promoting ti-Tregs in combination with anti-PD-1 therapy.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Carcinoma Pulmonar de Lewis/terapia , Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Depleción Linfocítica , Linfocitos Infiltrantes de Tumor/inmunología , Melanoma Experimental/terapia , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptores CCR8/deficiencia , Neoplasias Cutáneas/terapia , Linfocitos T Reguladores/inmunología , Animales , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/inmunología , Carcinoma Pulmonar de Lewis/metabolismo , Terapia Combinada , Bases de Datos Genéticas , Femenino , Perfilación de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Linfocitos Infiltrantes de Tumor/metabolismo , Melanoma Experimental/genética , Melanoma Experimental/inmunología , Melanoma Experimental/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Terapia Molecular Dirigida , Fenotipo , Receptor de Muerte Celular Programada 1/metabolismo , RNA-Seq , Receptores CCR8/genética , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/metabolismo , Linfocitos T Reguladores/metabolismo
12.
Nat Cancer ; 1(6): 620-634, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-35121975

RESUMEN

Colorectal cancer (CRC) is highly prevalent in Western society, and increasing evidence indicates strong contributions of environmental factors and the intestinal microbiota to CRC initiation, progression and even metastasis. We have identified a synergistic inflammatory tumor-promoting mechanism through which the resident intestinal microbiota boosts invasive CRC development in an epithelial-to-mesenchymal transition-prone tissue environment. Intestinal epithelial cell (IEC)-specific transgenic expression of the epithelial-to-mesenchymal transition regulator Zeb2 in mice (Zeb2IEC-Tg/+) leads to increased intestinal permeability, myeloid cell-driven inflammation and spontaneous invasive CRC development. Zeb2IEC-Tg/+ mice develop a dysplastic colonic epithelium, which progresses to severely inflamed neoplastic lesions while the small intestinal epithelium remains normal. Zeb2IEC-Tg/+ mice are characterized by intestinal dysbiosis, and microbiota depletion with broad-spectrum antibiotics or germ-free rederivation completely prevents cancer development. Zeb2IEC-Tg/+ mice represent the first mouse model of spontaneous microbiota-dependent invasive CRC and will help us to better understand host-microbiome interactions driving CRC development in humans.


Asunto(s)
Carcinoma , Microbiota , Animales , Carcinoma/metabolismo , Colon/metabolismo , Ratones
13.
Cancer Res ; 80(14): 2983-2995, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32503808

RESUMEN

Epithelial-to-mesenchymal transition (EMT)-inducing transcription factors (TF) are well known for their ability to induce mesenchymal states associated with increased migratory and invasive properties. Unexpectedly, nuclear expression of the EMT-TF ZEB2 in human primary melanoma has been shown to correlate with reduced invasion. We report here that ZEB2 is required for outgrowth for primary melanomas and metastases at secondary sites. Ablation of Zeb2 hampered outgrowth of primary melanomas in vivo, whereas ectopic expression enhanced proliferation and growth at both primary and secondary sites. Gain of Zeb2 expression in pulmonary-residing melanoma cells promoted the development of macroscopic lesions. In vivo fate mapping made clear that melanoma cells undergo a conversion in state where ZEB2 expression is replaced by ZEB1 expression associated with gain of an invasive phenotype. These findings suggest that reversible switching of the ZEB2/ZEB1 ratio enhances melanoma metastatic dissemination. SIGNIFICANCE: ZEB2 function exerts opposing behaviors in melanoma by promoting proliferation and expansion and conversely inhibiting invasiveness, which could be of future clinical relevance. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/14/2983/F1.large.jpg.


Asunto(s)
Proliferación Celular , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/secundario , Melanoma/patología , Factores de Transcripción/metabolismo , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/metabolismo , Animales , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Melanoma/genética , Melanoma/metabolismo , Ratones , Invasividad Neoplásica , Factores de Transcripción/genética , Células Tumorales Cultivadas , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética
14.
J Exp Med ; 213(6): 897-911, 2016 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-27185854

RESUMEN

Plasmacytoid dendritic cells (DCs [pDCs]) develop from pre-pDCs, whereas two lineages of conventional DCs (cDCs; cDC1s and cDC2s) develop from lineage-committed pre-cDCs. Several transcription factors (TFs) have been implicated in regulating the development of pDCs (E2-2 and Id2) and cDC1s (Irf8, Id2, and Batf3); however, those required for the early commitment of pre-cDCs toward the cDC2 lineage are unknown. Here, we identify the TF zinc finger E box-binding homeobox 2 (Zeb2) to play a crucial role in regulating DC development. Zeb2 was expressed from the pre-pDC and pre-cDC stage onward and highly expressed in mature pDCs and cDC2s. Mice conditionally lacking Zeb2 in CD11c(+) cells had a cell-intrinsic reduction in pDCs and cDC2s, coupled with an increase in cDC1s. Conversely, mice in which CD11c(+) cells overexpressed Zeb2 displayed a reduction in cDC1s. This was accompanied by altered expression of Id2, which was up-regulated in cDC2s and pDCs from conditional knockout mice. Zeb2 chromatin immunoprecipitation analysis revealed Id2 to be a direct target of Zeb2. Thus, we conclude that Zeb2 regulates commitment to both the cDC2 and pDC lineages through repression of Id2.


Asunto(s)
Células Dendríticas/inmunología , Proteínas de Homeodominio/inmunología , Proteína 2 Inhibidora de la Diferenciación/inmunología , Células Plasmáticas/inmunología , Proteínas Represoras/inmunología , Regulación hacia Arriba/inmunología , Animales , Células Dendríticas/citología , Proteínas de Homeodominio/genética , Proteína 2 Inhibidora de la Diferenciación/genética , Ratones , Ratones Noqueados , Células Plasmáticas/citología , Proteínas Represoras/genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA