Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Development ; 150(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37971218

RESUMEN

The endoplasmic reticulum (ER) undergoes a remarkable transition in morphology during cell division to aid in the proper portioning of the ER. However, whether changes in ER behaviors modulate mitotic events is less clear. Like many animal embryos, the early Drosophila embryo undergoes rapid cleavage cycles in a lipid-rich environment. Here, we show that mitotic spindle formation, centrosomal maturation, and ER condensation occur with similar time frames in the early syncytium. In a screen for Rab family GTPases that display dynamic function at these stages, we identified Rab1. Rab1 disruption led to an enhanced buildup of ER at the spindle poles and produced an intriguing 'mini-spindle' phenotype. ER accumulation around the mitotic space negatively correlates with spindle length/intensity. Importantly, centrosomal maturation is defective in these embryos, as mitotic recruitment of key centrosomal proteins is weakened after Rab1 disruption. Finally, division failures and ER overaccumulation is rescued by Dynein inhibition, demonstrating that Dynein is essential for ER spindle recruitment. These results reveal that ER levels must be carefully tuned during mitotic processes to ensure proper assembly of the division machinery.


Asunto(s)
Centrosoma , Dineínas , Animales , Dineínas/metabolismo , Centrosoma/metabolismo , Mitosis , Polos del Huso/metabolismo , Retículo Endoplásmico/metabolismo , Drosophila/metabolismo , Huso Acromático/metabolismo , Microtúbulos/metabolismo
2.
Development ; 150(16)2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37590130

RESUMEN

Ingression of the plasma membrane is an essential part of the cell topology-distorting repertoire and a key element in animal cell cytokinesis. Many embryos have rapid cleavage stages in which they are furrowing powerhouses, quickly forming and disassembling cleavage furrows on timescales of just minutes. Previous work has shown that cytoskeletal proteins and membrane trafficking coordinate to drive furrow ingression, but where these membrane stores are derived from and how they are directed to furrowing processes has been less clear. Here, we identify an extensive Rab35/Rab4>Rab39/Klp98A>trans-Golgi network (TGN) endocytic recycling pathway necessary for fast furrow ingression in the Drosophila embryo. Rab39 is present in vesiculotubular compartments at the TGN where it receives endocytically derived cargo through a Rab35/Rab4-dependent pathway. A Kinesin-3 family member, Klp98A, drives the movements and tubulation activities of Rab39, and disruption of this Rab39-Klp98A-Rab35 pathway causes deep furrow ingression defects and genomic instability. These data suggest that an endocytic recycling pathway rapidly remobilizes membrane cargo from the cell surface and directs it to the trans-Golgi network to permit the initiation of new cycles of cleavage furrow formation.


Asunto(s)
Proteínas de Drosophila , Aparato de Golgi , Animales , Transporte Biológico , Membrana Celular , Red trans-Golgi , Desarrollo Embrionario , Drosophila , Proteínas de Unión al GTP rab/genética , Proteínas de Drosophila/genética , Cinesinas
3.
Dev Biol ; 491: 82-93, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36067836

RESUMEN

In the early syncytial Drosophila embryo, rapid changes in filamentous actin networks and membrane trafficking pathways drive the formation and remodeling of cortical and furrow morphologies. Interestingly, genomic integrity and the completion of mitoses during cell cycles 10-13 depends on the formation of transient membrane furrows that serve to separate and anchor individual spindles during division. While substantial work has led to a better understanding of the core network components that are responsible for the formation of these furrows, less is known about the regulation that controls cytoskeletal and trafficking function. The DOCK protein Sponge was one of the first proteins identified as being required for syncytial furrow formation, and disruption of Sponge deeply compromises F-actin populations in the early embryo, but how this occurs is less clear. Here, we perform quantitative analysis of the effects of Sponge disruption on cortical cap growth, furrow formation, membrane trafficking, and cytoskeletal network regulation through live-imaging of the syncytial embryo. We find that membrane trafficking is relatively unaffected by the defects in branched actin networks that occur after Sponge disruption, but that Sponge acts as a master regulator of a diverse cohort of Arp2/3 regulatory proteins. As DOCK family proteins have been implicated in regulating GTP exchange on small GTPases, we also suggest that Rac GTPase activity bridges Sponge regulation to the regulators of Arp2/3 function. Finally, we demonstrate the phasic requirements for branched F-actin and linear F-actin networks in potentiating furrow ingression. In total, these results provide quantitative insights into how a large DOCK scaffolding protein coordinates the activity of a variety of different actin regulatory proteins to direct the remodeling of the apical cortex into cytokinetic-like furrows.


Asunto(s)
Proteínas de Drosophila , Proteínas de Unión al GTP Monoméricas , Actinas/metabolismo , Animales , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Embrión no Mamífero/metabolismo , Guanosina Trifosfato/metabolismo
4.
Development ; 147(17)2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32878903

RESUMEN

Actomyosin networks are some of the most crucial force-generating components present in developing tissues. The contractile forces generated by these networks are harnessed during morphogenesis to drive various cell and tissue reshaping events. Recent studies of these processes have advanced rapidly, providing us with insights into how these networks are initiated, positioned and regulated, and how they act via individual contractile pulses and/or the formation of supracellular cables. Here, we review these studies and discuss the mechanisms that underlie the construction and turnover of such networks and structures. Furthermore, we provide an overview of how ratcheted processivity emerges from pulsed events, and how tissue-level mechanics are the coordinated output of many individual cellular behaviors.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Morfogénesis/fisiología , Animales , Epitelio/embriología , Humanos
5.
Semin Cell Dev Biol ; 100: 212-222, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31784092

RESUMEN

Developmental processes are driven by a combination of cytoplasmic, cortical, and surface-associated forces. However, teasing apart the contributions of these forces and how a viscoelastic cell responds has long been a key question in developmental biology. Recent advances in applying biophysical approaches to these questions is leading to a fundamentally new understanding of morphogenesis. In this review, we discuss how computational analysis of experimental findings and in silico modeling of Drosophila gastrulation processes has led to a deeper comprehension of the physical principles at work in the early embryo. We also summarize many of the emerging methodologies that permit biophysical analysis as well as those that provide direct and indirect measurements of force directions and magnitudes. Finally, we examine the multiple frameworks that have been used to model tissue and cellular behaviors.


Asunto(s)
Drosophila melanogaster/citología , Drosophila melanogaster/embriología , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Gastrulación , Modelos Biológicos , Animales , Drosophila melanogaster/metabolismo , Embrión de Mamíferos/metabolismo , Sustancias Viscoelásticas
6.
PLoS Genet ; 14(1): e1007174, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29337989

RESUMEN

Despite extensive work on the mechanisms that generate plasma membrane furrows, understanding how cells are able to dynamically regulate furrow dimensions is an unresolved question. Here, we present an in-depth characterization of furrow behaviors and their regulation in vivo during early Drosophila morphogenesis. We show that the deepening in furrow dimensions with successive nuclear cycles is largely due to the introduction of a new, rapid ingression phase (Ingression II). Blocking the midblastula transition (MBT) by suppressing zygotic transcription through pharmacological or genetic means causes the absence of Ingression II, and consequently reduces furrow dimensions. The analysis of compound chromosomes that produce chromosomal aneuploidies suggests that multiple loci on the X, II, and III chromosomes contribute to the production of differentially-dimensioned furrows, and we track the X-chromosomal contribution to furrow lengthening to the nullo gene product. We further show that checkpoint proteins are required for furrow lengthening; however, mitotic phases of the cell cycle are not strictly deterministic for furrow dimensions, as a decoupling of mitotic phases with periods of active ingression occurs as syncytial furrow cycles progress. Finally, we examined the turnover of maternal gene products and find that this is a minor contributor to the developmental regulation of furrow morphologies. Our results suggest that cellularization dynamics during cycle 14 are a continuation of dynamics established during the syncytial cycles and provide a more nuanced view of developmental- and MBT-driven morphogenesis.


Asunto(s)
Blástula/citología , Blástula/embriología , División Celular , Membrana Celular , Morfogénesis/genética , Cigoto/fisiología , Animales , Animales Modificados Genéticamente , División Celular/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Embrión no Mamífero , Desarrollo Embrionario/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica , Células Gigantes/citología , Células Gigantes/metabolismo , Células Gigantes/ultraestructura , Masculino , Cigoto/metabolismo
7.
Traffic ; 2018 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-29756260

RESUMEN

Our understanding of how membrane trafficking pathways function to direct morphogenetic movements and the planar polarization of developing tissues is a new and emerging field. While a central focus of developmental biology has been on how protein asymmetries and cytoskeletal force generation direct cell shaping, the role of membrane trafficking in these processes has been less clear. Here, we review recent advances in Drosophila and vertebrate systems in our understanding of how trafficking events are coordinated with planar cytoskeletal function to drive lasting changes in cell and tissue topologies. We additionally explore the function of trafficking pathways in guiding the complex interactions that initiate and maintain core PCP (planar cell polarity) asymmetries and drive the generation of systematically oriented cellular projections during development.

8.
Development ; 143(5): 892-903, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26839362

RESUMEN

One of the most fundamental changes in cell morphology is the ingression of a plasma membrane furrow. The Drosophila embryo undergoes several cycles of rapid furrow ingression during early development that culminate in the formation of an epithelial sheet. Previous studies have demonstrated the requirement for intracellular trafficking pathways in furrow ingression; however, the pathways that link compartmental behaviors with cortical furrow ingression events are unclear. Here, we show that Rab8 has striking dynamic behaviors in vivo. As furrows ingress, cytoplasmic Rab8 puncta are depleted and Rab8 accumulates at the plasma membrane in a location that coincides with known regions of directed membrane addition. We additionally use CRISPR/Cas9 technology to N-terminally tag Rab8, which is then used to address endogenous localization and function. Endogenous Rab8 displays partial coincidence with Rab11 and the Golgi, and this colocalization is enriched during the fast phase of cellularization. When Rab8 function is disrupted, furrow formation in the early embryo is completely abolished. We also demonstrate that Rab8 behaviors require the function of the exocyst complex subunit Sec5 as well as the recycling endosome protein Rab11. Active, GTP-locked Rab8 is primarily associated with dynamic membrane compartments and the plasma membrane, whereas GDP-locked Rab8 forms large cytoplasmic aggregates. These studies suggest a model in which active Rab8 populations direct furrow ingression by guiding the targeted delivery of cytoplasmic membrane stores to the cell surface through interactions with the exocyst tethering complex.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/fisiología , Epitelio/metabolismo , GTP Fosfohidrolasas/fisiología , Regulación del Desarrollo de la Expresión Génica , Actinas/metabolismo , Animales , Animales Modificados Genéticamente , Sistemas CRISPR-Cas , Membrana Celular/metabolismo , Cruzamientos Genéticos , Citoplasma/metabolismo , Embrión no Mamífero/metabolismo , Exocitosis , Femenino , GTP Fosfohidrolasas/metabolismo , Aparato de Golgi/metabolismo , Guanosina Trifosfato/química , Masculino , Proteínas de la Membrana/fisiología , Microscopía Confocal , Estructura Terciaria de Proteína , Proteínas de Unión al GTP rab/fisiología
9.
Development ; 142(13): 2316-28, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26092850

RESUMEN

Plasma membrane furrow formation is crucial in cell division and cytokinesis. Furrow formation in early syncytial Drosophila embryos is exceptionally rapid, with furrows forming in as little as 3.75 min. Here, we use 4D imaging to identify furrow formation, stabilization, and regression periods, and identify a rapid, membrane-dependent pathway that is essential for plasma membrane furrow formation in vivo. Myosin II function is thought to provide the ingression force for cytokinetic furrows, but the role of membrane trafficking pathways in guiding furrow formation is less clear. We demonstrate that a membrane trafficking pathway centered on Ras-like protein A (RalA) is required for fast furrow ingression in the early fly embryo. RalA function is absolutely required for furrow formation and initiation. In the absence of RalA and furrow function, chromosomal segregation is aberrant and polyploid nuclei are observed. RalA localizes to syncytial furrows, and mediates the movement of exocytic vesicles to the plasma membrane. Sec5, which is an exocyst complex subunit and localizes to ingressing furrows in wild-type embryos, becomes punctate and loses its cortical association in the absence of RalA function. Rab8 also fails to traffic to the plasma membrane and accumulates aberrantly in the cytoplasm in RalA disrupted embryos. RalA localization precedes F-actin recruitment to the furrow tip, suggesting that membrane trafficking might function upstream of cytoskeletal remodeling. These studies identify a pathway, which stretches from Rab8 to RalA and the exocyst complex, that mediates rapid furrow formation in early Drosophila embryos.


Asunto(s)
División Celular , Membrana Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/embriología , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Actinas/metabolismo , Animales , Núcleo Celular/metabolismo , Segregación Cromosómica , Drosophila melanogaster/metabolismo , Desarrollo Embrionario , GTP Fosfohidrolasas/metabolismo , Fusión de Membrana , Mitosis , Modelos Biológicos , Mutación/genética , Transporte de Proteínas , Factores de Tiempo
10.
PLoS Genet ; 11(11): e1005632, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26528720

RESUMEN

Mitotic and cytokinetic processes harness cell machinery to drive chromosomal segregation and the physical separation of dividing cells. Here, we investigate the functional requirements for exocyst complex function during cell division in vivo, and demonstrate a common mechanism that directs anaphase cell elongation and cleavage furrow progression during cell division. We show that onion rings (onr) and funnel cakes (fun) encode the Drosophila homologs of the Exo84 and Sec8 exocyst subunits, respectively. In onr and fun mutant cells, contractile ring proteins are recruited to the equatorial region of dividing spermatocytes. However, cytokinesis is disrupted early in furrow ingression, leading to cytokinesis failure. We use high temporal and spatial resolution confocal imaging with automated computational analysis to quantitatively compare wild-type versus onr and fun mutant cells. These results demonstrate that anaphase cell elongation is grossly disrupted in cells that are compromised in exocyst complex function. Additionally, we observe that the increase in cell surface area in wild type peaks a few minutes into cytokinesis, and that onr and fun mutant cells have a greatly reduced rate of surface area growth specifically during cell division. Analysis by transmission electron microscopy reveals a massive build-up of cytoplasmic astral membrane and loss of normal Golgi architecture in onr and fun spermatocytes, suggesting that exocyst complex is required for proper vesicular trafficking through these compartments. Moreover, recruitment of the small GTPase Rab11 and the PITP Giotto to the cleavage site depends on wild-type function of the exocyst subunits Exo84 and Sec8. Finally, we show that the exocyst subunit Sec5 coimmunoprecipitates with Rab11. Our results are consistent with the exocyst complex mediating an essential, coordinated increase in cell surface area that potentiates anaphase cell elongation and cleavage furrow ingression.


Asunto(s)
Anafase , Ciclo Celular , Drosophila/citología , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA