Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Brain ; 146(10): 4247-4261, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37082944

RESUMEN

Although the Na-K-Cl cotransporter (NKCC1) inhibitor bumetanide has prominent positive effects on the pathophysiology of many neurological disorders, the mechanism of action is obscure. Attention paid to elucidating the role of Nkcc1 has mainly been focused on neurons, but recent single cell mRNA sequencing analysis has demonstrated that the major cellular populations expressing NKCC1 in the cortex are non-neuronal. We used a combination of conditional transgenic animals, in vivo electrophysiology, two-photon imaging, cognitive behavioural tests and flow cytometry to investigate the role of Nkcc1 inhibition by bumetanide in a mouse model of controlled cortical impact (CCI). Here, we found that bumetanide rescues parvalbumin-positive interneurons by increasing interneuron-microglia contacts shortly after injury. The longitudinal phenotypic changes in microglia were significantly modified by bumetanide, including an increase in the expression of microglial-derived BDNF. These effects were accompanied by the prevention of CCI-induced decrease in hippocampal neurogenesis. Treatment with bumetanide during the first week post-CCI resulted in significant recovery of working and episodic memory as well as changes in theta band oscillations 1 month later. These results disclose a novel mechanism for the neuroprotective action of bumetanide mediated by an acceleration of microglial activation dynamics that leads to an increase in parvalbumin interneuron survival following CCI, possibly resulting from increased microglial BDNF expression and contact with interneurons. Salvage of interneurons may normalize ambient GABA, resulting in the preservation of adult neurogenesis processes as well as contributing to bumetanide-mediated improvement of cognitive performance.


Asunto(s)
Bumetanida , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico , Ratones , Animales , Bumetanida/farmacología , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/farmacología , Microglía/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Parvalbúminas/metabolismo , Parvalbúminas/farmacología , Miembro 2 de la Familia de Transportadores de Soluto 12 , Interneuronas/metabolismo , Neurogénesis
2.
Curr Biol ; 32(11): 2442-2453.e4, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35512696

RESUMEN

From swimming to walking and flying, animals have evolved specific locomotor strategies to thrive in different habitats. All types of locomotion depend on the integration of motor commands and sensory information to generate precisely coordinated movements. Cerebrospinal-fluid-contacting neurons (CSF-cN) constitute a vertebrate sensory system that monitors CSF composition and flow. In fish, CSF-cN modulate swimming activity in response to changes in pH and bending of the spinal cord; however, their role in mammals remains unknown. We used mouse genetics to study their function in quadrupedal locomotion. We found that CSF-cN are directly integrated into spinal motor circuits. The perturbation of CSF-cN function does not affect general motor activity nor the generation of locomotor rhythm and pattern but results in specific defects in skilled movements. These results identify a role for mouse CSF-cN in adaptive motor control and indicate that this sensory system evolved a novel function to accommodate the biomechanical requirements of limb-based locomotion.


Asunto(s)
Células Receptoras Sensoriales , Pez Cebra , Animales , Locomoción , Mamíferos , Ratones , Células Receptoras Sensoriales/fisiología , Médula Espinal/fisiología , Natación , Pez Cebra/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA