Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Mater Sci Mater Med ; 21(9): 2637-51, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20567886

RESUMEN

Microfibers produced with electrospinning have recently been used in tissue engineering. In the development of artificial implants for nerve regeneration they are of particular interest as guidance structures for cell migration and axonal growth. Using electrospinning we produced parallel-orientated biocompatible fibers in the submicron range consisting of poly(epsilon-caprolactone) (PCL) and star shaped NCO-poly(ethylene glycol)-stat-poly(propylene glycol) (sPEG). Addition of the bioactive peptide sequence glycine-arginine-glycine-aspartate-serine (GRGDS) or the extracellular matrix protein fibronectin to the electrospinning solution resulted in functionalized fibers. Surface characteristics and biological properties of functionalized and non-functionalised fibers were investigated. Polymer solutions and electrospinning process parameters were varied to obtain high quality orientated fibers. A polymer mixture containing high molecular weight PCL, PCL-diol, and sPEG permitted a chemical reaction between hydroxyl groups of the diol and isocyanante groups of the sPEG. Surface analysis demonstrated that sPEG at the fiber surface minimized protein adhesion. In vitro experiments using dorsal root ganglia explants showed that the cell repellent property of pure PCL/sPEG fibers was overcome by functionalization either with GRGDS peptide or fibronectin. In this way cell migration and axonal outgrowth along fibers were significantly increased. Thus, functionalized electrospun PCL/sPEG fibers, while preventing non-specific protein adsorption, are a suitable substrate for biological and medical applications.


Asunto(s)
Neuronas/citología , Poliésteres/química , Polietilenglicoles/química , Propilenglicol/química
2.
Tissue Eng Part A ; 17(3-4): 475-86, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20819000

RESUMEN

The best available treatment of peripheral nerve lesions involves transplantation of an autologous nerve. This approach, however, entails sensory deficits at the donor site and requires additional surgery. Such limitations have motivated the search for a bioengineering solution to design artificial implants. For this purpose we are producing orientated biodegradable microfibers of poly(ε-caprolactone) (PCL) with electrospinning. The present study describes the functionalization of these electrospun fibers with biologically active peptides to produce guidance structures for Schwann cell migration and axonal regeneration. For the chemical modification PCL was blended with star-shaped NCO-poly(ethylene glycol)-stat-poly(propylene glycol) (PCL/sPEG) as a covalent linker for the peptide GRGDS, derived from extracellular matrix proteins. To test biological functions of electrospun fibers, Schwann cell migration and axonal growth from dorsal root ganglia explants were investigated with time lapse video microscopy. Migrating Schwann cells as well as growing sensory axons closely followed the electrospun fibers with occasional leaps between adjacent fibers. Cell migration was characterized by frequent changes in velocity and direction reversals. Comparison of substrates showed that functionalized fibers caused more Schwann cells to move out of the explants, supported faster cell migration and axonal growth than the nonfunctional fibers. Using inhibitors of intracellular signaling kinases, we found that these biological effects required activation of the phosphatidyl inositol-3-kinase pathway. Since sPEG-containing fibers also showed low levels of nonspecific protein adsorption, which is desirable in the context of artificial implant design, the peptide modification of fibers appears to provide good substrates for nerve repair.


Asunto(s)
Axones/fisiología , Ganglios Espinales/fisiología , Regeneración Tisular Dirigida/instrumentación , Regeneración Nerviosa/fisiología , Oligopéptidos/química , Poliésteres/química , Células de Schwann/fisiología , Animales , Axones/ultraestructura , Materiales Biocompatibles/síntesis química , Células Cultivadas , Embrión de Pollo , Electroquímica/métodos , Ganglios Espinales/citología , Diseño de Prótesis , Rotación , Células de Schwann/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA