Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 380
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 83: 519-52, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24606147

RESUMEN

RecQ helicases are an important family of genome surveillance proteins conserved from bacteria to humans. Each of the five human RecQ helicases plays critical roles in genome maintenance and stability, and the RecQ protein family members are often referred to as guardians of the genome. The importance of these proteins in cellular homeostasis is underscored by the fact that defects in BLM, WRN, and RECQL4 are linked to distinct heritable human disease syndromes. Each human RecQ helicase has a unique set of protein-interacting partners, and these interactions dictate its specialized functions in genome maintenance, including DNA repair, recombination, replication, and transcription. Human RecQ helicases also interact with each other, and these interactions have significant impact on enzyme function. Future research goals in this field include a better understanding of the division of labor among the human RecQ helicases and learning how human RecQ helicases collaborate and cooperate to enhance genome stability.


Asunto(s)
Reparación del ADN , Replicación del ADN , RecQ Helicasas/fisiología , Recombinación Genética , ADN/química , Exodesoxirribonucleasas/química , Genoma Humano , Inestabilidad Genómica , Humanos , Modelos Moleculares , Conformación Molecular , Familia de Multigenes , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , RecQ Helicasas/química , Fase S , Helicasa del Síndrome de Werner
2.
Cell ; 157(4): 882-896, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24813611

RESUMEN

Mitochondrial dysfunction is a common feature in neurodegeneration and aging. We identify mitochondrial dysfunction in xeroderma pigmentosum group A (XPA), a nucleotide excision DNA repair disorder with severe neurodegeneration, in silico and in vivo. XPA-deficient cells show defective mitophagy with excessive cleavage of PINK1 and increased mitochondrial membrane potential. The mitochondrial abnormalities appear to be caused by decreased activation of the NAD(+)-SIRT1-PGC-1α axis triggered by hyperactivation of the DNA damage sensor PARP-1. This phenotype is rescued by PARP-1 inhibition or by supplementation with NAD(+) precursors that also rescue the lifespan defect in xpa-1 nematodes. Importantly, this pathogenesis appears common to ataxia-telangiectasia and Cockayne syndrome, two other DNA repair disorders with neurodegeneration, but absent in XPC, a DNA repair disorder without neurodegeneration. Our findings reveal a nuclear-mitochondrial crosstalk that is critical for the maintenance of mitochondrial health.


Asunto(s)
Mitofagia , Poli(ADP-Ribosa) Polimerasas/metabolismo , Sirtuina 1/metabolismo , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo , Xerodermia Pigmentosa/fisiopatología , Envejecimiento , Animales , Apoptosis , Autofagia , Caenorhabditis elegans , Línea Celular , Humanos , Canales Iónicos/metabolismo , Ratones , Proteínas Mitocondriales/metabolismo , Proteínas Quinasas/metabolismo , Ratas , Proteína Desacopladora 2 , Xerodermia Pigmentosa/metabolismo
3.
Nat Rev Mol Cell Biol ; 17(5): 308-21, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26956196

RESUMEN

Mitochondrial dysfunction is a hallmark of ageing, and mitochondrial maintenance may lead to increased healthspan. Emerging evidence suggests a crucial role for signalling from the nucleus to mitochondria (NM signalling) in regulating mitochondrial function and ageing. An important initiator of NM signalling is nuclear DNA damage, which accumulates with age and may contribute to the development of age-associated diseases. DNA damage-dependent NM signalling constitutes a network that includes nuclear sirtuins and controls genomic stability and mitochondrial integrity. Pharmacological modulation of NM signalling is a promising novel approach for the prevention and treatment of age-associated diseases.


Asunto(s)
Envejecimiento , Daño del ADN , Mitocondrias/fisiología , Animales , Apoptosis , Núcleo Celular/genética , Reparación del ADN , Inestabilidad Genómica , Humanos , Mitofagia , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
4.
EMBO J ; 40(6): e107165, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33619770

RESUMEN

Mitochondria contain an autonomous and spatially segregated genome. The organizational unit of their genome is the nucleoid, which consists of mitochondrial DNA (mtDNA) and associated architectural proteins. Here, we show that phase separation is the primary physical mechanism for assembly and size control of the mitochondrial nucleoid (mt-nucleoid). The major mtDNA-binding protein TFAM spontaneously phase separates in vitro via weak, multivalent interactions into droplets with slow internal dynamics. TFAM and mtDNA form heterogenous, viscoelastic structures in vitro, which recapitulate the dynamics and behavior of mt-nucleoids in vivo. Mt-nucleoids coalesce into larger droplets in response to various forms of cellular stress, as evidenced by the enlarged and transcriptionally active nucleoids in mitochondria from patients with the premature aging disorder Hutchinson-Gilford Progeria Syndrome (HGPS). Our results point to phase separation as an evolutionarily conserved mechanism of genome organization.


Asunto(s)
ADN Mitocondrial/genética , Genoma Mitocondrial/genética , Mitocondrias/genética , Progeria/patología , Línea Celular , Niño , Preescolar , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Humanos , Proteínas Mitocondriales/metabolismo , Progeria/genética , Factores de Transcripción/metabolismo
5.
Nucleic Acids Res ; 51(1): 337-348, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36583333

RESUMEN

The determination of the oligomeric state of functional enzymes is essential for the mechanistic understanding of their catalytic activities. RecQ helicases have diverse biochemical activities, but it is still unclear how their activities are related to their oligomeric states. We use single-molecule multi-color fluorescence imaging to determine the oligomeric states of Werner syndrome protein (WRN) during its unwinding and replication fork regression activities. We reveal that WRN binds to a forked DNA as a dimer, and unwinds it without any change of its oligomeric state. In contrast, WRN binds to a replication fork as a tetramer, and is dimerized during activation of replication fork regression. By selectively inhibiting the helicase activity of WRN on specific strands, we reveal how the active dimers of WRN distinctly use the energy of ATP hydrolysis for repetitive unwinding and replication fork regression.


Asunto(s)
Helicasa del Síndrome de Werner , Humanos , Replicación del ADN , Exodesoxirribonucleasas/metabolismo , RecQ Helicasas/metabolismo , Helicasa del Síndrome de Werner/metabolismo
6.
EMBO J ; 39(21): e103420, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32935380

RESUMEN

Short telomeres are a principal defining feature of telomere biology disorders, such as dyskeratosis congenita (DC), for which there are no effective treatments. Here, we report that primary fibroblasts from DC patients and late generation telomerase knockout mice display lower nicotinamide adenine dinucleotide (NAD) levels, and an imbalance in the NAD metabolome that includes elevated CD38 NADase and reduced poly(ADP-ribose) polymerase and SIRT1 activities, respectively, affecting many associated biological pathways. Supplementation with the NAD precursor, nicotinamide riboside, and CD38 inhibition improved NAD homeostasis, thereby alleviating telomere damage, defective mitochondrial biosynthesis and clearance, cell growth retardation, and cellular senescence of DC fibroblasts. These findings reveal a direct, underlying role of NAD dysregulation when telomeres are short and underscore its relevance to the pathophysiology and interventions of human telomere-driven diseases.


Asunto(s)
Disqueratosis Congénita/genética , Disqueratosis Congénita/metabolismo , Fibroblastos/metabolismo , NAD/metabolismo , Telomerasa/genética , Telómero/metabolismo , ADP-Ribosil Ciclasa 1/genética , Animales , Encéfalo/patología , Línea Celular , Senescencia Celular , Disqueratosis Congénita/patología , Femenino , Homeostasis , Humanos , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Niacinamida/análogos & derivados , Niacinamida/metabolismo , Fenotipo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Compuestos de Piridinio/metabolismo , Telomerasa/metabolismo
7.
Nucleic Acids Res ; 50(10): 5635-5651, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35580045

RESUMEN

Non-homologous end joining (NHEJ) is the major pathway that mediates the repair of DNA double-strand breaks (DSBs) generated by ionizing radiation (IR). Previously, the DNA helicase RECQL4 was implicated in promoting NHEJ, but its role in the pathway remains unresolved. In this study, we report that RECQL4 stabilizes the NHEJ machinery at DSBs to promote repair. Specifically, we find that RECQL4 interacts with the NHEJ core factor DNA-PKcs and the interaction is increased following IR. RECQL4 promotes DNA end bridging mediated by DNA-PKcs and Ku70/80 in vitro and the accumulation/retention of NHEJ factors at DSBs in vivo. Moreover, interaction between DNA-PKcs and the other core NHEJ proteins following IR treatment is attenuated in the absence of RECQL4. These data indicate that RECQL4 promotes the stabilization of the NHEJ factors at DSBs to support formation of the NHEJ long-range synaptic complex. In addition, we observed that the kinase activity of DNA-PKcs is required for accumulation of RECQL4 to DSBs and that DNA-PKcs phosphorylates RECQL4 at six serine/threonine residues. Blocking phosphorylation at these sites reduced the recruitment of RECQL4 to DSBs, attenuated the interaction between RECQL4 and NHEJ factors, destabilized interactions between the NHEJ machinery, and resulted in decreased NHEJ. Collectively, these data illustrate reciprocal regulation between RECQL4 and DNA-PKcs in NHEJ.


Asunto(s)
Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN , ADN/genética , ADN/metabolismo , Reparación del ADN por Unión de Extremidades , Reparación del ADN , Proteína Quinasa Activada por ADN/genética , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Fosforilación , RecQ Helicasas/genética , RecQ Helicasas/metabolismo
8.
Nucleic Acids Res ; 50(17): 9948-9965, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36099415

RESUMEN

Mutations in the lamin A/C gene (LMNA) cause laminopathies such as the premature aging Hutchinson Gilford progeria syndrome (HGPS) and altered lamin A/C levels are found in diverse malignancies. The underlying lamin-associated mechanisms remain poorly understood. Here we report that lamin A/C-null mouse embryo fibroblasts (Lmna-/- MEFs) and human progerin-expressing HGPS fibroblasts both display reduced NAD+ levels, unstable mitochondrial DNA and attenuated bioenergetics. This mitochondrial dysfunction is associated with reduced chromatin recruitment (Lmna-/- MEFs) or low levels (HGPS) of PGC1α, the key transcription factor for mitochondrial homeostasis. Lmna-/- MEFs showed reduced expression of the NAD+-biosynthesis enzyme NAMPT and attenuated activity of the NAD+-dependent deacetylase SIRT1. We find high PARylation in lamin A/C-aberrant cells, further decreasing the NAD+ pool and consistent with impaired DNA base excision repair in both cell models, a condition that fuels DNA damage-induced PARylation under oxidative stress. Further, ATAC-sequencing revealed a substantially altered chromatin landscape in Lmna-/- MEFs, including aberrantly reduced accessibility at the Nampt gene promoter. Thus, we identified a new role of lamin A/C as a key modulator of mitochondrial function through impairments of PGC1α and the NAMPT-NAD+ pathway, with broader implications for the aging process.


Asunto(s)
Lamina Tipo A/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Progeria , Animales , Cromatina/metabolismo , ADN Mitocondrial/metabolismo , Fibroblastos/metabolismo , Humanos , Lamina Tipo A/genética , Ratones , Mitocondrias/metabolismo , NAD/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Progeria/metabolismo , Sirtuina 1/genética
9.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34497121

RESUMEN

Alzheimer's disease (AD) is a progressive and fatal neurodegenerative disorder. Impaired neuronal bioenergetics and neuroinflammation are thought to play key roles in the progression of AD, but their interplay is not clear. Nicotinamide adenine dinucleotide (NAD+) is an important metabolite in all human cells in which it is pivotal for multiple processes including DNA repair and mitophagy, both of which are impaired in AD neurons. Here, we report that levels of NAD+ are reduced and markers of inflammation increased in the brains of APP/PS1 mutant transgenic mice with beta-amyloid pathology. Treatment of APP/PS1 mutant mice with the NAD+ precursor nicotinamide riboside (NR) for 5 mo increased brain NAD+ levels, reduced expression of proinflammatory cytokines, and decreased activation of microglia and astrocytes. NR treatment also reduced NLRP3 inflammasome expression, DNA damage, apoptosis, and cellular senescence in the AD mouse brains. Activation of cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) are associated with DNA damage and senescence. cGAS-STING elevation was observed in the AD mice and normalized by NR treatment. Cell culture experiments using microglia suggested that the beneficial effects of NR are, in part, through a cGAS-STING-dependent pathway. Levels of ectopic (cytoplasmic) DNA were increased in APP/PS1 mutant mice and human AD fibroblasts and down-regulated by NR. NR treatment induced mitophagy and improved cognitive and synaptic functions in APP/PS1 mutant mice. Our findings suggest a role for NAD+ depletion-mediated activation of cGAS-STING in neuroinflammation and cellular senescence in AD.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Senescencia Celular , Suplementos Dietéticos , Proteínas de la Membrana/metabolismo , NAD/administración & dosificación , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Nucleotidiltransferasas/metabolismo , Animales , Humanos , Proteínas de la Membrana/genética , Ratones , Ratones Transgénicos , Enfermedades Neuroinflamatorias/etiología , Enfermedades Neuroinflamatorias/patología , Niacinamida/administración & dosificación , Niacinamida/análogos & derivados , Nucleotidiltransferasas/genética , Compuestos de Piridinio/administración & dosificación
10.
Alzheimers Dement ; 20(6): 4212-4233, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38753870

RESUMEN

BACKGROUND: Compromised autophagy, including impaired mitophagy and lysosomal function, plays pivotal roles in Alzheimer's disease (AD). Urolithin A (UA) is a gut microbial metabolite of ellagic acid that stimulates mitophagy. The effects of UA's long-term treatment of AD and mechanisms of action are unknown. METHODS: We addressed these questions in three mouse models of AD with behavioral, electrophysiological, biochemical, and bioinformatic approaches. RESULTS: Long-term UA treatment significantly improved learning, memory, and olfactory function in different AD transgenic mice. UA also reduced amyloid beta (Aß) and tau pathologies and enhanced long-term potentiation. UA induced mitophagy via increasing lysosomal functions. UA improved cellular lysosomal function and normalized lysosomal cathepsins, primarily cathepsin Z, to restore lysosomal function in AD, indicating the critical role of cathepsins in UA-induced therapeutic effects on AD. CONCLUSIONS: Our study highlights the importance of lysosomal dysfunction in AD etiology and points to the high translational potential of UA. HIGHLIGHTS: Long-term urolithin A (UA) treatment improved learning, memory, and olfactory function in Alzheimer's disease (AD) mice. UA restored lysosomal functions in part by regulating cathepsin Z (Ctsz) protein. UA modulates immune responses and AD-specific pathophysiological pathways.


Asunto(s)
Enfermedad de Alzheimer , Cumarinas , Modelos Animales de Enfermedad , Lisosomas , Ratones Transgénicos , Mitofagia , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Cumarinas/farmacología , Cumarinas/uso terapéutico , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Ratones , Mitofagia/efectos de los fármacos , Péptidos beta-Amiloides/metabolismo , Cognición/efectos de los fármacos
11.
Neurobiol Dis ; 180: 106092, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36948261

RESUMEN

RecQ helicase family proteins play vital roles in maintaining genome stability, including DNA replication, recombination, and DNA repair. In human cells, there are five RecQ helicases: RECQL1, Bloom syndrome (BLM), Werner syndrome (WRN), RECQL4, and RECQL5. Dysfunction or absence of RecQ proteins is associated with genetic disorders, tumorigenesis, premature aging, and neurodegeneration. The biochemical and biological roles of RecQ helicases are rather well established, however, there is no systematic study comparing the behavioral changes among various RecQ-deficient mice including consequences of exposure to DNA damage. Here, we investigated the effects of ionizing irradiation (IR) on three RecQ-deficient mouse models (RecQ1, WRN and RecQ4). We find abnormal cognitive behavior in RecQ-deficient mice in the absence of IR. Interestingly, RecQ dysfunction impairs social ability and induces depressive-like behavior in mice after a single exposure to IR, suggesting that RecQ proteins play roles in mood and cognition behavior. Further, transcriptomic and metabolomic analyses revealed significant alterations in RecQ-deficient mice, especially after IR exposure. In particular, pathways related to neuronal and microglial functions, DNA damage repair, cell cycle, and reactive oxygen responses were downregulated in the RecQ4 and WRN mice. In addition, increased DNA damage responses were found in RecQ-deficient mice. Notably, two genes, Aldolase Fructose-Bisphosphate B (Aldob) and NADPH Oxidase 4 (Nox4), were differentially expressed in RecQ-deficient mice. Our findings suggest that RecQ dysfunction contributes to social and depressive-like behaviors in mice, and that aldolase activity may be associated with these changes, representing a potential therapeutic target.


Asunto(s)
Replicación del ADN , RecQ Helicasas , Animales , Humanos , Ratones , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Reparación del ADN , Daño del ADN , Inestabilidad Genómica , Aldehído-Liasas/genética , Aldehído-Liasas/metabolismo
12.
Nucleic Acids Res ; 49(11): 6331-6346, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34096589

RESUMEN

Cockayne syndrome (CS) is an autosomal recessive genetic disorder characterized by photosensitivity, developmental defects, neurological abnormalities, and premature aging. Mutations in CSA (ERCC8), CSB (ERCC6), XPB, XPD, XPG, XPF (ERCC4) and ERCC1 can give rise to clinical phenotypes resembling classic CS. Using a yeast two-hybrid (Y2H) screening approach, we identified LEO1 (Phe381-Ser568 region) as an interacting protein partner of full-length and C-terminal (Pro1010-Cys1493) CSB in two independent screens. LEO1 is a member of the RNA polymerase associated factor 1 complex (PAF1C) with roles in transcription elongation and chromatin modification. Supportive of the Y2H results, purified, recombinant LEO1 and CSB directly interact in vitro, and the two proteins exist in a common complex within human cells. In addition, fluorescently tagged LEO1 and CSB are both recruited to localized DNA damage sites in human cells. Cell fractionation experiments revealed a transcription-dependent, coordinated association of LEO1 and CSB to chromatin following either UVC irradiation or cisplatin treatment of HEK293T cells, whereas the response to menadione was distinct, suggesting that this collaboration occurs mainly in the context of bulky transcription-blocking lesions. Consistent with a coordinated interaction in DNA repair, LEO1 knockdown or knockout resulted in reduced CSB recruitment to chromatin, increased sensitivity to UVC light and cisplatin damage, and reduced RNA synthesis recovery and slower excision of cyclobutane pyrimidine dimers following UVC irradiation; the absence of CSB resulted in diminished LEO1 recruitment. Our data indicate a reciprocal communication between CSB and LEO1 in the context of transcription-associated DNA repair and RNA transcription recovery.


Asunto(s)
ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Factores de Transcripción/metabolismo , Cromatina/metabolismo , Aductos de ADN , Daño del ADN , Células HEK293 , Células HeLa , Humanos , Mutágenos/toxicidad , ARN/biosíntesis , Factores de Transcripción/química , Transcripción Genética
13.
Nucleic Acids Res ; 49(5): 2418-2434, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33590097

RESUMEN

Cockayne syndrome (CS) is a segmental premature aging syndrome caused primarily by defects in the CSA or CSB genes. In addition to premature aging, CS patients typically exhibit microcephaly, progressive mental and sensorial retardation and cutaneous photosensitivity. Defects in the CSB gene were initially thought to primarily impair transcription-coupled nucleotide excision repair (TC-NER), predicting a relatively consistent phenotype among CS patients. In contrast, the phenotypes of CS patients are pleiotropic and variable. The latter is consistent with recent work that implicates CSB in multiple cellular systems and pathways, including DNA base excision repair, interstrand cross-link repair, transcription, chromatin remodeling, RNAPII processing, nucleolin regulation, rDNA transcription, redox homeostasis, and mitochondrial function. The discovery of additional functions for CSB could potentially explain the many clinical phenotypes of CSB patients. This review focuses on the diverse roles played by CSB in cellular pathways that enhance genome stability, providing insight into the molecular features of this complex premature aging disease.


Asunto(s)
ADN Helicasas/fisiología , Enzimas Reparadoras del ADN/fisiología , Proteínas de Unión a Poli-ADP-Ribosa/fisiología , Ensamble y Desensamble de Cromatina , Roturas del ADN de Doble Cadena , ADN Helicasas/química , Reparación del ADN , Enzimas Reparadoras del ADN/química , ADN Ribosómico/biosíntesis , Regulación de la Expresión Génica , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/química , ARN Polimerasa II/metabolismo , Transcripción Genética
14.
Expert Rev Mol Med ; 25: e2, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36377361

RESUMEN

Ageing is known to be the primary risk factor for most neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and Huntington's disease. They are currently incurable and worsen over time, which has broad implications in the context of lifespan and healthspan extension. Adding years to life and even to physical health is suboptimal or even insufficient, if cognitive ageing is not adequately improved. In this review, we will examine how interventions that have the potential to extend lifespan in animals affect the brain, and if they would be able to thwart or delay the development of cognitive dysfunction and/or neurodegeneration. These interventions range from lifestyle (caloric restriction, physical exercise and environmental enrichment) through pharmacological (nicotinamide adenine dinucleotide precursors, resveratrol, rapamycin, metformin, spermidine and senolytics) to epigenetic reprogramming. We argue that while many of these interventions have clear potential to improve cognitive health and resilience, large-scale and long-term randomised controlled trials are needed, along with studies utilising washout periods to determine the effects of supplementation cessation, particularly in aged individuals.


Asunto(s)
Longevidad , Metformina , Animales , Envejecimiento , Metformina/farmacología , Restricción Calórica , Cognición
15.
Nucleic Acids Res ; 48(12): 6530-6546, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32432680

RESUMEN

OGG1 initiated base excision repair (BER) is the major pathway for repair of oxidative DNA base damage 8-oxoguanine (8-oxoG). Here, we report that RECQL4 DNA helicase, deficient in the cancer-prone and premature aging Rothmund-Thomson syndrome, physically and functionally interacts with OGG1. RECQL4 promotes catalytic activity of OGG1 and RECQL4 deficiency results in defective 8-oxoG repair and increased genomic 8-oxoG. Furthermore, we show that acute oxidative stress leads to increased RECQL4 acetylation and its interaction with OGG1. The NAD+-dependent protein SIRT1 deacetylates RECQL4 in vitro and in cells thereby controlling the interaction between OGG1 and RECQL4 after DNA repair and maintaining RECQL4 in a low acetylated state. Collectively, we find that RECQL4 is involved in 8-oxoG repair through interaction with OGG1, and that SIRT1 indirectly modulates BER of 8-oxoG by controlling RECQL4-OGG1 interaction.


Asunto(s)
ADN Glicosilasas/metabolismo , Reparación del ADN , RecQ Helicasas/metabolismo , Sirtuina 1/metabolismo , Acetilación , Línea Celular Tumoral , Guanosina/análogos & derivados , Guanosina/genética , Células HEK293 , Humanos , Estrés Oxidativo , Unión Proteica
16.
Nucleic Acids Res ; 48(12): 6611-6623, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32453416

RESUMEN

Mitochondria are vital for cellular energy supply and intracellular signaling after stress. Here, we aimed to investigate how mitochondria respond to acute DNA damage with respect to mitophagy, which is an important mitochondrial quality control process. Our results show that mitophagy increases after DNA damage in primary fibroblasts, murine neurons and Caenorhabditis elegans neurons. Our results indicate that modulation of mitophagy after DNA damage is independent of the type of DNA damage stimuli used and that the protein Spata18 is an important player in this process. Knockdown of Spata18 suppresses mitophagy, disturbs mitochondrial Ca2+ homeostasis, affects ATP production, and attenuates DNA repair. Importantly, mitophagy after DNA damage is a vital cellular response to maintain mitochondrial functions and DNA repair.


Asunto(s)
Calcio/metabolismo , Proteínas Mitocondriales/genética , Mitofagia/genética , Neuronas/metabolismo , Animales , Caenorhabditis elegans/genética , Línea Celular , Proliferación Celular/genética , Daño del ADN/genética , Reparación del ADN/genética , Fibroblastos/metabolismo , Humanos , Ratones , Mitocondrias/genética
17.
Nucleic Acids Res ; 48(5): 2473-2485, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-31970402

RESUMEN

Cockayne Syndrome (CS) is a rare neurodegenerative disease characterized by short stature, accelerated aging and short lifespan. Mutations in two human genes, ERCC8/CSA and ERCC6/CSB, are causative for CS and their protein products, CSA and CSB, while structurally unrelated, play roles in DNA repair and other aspects of DNA metabolism in human cells. Many clinical and molecular features of CS remain poorly understood, and it was observed that CSA and CSB regulate transcription of ribosomal DNA (rDNA) genes and ribosome biogenesis. Here, we investigate the dysregulation of rRNA synthesis in CS. We report that Nucleolin (Ncl), a nucleolar protein that regulates rRNA synthesis and ribosome biogenesis, interacts with CSA and CSB. In addition, CSA induces ubiquitination of Ncl, enhances binding of CSB to Ncl, and CSA and CSB both stimulate the binding of Ncl to rDNA and subsequent rRNA synthesis. CSB and CSA also increase RNA Polymerase I loading to the coding region of the rDNA and this is Ncl dependent. These findings suggest that CSA and CSB are positive regulators of rRNA synthesis via Ncl regulation. Most CS patients carry mutations in CSA and CSB and present with similar clinical features, thus our findings provide novel insights into disease mechanism.


Asunto(s)
Síndrome de Cockayne/genética , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Regulación de la Expresión Génica , Fosfoproteínas/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Ribosómico/genética , Proteínas de Unión al ARN/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Línea Celular , ADN Ribosómico/genética , Humanos , Modelos Biológicos , Fosfoproteínas/metabolismo , Unión Proteica , Proteínas de Unión al ARN/metabolismo , Nucleolina
18.
Mutagenesis ; 36(3): 223-236, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-33740813

RESUMEN

Previous studies have indicated important roles for NIMA-related kinase 1 (NEK1) in modulating DNA damage checkpoints and DNA repair capacity. To broadly assess the contributions of NEK1 to genotoxic stress and mitochondrial functions, we characterised several relevant phenotypes of NEK1 CRISPR knockout (KO) and wild-type (WT) HAP1 cells. Our studies revealed that NEK1 KO cells resulted in increased apoptosis and hypersensitivity to the alkylator methyl methanesulfonate, the radiomimetic bleomycin and UVC light, yet increased resistance to the crosslinker cisplatin. Mitochondrial functionalities were also altered in NEK1 KO cells, with phenotypes of reduced mitophagy, increased total mitochondria, elevated levels of reactive oxygen species, impaired complex I activity and higher amounts of mitochondrial DNA damage. RNA-seq transcriptome analysis coupled with quantitative real-time PCR studies comparing NEK1 KO cells with NEK1 overexpressing cells revealed that the expression of genes involved in DNA repair pathways, such as base excision repair, nucleotide excision repair and double-strand break repair, are altered in a way that might influence genotoxin resistance. Together, our studies underline and further support that NEK1 serves as a hub signalling kinase in response to DNA damage, modulating DNA repair capacity, mitochondrial activity and cell fate determination.


Asunto(s)
Reparación del ADN , Mitocondrias/fisiología , Quinasa 1 Relacionada con NIMA/fisiología , Transcriptoma , Línea Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Técnicas de Inactivación de Genes , Humanos , Quinasa 1 Relacionada con NIMA/deficiencia , RNA-Seq
19.
Nucleic Acids Res ; 47(8): 4086-4110, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30986824

RESUMEN

Ataxia with oculomotor apraxia type 1 (AOA1) is an early onset progressive spinocerebellar ataxia caused by mutation in aprataxin (APTX). APTX removes 5'-AMP groups from DNA, a product of abortive ligation during DNA repair and replication. APTX deficiency has been suggested to compromise mitochondrial function; however, a detailed characterization of mitochondrial homeostasis in APTX-deficient cells is not available. Here, we show that cells lacking APTX undergo mitochondrial stress and display significant changes in the expression of the mitochondrial inner membrane fusion protein optic atrophy type 1, and components of the oxidative phosphorylation complexes. At the cellular level, APTX deficiency impairs mitochondrial morphology and network formation, and autophagic removal of damaged mitochondria by mitophagy. Thus, our results show that aberrant mitochondrial function is a key component of AOA1 pathology. This work corroborates the emerging evidence that impaired mitochondrial function is a characteristic of an increasing number of genetically diverse neurodegenerative disorders.


Asunto(s)
Proteínas de Unión al ADN/genética , GTP Fosfohidrolasas/genética , Mitocondrias/genética , Mitofagia/genética , Proteínas Nucleares/genética , Ataxias Espinocerebelosas/congénito , Línea Celular Transformada , Línea Celular Tumoral , Proteínas de Unión al ADN/deficiencia , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , GTP Fosfohidrolasas/deficiencia , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Homeostasis/genética , Humanos , Linfocitos/metabolismo , Linfocitos/patología , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Proteínas Nucleares/deficiencia , Análisis de Secuencia por Matrices de Oligonucleótidos , Osteoblastos/metabolismo , Osteoblastos/patología , Fosforilación Oxidativa , Transducción de Señal , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/metabolismo , Ataxias Espinocerebelosas/patología
20.
Nucleic Acids Res ; 47(16): 8548-8562, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31276581

RESUMEN

Cockayne syndrome is an accelerated aging disorder, caused by mutations in the CSA or CSB genes. In CSB-deficient cells, poly (ADP ribose) polymerase (PARP) is persistently activated by unrepaired DNA damage and consumes and depletes cellular nicotinamide adenine dinucleotide, which leads to mitochondrial dysfunction. Here, the distribution of poly (ADP ribose) (PAR) was determined in CSB-deficient cells using ADPr-ChAP (ADP ribose-chromatin affinity purification), and the results show striking enrichment of PAR at transcription start sites, depletion of heterochromatin and downregulation of H3K9me3-specific methyltransferases SUV39H1 and SETDB1. Induced-expression of SETDB1 in CSB-deficient cells downregulated PAR and normalized mitochondrial function. The results suggest that defects in CSB are strongly associated with loss of heterochromatin, downregulation of SETDB1, increased PAR in highly-transcribed regions, and mitochondrial dysfunction.


Asunto(s)
Senescencia Celular/genética , Síndrome de Cockayne/genética , ADN Helicasas/genética , Enzimas Reparadoras del ADN/genética , Histonas/genética , Mitocondrias/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteína Metiltransferasas/genética , Factores de Transcripción/genética , Línea Celular Transformada , Cromatina/química , Cromatina/metabolismo , Síndrome de Cockayne/metabolismo , Síndrome de Cockayne/patología , ADN/genética , ADN/metabolismo , Daño del ADN , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Regulación de la Expresión Génica , N-Metiltransferasa de Histona-Lisina , Histonas/metabolismo , Humanos , Metiltransferasas/genética , Metiltransferasas/metabolismo , Mitocondrias/patología , Mutación , NAD/metabolismo , Poli Adenosina Difosfato Ribosa/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteína Metiltransferasas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Sitio de Iniciación de la Transcripción , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA