Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(1): 144-165, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36546765

RESUMEN

The emergence of drug-resistant Mycobacterium tuberculosis strains highlights the need to discover anti-tuberculosis drugs with novel mechanisms of action. Here we discovered a mycobactericidal strategy based on the prodrug activation of selected chemical derivatives classified as nitronaphthofurans (nNFs) mediated by the coordinated action of the sigH and mrx2 genes. The transcription factor SigH is a key regulator of an extensive transcriptional network that responds to oxidative, nitrosative, and heat stresses in M. tuberculosis. The nNF action induced the SigH stress response which in turn induced the mrx2 overexpression. The nitroreductase Mrx2 was found to activate nNF prodrugs, killing replicating, non-replicating and intracellular forms of M. tuberculosis. Analysis of SigH DNA sequences obtained from spontaneous nNF-resistant M. tuberculosis mutants suggests disruption of SigH binding to the mrx2 promoter site and/or RNA polymerase core, likely promoting the observed loss of transcriptional control over Mrx2. Mutations found in mrx2 lead to structural defects in the thioredoxin fold of the Mrx2 protein, significantly impairing the activity of the Mrx2 enzyme against nNFs. Altogether, our work brings out the SigH/Mrx2 stress response pathway as a promising target for future drug discovery programs.


Asunto(s)
Antibacterianos , Mycobacterium tuberculosis , Profármacos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Respuesta al Choque Térmico/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Profármacos/farmacología , Regiones Promotoras Genéticas , Transcripción Genética , Antibacterianos/farmacología
2.
Cell Immunol ; 395-396: 104797, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38157646

RESUMEN

Vγ9Vδ2 T lymphocytes are programmed for broad antimicrobial responses with rapid production of Th1 cytokines even before birth, and thus thought to play key roles against pathogens in infants. The process regulating Vδ2 cell acquisition of cytotoxic potential shortly after birth remains understudied. We observed that perforin production in cord blood Vδ2 cells correlates with phenotypes defined by the concomitant assessment of PD-1 and CD56. Bulk RNA sequencing of sorted Vδ2 cell fractions indicated that transcripts related to cytotoxic activity and NK function are enriched in the subset with the highest proportion of perforin+ cells. Among differentially expressed transcripts, IRF8, previously linked to CD8 T cell effector differentiation and NK maturation, has the potential to mediate Vδ2 cell differentiation towards cytotoxic effectors. Our current and past results support the hypothesis that distinct mechanisms regulate Vδ2 cell cytotoxic function before and after birth, possibly linked to different levels of microbial exposure.


Asunto(s)
Antígeno CD56 , Linfocitos T CD8-positivos , Citotoxicidad Inmunológica , Receptor de Muerte Celular Programada 1 , Receptores de Antígenos de Linfocitos T gamma-delta , Subgrupos de Linfocitos T , Humanos , Linfocitos T CD8-positivos/inmunología , Citocinas/metabolismo , Sangre Fetal , Perforina/genética , Perforina/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Subgrupos de Linfocitos T/inmunología , Antígeno CD56/metabolismo
3.
BMC Microbiol ; 22(1): 85, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365094

RESUMEN

BACKGROUND: Aminoacyl-phosphatidylglycerol (aaPG) synthases are bacterial enzymes that usually catalyze transfer of aminoacyl residues to the plasma membrane phospholipid phosphatidylglycerol (PG). The result is introduction of positive charges onto the cytoplasmic membrane, yielding reduced affinity towards cationic antimicrobial peptides, and increased resistance to acidic environments. Therefore, these enzymes represent an important defense mechanism for many pathogens, including Staphylococcus aureus and Mycobacterium tuberculosis (Mtb), which are known to encode for lysyl-(Lys)-PG synthase MprF and LysX, respectively. Here, we used a combination of bioinformatic, genetic and bacteriological methods to characterize a protein encoded by the Mtb genome, Rv1619, carrying a domain with high similarity to MprF-like domains, suggesting that this protein could be a new aaPG synthase family member. However, unlike homologous domains of MprF and LysX that are positioned in the cytoplasm, we predicted that the MprF-like domain in LysX2 is in the extracytoplasmic region. RESULTS: Using genetic fusions to the Escherichia coli proteins PhoA and LacZ of LysX2, we confirmed this unique membrane topology, as well as LysX and MprF as benchmarks. Expression of lysX2 in Mycobacterium smegmatis increased cell resistance to human ß-defensin 2 and sodium nitrite, enhanced cell viability and delayed biofilm formation in acidic pH environment. Remarkably, MtLysX2 significantly reduced the negative charge on the bacterial surface upon exposure to an acidic environment. Additionally, we found LysX2 orthologues in major human pathogens and in rapid-growing mycobacteria frequently associated with human infections, but not in environmental and non-pathogenic mycobacteria. CONCLUSIONS: Overall, our data suggest that LysX2 is a prototype of a new class within the MprF-like protein family that likely enhances survival of the pathogenic species through its catalytic domain which is exposed to the extracytoplasmic side of the cell membrane and is required to decrease the negative charge on the bacterial surface through a yet uncharacterized mechanism.


Asunto(s)
Aminoaciltransferasas , Mycobacterium tuberculosis , Aminoaciltransferasas/química , Aminoaciltransferasas/genética , Aminoaciltransferasas/metabolismo , Antibacterianos , Péptidos Catiónicos Antimicrobianos , Proteínas Bacterianas/metabolismo , Humanos , Lisina/química , Lisina/genética , Lisina/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo
4.
J Bacteriol ; 203(7)2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33468587

RESUMEN

Mycobacterium tuberculosis comprises an unusual cell envelope dominated by unique lipids and glycans that provides a permeability barrier against hydrophilic drugs and is central for its survival and virulence. Phosphatidyl-myo-inositol mannosides (PIMs) are glycolipids considered to be not only key structural components of the cell envelope but also the precursors of lipomannan (LM) and lipoarabinomannan (LAM), important lipoglycans implicated in host-pathogen interactions. Here, we focus on PatA, a membrane-associated acyltransferase that transfers a palmitoyl moiety from palmitoyl coenzyme A (palmitoyl-CoA) to the 6-position of the mannose ring linked to the 2-position of inositol in PIM1/PIM2 We validate that the function of PatA is vital for M. tuberculosisin vitro and in vivo We constructed a patA conditional mutant and showed that silencing patA is bactericidal in batch cultures. This phenotype was associated with significantly reduced levels of Ac1PIM2, an important structural component of the mycobacterial inner membrane. The requirement of PatA for viability was also demonstrated during macrophage infection and in a mouse model of infection, where a dramatic decrease in viable counts was observed upon silencing of the patA gene. This is reminiscent of the behavior of PimA, the mannosyltransferase that initiates the PIM pathway, also found to be essential for M. tuberculosis growth in vitro and in vivo Altogether, the experimental data highlight the significance of the early steps of the PIM biosynthetic pathway for M. tuberculosis physiology and reveal that PatA is a novel target for drug discovery programs against this major human pathogen.IMPORTANCE Tuberculosis (TB) is the leading cause of death from a single infectious agent. The emergence of drug resistance in strains of M. tuberculosis, the etiologic agent of TB, emphasizes the need to identify new targets and antimicrobial agents. The mycobacterial cell envelope is a major factor in this intrinsic drug resistance. Here, we have focused on the biosynthesis of PIMs, key virulence factors and important components of the cell envelope. Specifically, we have determined that PatA, the acyltransferase responsible for the first acylation step of the PIM synthesis pathway, is essential in M. tuberculosis These results highlight the importance of early steps of the PIM biosynthetic pathway for mycobacterial physiology and the suitability of PatA as a potential new drug target.


Asunto(s)
Aciltransferasas/metabolismo , Proteínas Bacterianas/metabolismo , Mycobacterium tuberculosis/enzimología , Fosfatidilinositoles/metabolismo , Tuberculosis/microbiología , Aciltransferasas/química , Aciltransferasas/genética , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Femenino , Humanos , Macrófagos/microbiología , Manosiltransferasas/genética , Manosiltransferasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/metabolismo , Fosfatidilinositoles/química
5.
Cell Immunol ; 359: 104244, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33248366

RESUMEN

Human Vγ9Vδ2 T cells respond to several diverse pathogens by sensing microbial cholesterol intermediates. Unlike CD4 T cells, they are poised for rapid Th1-like responses even before birth, which allows them to play a key role in the first line of defense against pathogens in early life. However, their regulation and functional maturation during infancy (in particular the acquisition of cytotoxic potential) remain understudied. We thus characterized their responses to cholesterol intermediates and Bacille Calmette-Guérin in a cohort of African neonates and 12-month-old infants. Infant Vδ2 lymphocytes exhibited intermediate or adult-like expression of markers associated with differentiation or function, intermediate proliferative responses, and adult-like cytotoxic potential. The enhancement of Vδ2 cell cytotoxic potential coincided with decreasing PD-1 and increasing NKG2A expression. Our results are consistent with the hypothesis that switching from a PD-1+ to a NKG2A+ phenotype during infancy indicates a shift in mechanisms regulating Vδ2 T cell function.


Asunto(s)
Sangre Fetal/citología , Receptor de Muerte Celular Programada 1/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Adulto , Factores de Edad , Diferenciación Celular/fisiología , Células Cultivadas , Cordocentesis , Femenino , Expresión Génica/genética , Humanos , Lactante , Recién Nacido , Interferón gamma/metabolismo , Activación de Linfocitos/inmunología , Malaui/epidemiología , Masculino , Subfamília C de Receptores Similares a Lectina de Células NK/inmunología , Subfamília C de Receptores Similares a Lectina de Células NK/metabolismo , Receptor de Muerte Celular Programada 1/genética , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Linfocitos T/inmunología
6.
Infect Immun ; 88(1)2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31591165

RESUMEN

Despite the great increase in the understanding of the biology and pathogenesis of Mycobacterium tuberculosis achieved by the scientific community in recent decades, tuberculosis (TB) still represents one of the major threats to global human health. The only available vaccine (Mycobacterium bovis BCG) protects children from disseminated forms of TB but does not effectively protect adults from the respiratory form of the disease, making the development of new and more-efficacious vaccines against the pulmonary forms of TB a major goal for the improvement of global health. Among the different strategies being developed to reach this goal is the construction of attenuated strains more efficacious and safer than BCG. We recently showed that a sigE mutant of M. tuberculosis was more attenuated and more efficacious than BCG in a mouse model of infection. In this paper, we describe the construction and characterization of an M. tuberculosissigE fadD26 unmarked double mutant fulfilling the criteria of the Geneva Consensus for entering human clinical trials. The data presented suggest that this mutant is even more attenuated and slightly more efficacious than the previous sigE mutant in different mouse models of infection and is equivalent to BCG in a guinea pig model of infection.


Asunto(s)
Ligasas/deficiencia , Mycobacterium tuberculosis/inmunología , Factor sigma/deficiencia , Vacunas contra la Tuberculosis/inmunología , Tuberculosis Pulmonar/prevención & control , Animales , Proteínas Bacterianas , Modelos Animales de Enfermedad , Cobayas , Ratones , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Vacunas contra la Tuberculosis/efectos adversos , Vacunas contra la Tuberculosis/genética , Vacunas Atenuadas/efectos adversos , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Virulencia
7.
PLoS Pathog ; 13(5): e1006399, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28545104

RESUMEN

Sensing and response to changes in nutrient availability are essential for the lifestyle of environmental and pathogenic bacteria. Serine/threonine protein kinase G (PknG) is required for virulence of the human pathogen Mycobacterium tuberculosis, and its putative substrate GarA regulates the tricarboxylic acid cycle in M. tuberculosis and other Actinobacteria by protein-protein binding. We sought to understand the stimuli that lead to phosphorylation of GarA, and the roles of this regulatory system in pathogenic and non-pathogenic bacteria. We discovered that M. tuberculosis lacking garA was severely attenuated in mice and macrophages and furthermore that GarA lacking phosphorylation sites failed to restore the growth of garA deficient M. tuberculosis in macrophages. Additionally we examined the impact of genetic disruption of pknG or garA upon protein phosphorylation, nutrient utilization and the intracellular metabolome. We found that phosphorylation of GarA requires PknG and depends on nutrient availability, with glutamate and aspartate being the main stimuli. Disruption of pknG or garA caused opposing effects on metabolism: a defect in glutamate catabolism or depletion of intracellular glutamate, respectively. Strikingly, disruption of the phosphorylation sites of GarA was sufficient to recapitulate defects caused by pknG deletion. The results suggest that GarA is a cellular target of PknG and the metabolomics data demonstrate that the function of this signaling system is in metabolic regulation. This function in amino acid homeostasis is conserved amongst the Actinobacteria and provides an example of the close relationship between metabolism and virulence.


Asunto(s)
Aminoácidos/metabolismo , Proteínas Bacterianas/metabolismo , Metabolómica , Mycobacterium tuberculosis , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Ácido Aspártico/metabolismo , Proteínas Bacterianas/genética , Ácido Glutámico/metabolismo , Homeostasis , Macrófagos/microbiología , Ratones , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidad , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Tuberculosis/microbiología , Virulencia
8.
J Biol Chem ; 292(32): 13097-13110, 2017 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-28620052

RESUMEN

The Mycobacterium tuberculosis rv2466c gene encodes an oxidoreductase enzyme annotated as DsbA. It has a CPWC active-site motif embedded within its thioredoxin fold domain and mediates the activation of the prodrug TP053, a thienopyrimidine derivative that kills both replicating and nonreplicating bacilli. However, its mode of action and actual enzymatic function in M. tuberculosis have remained enigmatic. In this study, we report that Rv2466c is essential for bacterial survival under H2O2 stress. Further, we discovered that Rv2466c lacks oxidase activity; rather, it receives electrons through the mycothiol/mycothione reductase/NADPH pathway to activate TP053, preferentially via a dithiol-disulfide mechanism. We also found that Rv2466c uses a monothiol-disulfide exchange mechanism to reduce S-mycothiolated mixed disulfides and intramolecular disulfides. Genetic, phylogenetic, bioinformatics, structural, and biochemical analyses revealed that Rv2466c is a novel mycothiol-dependent reductase, which represents a mycoredoxin cluster of enzymes within the DsbA family different from the glutaredoxin cluster to which mycoredoxin-1 (Mrx1 or Rv3198A) belongs. To validate this DsbA-mycoredoxin cluster, we also characterized a homologous enzyme of Corynebacterium glutamicum (NCgl2339) and observed that it demycothiolates and reduces a mycothiol arsenate adduct with kinetic properties different from those of Mrx1. In conclusion, our work has uncovered a DsbA-like mycoredoxin that promotes mycobacterial resistance to oxidative stress and reacts with free mycothiol and mycothiolated targets. The characterization of the DsbA-like mycoredoxin cluster reported here now paves the way for correctly classifying similar enzymes from other organisms.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Modelos Moleculares , Mycobacterium tuberculosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Profármacos/farmacología , Proteína Disulfuro Isomerasas/metabolismo , Pirimidinas/farmacología , Activación Metabólica , Antibacterianos/química , Antibacterianos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , Cisteína/metabolismo , Pruebas Antimicrobianas de Difusión por Disco , Drogas en Investigación/química , Drogas en Investigación/metabolismo , Drogas en Investigación/farmacología , Eliminación de Gen , Conformación Molecular , Simulación del Acoplamiento Molecular , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/crecimiento & desarrollo , Oxidación-Reducción , Filogenia , Profármacos/química , Profármacos/metabolismo , Conformación Proteica , Proteína Disulfuro Isomerasas/química , Proteína Disulfuro Isomerasas/genética , Pirimidinas/química , Pirimidinas/metabolismo , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
9.
Artículo en Inglés | MEDLINE | ID: mdl-28993339

RESUMEN

The emergence and spread of drug-resistant Mycobacterium tuberculosis strains possibly threaten our ability to treat this disease in the future. Even though two new antitubercular drugs have recently been introduced, there is still the need to design new molecules whose mechanisms of action could reduce the length of treatment. We show that two alternative sigma factors of M. tuberculosis (SigE and SigB) have a major role in determining the level of basal resistance to several drugs and the amount of persisters surviving long-duration drug treatment. We also demonstrate that ethambutol, a bacteriostatic drug, is highly bactericidal for M. tuberculosis mutants missing either SigE or SigB. We suggest that molecules able to interfere with the activity of SigE or SigB not only could reduce M. tuberculosis virulence in vivo but also could boost the effect of other drugs by increasing the sensitivity of the organism and reducing the number of persisters able to escape killing.


Asunto(s)
Antituberculosos/farmacología , Proteínas Bacterianas/genética , Tolerancia a Medicamentos/genética , Etambutol/farmacología , Regulación Bacteriana de la Expresión Génica , Mycobacterium tuberculosis/efectos de los fármacos , Factor sigma/genética , Gentamicinas/farmacología , Isoniazida/farmacología , Pruebas de Sensibilidad Microbiana , Mutación , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/metabolismo , Rifampin/farmacología , Factor sigma/deficiencia , Estreptomicina/farmacología , Vancomicina/farmacología
10.
Mol Microbiol ; 92(1): 194-211, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24517327

RESUMEN

In Mycobacterium tuberculosis the decaprenyl-phospho-d-arabinofuranose (DPA) pathway is a validated target for the drugs ethambutol and benzothiazinones. To identify other potential drug targets in the pathway, we generated conditional knock-down mutants of each gene involved using the TET-PIP OFF system. dprE1, dprE2, ubiA, prsA, rv2361c, tkt and rpiB were confirmed to be essential under non-permissive conditions, whereas rv3807c was not required for survival. In the most vulnerable group, DprE1-depleted cells died faster in vitro and intracellularly than those lacking UbiA and PrsA. Downregulation of DprE1 and UbiA resulted in similar phenotypes, namely swelling of the bacteria, cell wall damage and lysis as observed at the single cell level, by real time microscopy and electron microscopy. By contrast, depletion of PrsA led to cell elongation and implosion, which was suggestive of a more pleiotropic effect. Drug sensitivity assays with known DPA-inhibitors supported the use of conditional knock-down strains for target-based whole-cell screens. Together, our work provides strong evidence for the vulnerability of all but one of the enzymes in the DPA pathway and generates valuable tools for the identification of lead compounds targeting the different biosynthetic steps. PrsA, phosphoribosyl-pyrophosphate synthetase, appears to be a particularly attractive new target for drug discovery.


Asunto(s)
Arabinosa/análogos & derivados , Genes Bacterianos , Mycobacterium tuberculosis/crecimiento & desarrollo , Transducción de Señal , Antibacterianos/farmacología , Arabinosa/antagonistas & inhibidores , Arabinosa/biosíntesis , Proteínas Bacterianas , Línea Celular Tumoral , Pared Celular/ultraestructura , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Genes Bacterianos/efectos de los fármacos , Genes Esenciales/efectos de los fármacos , Humanos , Lipoproteínas , Macrófagos/microbiología , Proteínas de la Membrana , Microscopía , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/ultraestructura , Transducción de Señal/efectos de los fármacos
11.
Bioorg Med Chem Lett ; 25(16): 3234-45, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26087937

RESUMEN

Whole cell based screens to identify hits against Mycobacterium tuberculosis (Mtb), carried out under replicating and non-replicating (NRP) conditions, resulted in the identification of multiple, novel but structurally related spiropiperidines with potent antitubercular properties. These compounds could be further classified into three classes namely 3-(3-aryl-1,2,4-oxadiazol-5-yl)-1'-alkylspiro[indene-1,4'-piperidine] (abbr. spiroindenes), 4-(3-aryl-1,2,4-oxadiazol-5-yl)-1'-alkylspiro[chromene-2,4'-piperidine] (abbr. spirochromenes) and 1'-benzylspiro[indole-1,4'-piperidin]-2(1H)-one (abbr. spiroindolones). Spiroindenes showed ⩾ 4 log10 kill (at 2-12 µM) on replicating Mtb, but were moderately active under non replicating conditions. Whole genome sequencing efforts of spiroindene resistant mutants resulted in the identification of I292L mutation in MmpL3 (Mycobacterial membrane protein Large), required for the assembly of mycolic acid into the cell wall core of Mtb. MIC modulation studies demonstrated that the mutants were cross-resistant to spirochromenes but not to spiroindolones. This Letter describes lead identification efforts to improve potency while reducing the lipophilicity and hERG liabilities of spiroindenes. Additionally, as deduced from the SAR studies, we provide insights regarding the new chemical opportunities that the spiroindolones can offer to the TB drug discovery initiatives.


Asunto(s)
Antituberculosos/farmacología , Piperidinas/farmacología , Compuestos de Espiro/farmacología , Animales , Antituberculosos/síntesis química , Antituberculosos/farmacocinética , Bacterias/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Genoma Bacteriano , Ensayos Analíticos de Alto Rendimiento , Hipoxia , Lípidos/química , Metaloproteinasa 13 de la Matriz/biosíntesis , Metaloproteinasa 13 de la Matriz/genética , Ratones , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Piperidinas/síntesis química , Piperidinas/farmacocinética , Compuestos de Espiro/síntesis química , Compuestos de Espiro/farmacocinética , Relación Estructura-Actividad
12.
J Bacteriol ; 196(19): 3441-51, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25049093

RESUMEN

The cell envelope of Mycobacterium tuberculosis contains glycans and lipids of peculiar structure that play prominent roles in the biology and pathogenesis of tuberculosis. Consequently, the chemical structure and biosynthesis of the cell wall have been intensively investigated in order to identify novel drug targets. Here, we validate that the function of phosphatidyl-myo-inositol mannosyltransferase PimA is vital for M. tuberculosis in vitro and in vivo. PimA initiates the biosynthesis of phosphatidyl-myo-inositol mannosides by transferring a mannosyl residue from GDP-Man to phosphatidyl-myo-inositol on the cytoplasmic side of the plasma membrane. To prove the essential nature of pimA in M. tuberculosis, we constructed a pimA conditional mutant by using the TetR-Pip off system and showed that downregulation of PimA expression causes bactericidality in batch cultures. Consistent with the biochemical reaction catalyzed by PimA, this phenotype was associated with markedly reduced levels of phosphatidyl-myo-inositol dimannosides, essential structural components of the mycobacterial cell envelope. In addition, the requirement of PimA for viability was clearly demonstrated during macrophage infection and in two different mouse models of infection, where a dramatic decrease in viable counts was observed upon silencing of the gene. Notably, depletion of PimA resulted in complete clearance of the mouse lungs during both the acute and chronic phases of infection. Altogether, the experimental data highlight the importance of the phosphatidyl-myo-inositol mannoside biosynthetic pathway for M. tuberculosis and confirm that PimA is a novel target for future drug discovery programs.


Asunto(s)
Proteínas Bacterianas/metabolismo , Manosiltransferasas/metabolismo , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/crecimiento & desarrollo , Tuberculosis/microbiología , Animales , Proteínas Bacterianas/genética , Femenino , Humanos , Macrófagos/metabolismo , Macrófagos/microbiología , Manosiltransferasas/genética , Ratones , Ratones Endogámicos C57BL , Mycobacterium tuberculosis/genética , Fosfatidilinositoles/biosíntesis
13.
Mol Microbiol ; 90(2): 356-66, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23962235

RESUMEN

Alpha-ketoglutarate is a key metabolic intermediate at the crossroads of carbon and nitrogen metabolism, whose fate is tightly regulated. In mycobacteria the protein GarA regulates the tricarboxylic acid cycle and glutamate synthesis by direct binding and regulation of three enzymes that use α-ketoglutarate. GarA, in turn, is thought to be regulated via phosphorylation by protein kinase G and other kinases. We have investigated the requirement for GarA for metabolic regulation during growth in vitro and in macrophages. GarA was found to be essential to Mycobacterium tuberculosis, but dispensable in non-pathogenic Mycobacterium smegmatis. Disruption of garA caused a distinctive, nutrient-dependent phenotype, fitting with its proposed role in regulating glutamate metabolism. The data underline the importance of the TCA cycle and the balance with glutamate synthesis in M. tuberculosis and reveal vulnerability to disruption of these pathways.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Genes Bacterianos , Ácidos Cetoglutáricos/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Línea Celular Tumoral , Ciclo del Ácido Cítrico , Regulación Bacteriana de la Expresión Génica , Ácido Glutámico/metabolismo , Humanos , Macrófagos/microbiología , Mutagénesis Sitio-Dirigida , Mycobacterium smegmatis/metabolismo , Fenotipo , Fosforilación , Proteínas Recombinantes/metabolismo
14.
Front Microbiol ; 15: 1407500, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38873166

RESUMEN

SigE is one of the main regulators of mycobacterial stress response and is characterized by a complex regulatory network based on two pathways, which have been partially characterized in conditions of surface stress. The first pathway is based on the induction of sigE transcription by the two-component system MprAB, while the second is based on the degradation of SigE anti-sigma factor RseA by ClpC1P2, a protease whose structural genes are induced by ClgR. We characterized the dynamics of the SigE network activation in conditions of surface stress and low pH in Mycobacterium tuberculosis. Using a series of mutants in which the main regulatory nodes of the network have been inactivated, we could explore their hierarchy, and we determined that MprAB had a key role in the network activation in both stress conditions through the induction of sigE. However, while in conditions of surface stress the absence of MprAB totally abrogated sigE induction, under low pH conditions it only resulted in a small delay of the induction of sigE. In this case, sigE induction was due to SigH, which acted as a MprAB backup system. The ClgR pathway, leading to the degradation of the SigE anti-sigma factor RseA, was shown to be essential for the activation of the SigE network only following surface stress, where it showed an equal hierarchy with the MprAB pathway.

15.
Front Microbiol ; 14: 1075143, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36960291

RESUMEN

The Extracellular function (ECF) sigma factor SigE is one of the best characterized out of the 13 sigma factors encoded in the Mycobacterium tuberculosis chromosome. SigE is required for blocking phagosome maturation and full virulence in both mice and guinea pigs. Moreover, it is involved in the response to several environmental stresses as surface stress, oxidative stress, acidic pH, and phosphate starvation. Underscoring its importance in M. tuberculosis physiology, SigE is subjected to a very complex regulatory system: depending on the environmental conditions, its expression is regulated by three different sigma factors (SigA, SigE, and SigH) and a two-component system (MprAB). SigE is also regulated at the post-translational level by an anti-sigma factor (RseA) which is regulated by the intracellular redox potential and by proteolysis following phosphorylation from PknB upon surface stress. The set of genes under its direct control includes other regulators, as SigB, ClgR, and MprAB, and genes involved in surface remodeling and stabilization. Recently SigE has been shown to interact with PhoP to activate a subset of genes in conditions of acidic pH. The complex structure of its regulatory network has been suggested to result in a bistable switch leading to the development of heterogeneous bacterial populations. This hypothesis has been recently reinforced by the finding of its involvement in the development of persister cells able to survive to the killing activity of several drugs.

16.
Microbiol Spectr ; : e0294422, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36946740

RESUMEN

Bacteria respond to nutrient starvation implementing the stringent response, a stress signaling system resulting in metabolic remodeling leading to decreased growth rate and energy requirements. A well-characterized model of stringent response in Mycobacterium tuberculosis is the one induced by growth in low phosphate. The extracytoplasmic function (ECF) sigma factor SigE was previously suggested as having a key role in the activation of stringent response. In this study, we challenge this hypothesis by analyzing the temporal dynamics of the transcriptional response of a sigE mutant and its wild-type parental strain to low phosphate using RNA sequencing. We found that both strains responded to low phosphate with a typical stringent response trait, including the downregulation of genes encoding ribosomal proteins and RNA polymerase. We also observed transcriptional changes that support the occurring of an energetics imbalance, compensated by a reduced activity of the electron transport chain, decreased export of protons, and a remodeling of central metabolism. The most striking difference between the two strains was the induction in the sigE mutant of several stress-related genes, in particular, the genes encoding the ECF sigma factor SigH and the transcriptional regulator WhiB6. Since both proteins respond to redox unbalances, their induction suggests that the sigE mutant is not able to maintain redox homeostasis in response to the energetics imbalance induced by low phosphate. In conclusion, our data suggest that SigE is not directly involved in initiating stringent response but in protecting the cell from stress consequent to the low phosphate exposure and activation of stringent response. IMPORTANCE Mycobacterium tuberculosis can enter a dormant state enabling it to establish latent infections and to become tolerant to antibacterial drugs. Dormant bacteria's physiology and the mechanism(s) used by bacteria to enter dormancy during infection are still unknown due to the lack of reliable animal models. However, several in vitro models, mimicking conditions encountered during infection, can reproduce different aspects of dormancy (growth arrest, metabolic slowdown, drug tolerance). The stringent response, a stress response program enabling bacteria to cope with nutrient starvation, is one of them. In this study, we provide evidence suggesting that the sigma factor SigE is not directly involved in the activation of stringent response as previously hypothesized, but it is important to help the bacteria to handle the metabolic stress related to the adaptation to low phosphate and activation of stringent response, thus giving an important contribution to our understanding of the mechanism behind stringent response development.

17.
Nucleic Acids Res ; 38(12): e134, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20406773

RESUMEN

Tightly regulated gene expression systems represent invaluable tools for studying gene function and for the validation of drug targets in bacteria. While several regulated bacterial promoters have been characterized, few of them have been successfully used in mycobacteria. In this article we describe the development of a novel repressible promoter system effective in both fast- and slow-growing mycobacteria based on two chromosomally encoded repressors, dependent on tetracycline (TetR) and pristinamycin (Pip), respectively. This uniqueness results in high versatility and stringency. Using this method we were able to obtain an ftsZ conditional mutant in Mycobacterium smegmatis and a fadD32 conditional mutant in Mycobacterium tuberculosis, confirming their essentiality for bacterial growth in vitro. This repressible promoter system could also be exploited to regulate gene expression during M. tuberculosis intracellular growth.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo , Proteínas Bacterianas/genética , Proteínas del Citoesqueleto/genética , Mutación , Operón , Pristinamicina/farmacología , Tetraciclinas/farmacología
18.
Methods Mol Biol ; 2377: 317-332, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34709624

RESUMEN

Inducible gene expression systems represent powerful tools for studying essential gene function and for validation of drug targets in bacteria. Even if several regulated promoters have been characterized, only a few of them have been successfully used in Mycobacteria. Here we describe a successful mycobacterial gene regulation system based on the presence of two chromosomally encoded repressors: Pip and TetR, and a tunable promoter (Pptr) that allows a tight regulation of gene expression.


Asunto(s)
Genes Esenciales , Mycobacterium , Mycobacterium/genética , Regiones Promotoras Genéticas , Factores de Transcripción
19.
Appl Environ Microbiol ; 76(15): 5312-6, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20543044

RESUMEN

Genetic manipulation of mycobacteria still represents a serious challenge due to the lack of tools and selection markers. In this report, we describe the development of an intrinsically unstable excisable cassette for introduction of unmarked mutations in both Mycobacterium smegmatis and Mycobacterium tuberculosis.


Asunto(s)
Genética Microbiana/métodos , Mutagénesis Insercional/métodos , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Recombinación Genética , Eliminación de Secuencia
20.
Front Microbiol ; 11: 1924, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32983003

RESUMEN

The treatment of tuberculosis is extremely long. One of the reasons why Mycobacterium tuberculosis elimination from the organism takes so long is that in particular environmental conditions it can become tolerant to drugs and/or develop persisters able to survive killing even from very high drug concentrations. Tolerance develops in response to a harsh environment exposure encountered by bacteria during infection, mainly due to the action of the immune system, whereas persistence results from the presence of heterogeneous bacterial populations with different degrees of drug sensitivity, and can be induced by exposure to stress conditions. Here, we review the actual knowledge on the stress response mechanisms enacted by M. tuberculosis during infection, which leads to increased drug tolerance or development of a highly drug-resistant subpopulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA