Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 48(D1): D689-D695, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31598706

RESUMEN

Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of interfaces to genomic data across the tree of life, including reference genome sequence, gene models, transcriptional data, genetic variation and comparative analysis. Data may be accessed via our website, online tools platform and programmatic interfaces, with updates made four times per year (in synchrony with Ensembl). Here, we provide an overview of Ensembl Genomes, with a focus on recent developments. These include the continued growth, more robust and reproducible sets of orthologues and paralogues, and enriched views of gene expression and gene function in plants. Finally, we report on our continued deeper integration with the Ensembl project, which forms a key part of our future strategy for dealing with the increasing quantity of available genome-scale data across the tree of life.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Variación Genética , Genoma Bacteriano , Genoma Fúngico , Genoma de Planta , Algoritmos , Animales , Caenorhabditis elegans/genética , Genómica , Internet , Anotación de Secuencia Molecular , Fenotipo , Plantas/genética , Valores de Referencia , Programas Informáticos , Interfaz Usuario-Computador
2.
Hum Genet ; 139(5): 557-568, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32076829

RESUMEN

We provide a Kazakh whole genome sequence (MJS) and analyses with the largest comparative Kazakh genomic data available to date. We found 102,240 novel SNVs and a high level of heterozygosity. ADMIXTURE analysis confirmed a significant proportion of variations in this individual coming from all continents except Africa and Oceania. A principal component analysis showed neighboring Kalmyk, Uzbek, and Kyrgyz populations to have the strongest resemblance to the MJS genome which reflects fairly recent Kazakh history. MJS's mitochondrial haplogroup, J1c2, probably represents an early European and Near Eastern influence to Central Asia. This was also supported by the heterozygous SNPs associated with European phenotypic features and strikingly similar Kazakh ancestral composition inferred by ADMIXTURE. Admixture (f3) analysis showed that MJS's genomic signature is best described as a cross between the Neolithic East Asian (Devil's Gate1) and the Bronze Age European (Halberstadt_LBA1) components rather than a contemporary admixture.


Asunto(s)
Etnicidad/genética , Genética de Población , Genoma Humano , Polimorfismo de Nucleótido Simple , Población Blanca/genética , China , ADN Mitocondrial , Femenino , Humanos , Kazajstán , Análisis de Componente Principal
3.
Genome Res ; 27(5): 885-896, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28420692

RESUMEN

Advances in genome sequencing and assembly technologies are generating many high-quality genome sequences, but assemblies of large, repeat-rich polyploid genomes, such as that of bread wheat, remain fragmented and incomplete. We have generated a new wheat whole-genome shotgun sequence assembly using a combination of optimized data types and an assembly algorithm designed to deal with large and complex genomes. The new assembly represents >78% of the genome with a scaffold N50 of 88.8 kb that has a high fidelity to the input data. Our new annotation combines strand-specific Illumina RNA-seq and Pacific Biosciences (PacBio) full-length cDNAs to identify 104,091 high-confidence protein-coding genes and 10,156 noncoding RNA genes. We confirmed three known and identified one novel genome rearrangements. Our approach enables the rapid and scalable assembly of wheat genomes, the identification of structural variants, and the definition of complete gene models, all powerful resources for trait analysis and breeding of this key global crop.


Asunto(s)
Mapeo Contig/métodos , Genoma de Planta , Anotación de Secuencia Molecular/métodos , Proteínas de Plantas/genética , Translocación Genética , Triticum/genética , Algoritmos , Mapeo Contig/normas , Anotación de Secuencia Molecular/normas , Polimorfismo Genético , Poliploidía
4.
BMC Cancer ; 20(1): 694, 2020 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-32718341

RESUMEN

BACKGROUND: Early diagnosis and continuous monitoring are necessary for an efficient management of cervical cancers (CC). Liquid biopsy, such as detecting circulating tumor DNA (ctDNA) from blood, is a simple, non-invasive method for testing and monitoring cancer markers. However, tumor-specific alterations in ctDNA have not been extensively investigated or compared to other circulating biomarkers in the diagnosis and monitoring of the CC. Therfore, Next-generation sequencing (NGS) analysis with blood samples can be a new approach for highly accurate diagnosis and monitoring of the CC. METHOD: Using a bioinformatics approach, we designed a panel of 24 genes associated with CC to detect and characterize patterns of somatic single-nucleotide variations, indels, and copy number variations. Our NGS CC panel covers most of the genes in The Cancer Genome Atlas (TCGA) as well as additional cancer driver and tumor suppressor genes. We profiled the variants in ctDNA from 24 CC patients who were being treated with systemic chemotherapy and local radiotherapy at the Jeonbuk National University Hospital, Korea. RESULT: Eighteen out of 24 genes in our NGS CC panel had mutations across the 24 CC patients, including somatic alterations of mutated genes (ZFHX3-83%, KMT2C-79%, KMT2D-79%, NSD1-67%, ATM-38% and RNF213-27%). We demonstrated that the RNF213 mutation could be used potentially used as a monitoring marker for response to chemo- and radiotherapy. CONCLUSION: We developed our NGS CC panel and demostrated that our NGS panel can be useful for the diagnosis and monitoring of the CC, since the panel detected the common somatic variations in CC patients and we observed how these genetic variations change according to the treatment pattern of the patient.


Asunto(s)
ADN Tumoral Circulante/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación , Neoplasias del Cuello Uterino/genética , Adenocarcinoma/sangre , Adenocarcinoma/genética , Adenocarcinoma/patología , Adenocarcinoma/terapia , Adenosina Trifosfatasas/genética , Anciano , Carcinoma de Células Escamosas/sangre , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/terapia , ADN Tumoral Circulante/sangre , Fosfatidilinositol 3-Quinasa Clase I/genética , Proteínas de Unión al ADN/genética , Femenino , Marcadores Genéticos , Proteínas de Homeodominio/genética , Humanos , Persona de Mediana Edad , Proteínas de Neoplasias/genética , Estudios Prospectivos , Proteínas Proto-Oncogénicas p21(ras)/genética , Sensibilidad y Especificidad , Ubiquitina-Proteína Ligasas/genética , Neoplasias del Cuello Uterino/sangre , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/terapia
5.
Nucleic Acids Res ; 46(D1): D802-D808, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29092050

RESUMEN

Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of programmatic and interactive interfaces to a rich range of data including genome sequence, gene models, transcript sequence, genetic variation, and comparative analysis. This paper provides an update to the previous publications about the resource, with a focus on recent developments and expansions. These include the incorporation of almost 20 000 additional genome sequences and over 35 000 tracks of RNA-Seq data, which have been aligned to genomic sequence and made available for visualization. Other advances since 2015 include the release of the database in Resource Description Framework (RDF) format, a large increase in community-derived curation, a new high-performance protein sequence search, additional cross-references, improved annotation of non-protein-coding genes, and the launch of pre-release and archival sites. Collectively, these changes are part of a continuing response to the increasing quantity of publicly-available genome-scale data, and the consequent need to archive, integrate, annotate and disseminate these using automated, scalable methods.


Asunto(s)
Archaea/genética , Bacterias/genética , Bases de Datos Genéticas , Bases de Datos de Proteínas , Eucariontes/genética , Genómica , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Minería de Datos , Predicción , Genoma , Anotación de Secuencia Molecular , ARN/genética , Interfaz Usuario-Computador
6.
Nature ; 491(7426): 705-10, 2012 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-23192148

RESUMEN

Bread wheat (Triticum aestivum) is a globally important crop, accounting for 20 per cent of the calories consumed by humans. Major efforts are underway worldwide to increase wheat production by extending genetic diversity and analysing key traits, and genomic resources can accelerate progress. But so far the very large size and polyploid complexity of the bread wheat genome have been substantial barriers to genome analysis. Here we report the sequencing of its large, 17-gigabase-pair, hexaploid genome using 454 pyrosequencing, and comparison of this with the sequences of diploid ancestral and progenitor genomes. We identified between 94,000 and 96,000 genes, and assigned two-thirds to the three component genomes (A, B and D) of hexaploid wheat. High-resolution synteny maps identified many small disruptions to conserved gene order. We show that the hexaploid genome is highly dynamic, with significant loss of gene family members on polyploidization and domestication, and an abundance of gene fragments. Several classes of genes involved in energy harvesting, metabolism and growth are among expanded gene families that could be associated with crop productivity. Our analyses, coupled with the identification of extensive genetic variation, provide a resource for accelerating gene discovery and improving this major crop.


Asunto(s)
Pan , Genoma de Planta/genética , Triticum/genética , Brachypodium/genética , Cromosomas de las Plantas/genética , Productos Agrícolas/genética , ADN Complementario/genética , ADN de Plantas/genética , Evolución Molecular , Genes de Plantas/genética , Genómica , Familia de Multigenes/genética , Oryza/genética , Polimorfismo de Nucleótido Simple/genética , Poliploidía , Seudogenes/genética , Alineación de Secuencia , Análisis de Secuencia de ADN , Triticum/clasificación , Zea mays/genética
7.
Nucleic Acids Res ; 44(D1): D38-47, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26538599

RESUMEN

Life sciences are yielding huge data sets that underpin scientific discoveries fundamental to improvement in human health, agriculture and the environment. In support of these discoveries, a plethora of databases and tools are deployed, in technically complex and diverse implementations, across a spectrum of scientific disciplines. The corpus of documentation of these resources is fragmented across the Web, with much redundancy, and has lacked a common standard of information. The outcome is that scientists must often struggle to find, understand, compare and use the best resources for the task at hand.Here we present a community-driven curation effort, supported by ELIXIR-the European infrastructure for biological information-that aspires to a comprehensive and consistent registry of information about bioinformatics resources. The sustainable upkeep of this Tools and Data Services Registry is assured by a curation effort driven by and tailored to local needs, and shared amongst a network of engaged partners.As of November 2015, the registry includes 1785 resources, with depositions from 126 individual registrations including 52 institutional providers and 74 individuals. With community support, the registry can become a standard for dissemination of information about bioinformatics resources: we welcome everyone to join us in this common endeavour. The registry is freely available at https://bio.tools.


Asunto(s)
Biología Computacional , Sistema de Registros , Curaduría de Datos , Programas Informáticos
8.
Nucleic Acids Res ; 42(Database issue): D1193-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24217918

RESUMEN

Gramene (http://www.gramene.org) is a curated online resource for comparative functional genomics in crops and model plant species, currently hosting 27 fully and 10 partially sequenced reference genomes in its build number 38. Its strength derives from the application of a phylogenetic framework for genome comparison and the use of ontologies to integrate structural and functional annotation data. Whole-genome alignments complemented by phylogenetic gene family trees help infer syntenic and orthologous relationships. Genetic variation data, sequences and genome mappings available for 10 species, including Arabidopsis, rice and maize, help infer putative variant effects on genes and transcripts. The pathways section also hosts 10 species-specific metabolic pathways databases developed in-house or by our collaborators using Pathway Tools software, which facilitates searches for pathway, reaction and metabolite annotations, and allows analyses of user-defined expression datasets. Recently, we released a Plant Reactome portal featuring 133 curated rice pathways. This portal will be expanded for Arabidopsis, maize and other plant species. We continue to provide genetic and QTL maps and marker datasets developed by crop researchers. The project provides a unique community platform to support scientific research in plant genomics including studies in evolution, genetics, plant breeding, molecular biology, biochemistry and systems biology.


Asunto(s)
Bases de Datos Genéticas , Genoma de Planta , Genómica , Productos Agrícolas/genética , Variación Genética , Internet , Redes y Vías Metabólicas/genética , Anotación de Secuencia Molecular , Plantas/genética , Plantas/metabolismo
9.
Plant Cell Physiol ; 56(1): e3, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25432969

RESUMEN

Recent developments in DNA sequencing have enabled the large and complex genomes of many crop species to be determined for the first time, even those previously intractable due to their polyploid nature. Indeed, over the course of the last 2 years, the genome sequences of several commercially important cereals, notably barley and bread wheat, have become available, as well as those of related wild species. While still incomplete, comparison with other, more completely assembled species suggests that coverage of genic regions is likely to be high. Ensembl Plants (http://plants.ensembl.org) is an integrative resource organizing, analyzing and visualizing genome-scale information for important crop and model plants. Available data include reference genome sequence, variant loci, gene models and functional annotation. For variant loci, individual and population genotypes, linkage information and, where available, phenotypic information are shown. Comparative analyses are performed on DNA and protein sequence alignments. The resulting genome alignments and gene trees, representing the implied evolutionary history of the gene family, are made available for visualization and analysis. Driven by the case of bread wheat, specific extensions to the analysis pipelines and web interface have recently been developed to support polyploid genomes. Data in Ensembl Plants is accessible through a genome browser incorporating various specialist interfaces for different data types, and through a variety of additional methods for programmatic access and data mining. These interfaces are consistent with those offered through the Ensembl interface for the genomes of non-plant species, including those of plant pathogens, pests and pollinators, facilitating the study of the plant in its environment.


Asunto(s)
Genoma de Planta/genética , Genómica , Hordeum/genética , Transcriptoma , Triticum/genética , Grano Comestible/genética , Variación Genética , Genotipo , Almacenamiento y Recuperación de la Información , Internet , Interfaz Usuario-Computador
10.
Brief Bioinform ; 14(5): 548-55, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23793381

RESUMEN

Next-generation sequencing (NGS) is increasingly being adopted as the backbone of biomedical research. With the commercialization of various affordable desktop sequencers, NGS will be reached by increasing numbers of cellular and molecular biologists, necessitating community consensus on bioinformatics protocols to tackle the exponential increase in quantity of sequence data. The current resources for NGS informatics are extremely fragmented. Finding a centralized synthesis is difficult. A multitude of tools exist for NGS data analysis; however, none of these satisfies all possible uses and needs. This gap in functionality could be filled by integrating different methods in customized pipelines, an approach helped by the open-source nature of many NGS programmes. Drawing from community spirit and with the use of the Wikipedia framework, we have initiated a collaborative NGS resource: The NGS WikiBook. We have collected a sufficient amount of text to incentivize a broader community to contribute to it. Users can search, browse, edit and create new content, so as to facilitate self-learning and feedback to the community. The overall structure and style for this dynamic material is designed for the bench biologists and non-bioinformaticians. The flexibility of online material allows the readers to ignore details in a first read, yet have immediate access to the information they need. Each chapter comes with practical exercises so readers may familiarize themselves with each step. The NGS WikiBook aims to create a collective laboratory book and protocol that explains the key concepts and describes best practices in this fast-evolving field.


Asunto(s)
Biología Computacional/educación , Instrucción por Computador/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/estadística & datos numéricos , Conducta Cooperativa , Internet , Enseñanza
11.
Bioinformatics ; 29(10): 1325-32, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23479348

RESUMEN

MOTIVATION: Advancing the search, publication and integration of bioinformatics tools and resources demands consistent machine-understandable descriptions. A comprehensive ontology allowing such descriptions is therefore required. RESULTS: EDAM is an ontology of bioinformatics operations (tool or workflow functions), types of data and identifiers, application domains and data formats. EDAM supports semantic annotation of diverse entities such as Web services, databases, programmatic libraries, standalone tools, interactive applications, data schemas, datasets and publications within bioinformatics. EDAM applies to organizing and finding suitable tools and data and to automating their integration into complex applications or workflows. It includes over 2200 defined concepts and has successfully been used for annotations and implementations. AVAILABILITY: The latest stable version of EDAM is available in OWL format from http://edamontology.org/EDAM.owl and in OBO format from http://edamontology.org/EDAM.obo. It can be viewed online at the NCBO BioPortal and the EBI Ontology Lookup Service. For documentation and license please refer to http://edamontology.org. This article describes version 1.2 available at http://edamontology.org/EDAM_1.2.owl. CONTACT: jison@ebi.ac.uk.


Asunto(s)
Biología Computacional/métodos , Programas Informáticos , Algoritmos , Bases de Datos Factuales , Flujo de Trabajo
12.
Nucleic Acids Res ; 40(Database issue): D1313-7, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22086956

RESUMEN

Recent advances in sequencing technology have created unprecedented opportunities for biological research. However, the increasing throughput of these technologies has created many challenges for data management and analysis. As the demand for sophisticated analyses increases, the development time of software and algorithms is outpacing the speed of traditional publication. As technologies continue to be developed, methods change rapidly, making publications less relevant for users. The SEQanswers wiki (SEQwiki) is a wiki database that is actively edited and updated by the members of the SEQanswers community (http://SEQanswers.com/). The wiki provides an extensive catalogue of tools, technologies and tutorials for high-throughput sequencing (HTS), including information about HTS service providers. It has been implemented in MediaWiki with the Semantic MediaWiki and Semantic Forms extensions to collect structured data, providing powerful navigation and reporting features. Within 2 years, the community has created pages for over 500 tools, with approximately 400 literature references and 600 web links. This collaborative effort has made SEQwiki the most comprehensive database of HTS tools anywhere on the web. The wiki includes task-focused mini-reviews of commonly used tools, and a growing collection of more than 100 HTS service providers. SEQwiki is available at: http://wiki.SEQanswers.com/.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Secuenciación de Nucleótidos de Alto Rendimiento , Programas Informáticos , Biología Computacional , Internet
13.
Nucleic Acids Res ; 40(Database issue): D1250-4, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22139927

RESUMEN

Biology is generating more data than ever. As a result, there is an ever increasing number of publicly available databases that analyse, integrate and summarize the available data, providing an invaluable resource for the biological community. As this trend continues, there is a pressing need to organize, catalogue and rate these resources, so that the information they contain can be most effectively exploited. MetaBase (MB) (http://MetaDatabase.Org) is a community-curated database containing more than 2000 commonly used biological databases. Each entry is structured using templates and can carry various user comments and annotations. Entries can be searched, listed, browsed or queried. The database was created using the same MediaWiki technology that powers Wikipedia, allowing users to contribute on many different levels. The initial release of MB was derived from the content of the 2007 Nucleic Acids Research (NAR) Database Issue. Since then, approximately 100 databases have been manually collected from the literature, and users have added information for over 240 databases. MB is synchronized annually with the static Molecular Biology Database Collection provided by NAR. To date, there have been 19 significant contributors to the project; each one is listed as an author here to highlight the community aspect of the project.


Asunto(s)
Biología , Bases de Datos Factuales , Internet , Integración de Sistemas
14.
Gigascience ; 132024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38626723

RESUMEN

BACKGROUND: Phenome-wide association studies (PheWASs) have been conducted on Asian populations, including Koreans, but many were based on chip or exome genotyping data. Such studies have limitations regarding whole genome-wide association analysis, making it crucial to have genome-to-phenome association information with the largest possible whole genome and matched phenome data to conduct further population-genome studies and develop health care services based on population genomics. RESULTS: Here, we present 4,157 whole genome sequences (Korea4K) coupled with 107 health check-up parameters as the largest genomic resource of the Korean Genome Project. It encompasses most of the variants with allele frequency >0.001 in Koreans, indicating that it sufficiently covered most of the common and rare genetic variants with commonly measured phenotypes for Koreans. Korea4K provides 45,537,252 variants, and half of them were not present in Korea1K (1,094 samples). We also identified 1,356 new genotype-phenotype associations that were not found by the Korea1K dataset. Phenomics analyses further revealed 24 significant genetic correlations, 14 pleiotropic associations, and 127 causal relationships based on Mendelian randomization among 37 traits. In addition, the Korea4K imputation reference panel, the largest Korean variants reference to date, showed a superior imputation performance to Korea1K across all allele frequency categories. CONCLUSIONS: Collectively, Korea4K provides not only the largest Korean genome data but also corresponding health check-up parameters and novel genome-phenome associations. The large-scale pathological whole genome-wide omics data will become a powerful set for genome-phenome level association studies to discover causal markers for the prediction and diagnosis of health conditions in future studies.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Humanos , Fenotipo , Estudios de Asociación Genética , Frecuencia de los Genes , República de Corea , Genotipo
15.
Front Plant Sci ; 14: 1103035, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37521909

RESUMEN

The DNA Features pipeline is the analysis pipeline at EMBL-EBI that annotates repeat elements, including transposable elements. With Ensembl's goal to stay at the cutting edge of genome annotation, we proved that this pipeline needed an update. We then created a new analysis that allowed the Ensembl database to store the repeat classification from the PGSB repeat classification (Recat). This new dataset was then fetched using Perl scripts and used to prove that the pipeline modification induced a gain in sensitivity. Finally, we performed a comparative analysis of transposable element distribution in all plant species available, raising new questions about transposable elements in certain branches of the taxonomic tree.

16.
BMC Genomics ; 13: 75, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22336098

RESUMEN

BACKGROUND: The potato genome sequence derived from the Solanum tuberosum Group Phureja clone DM1-3 516 R44 provides unparalleled insight into the genome composition and organisation of this important crop. A key class of genes that comprises the vast majority of plant resistance (R) genes contains a nucleotide-binding and leucine-rich repeat domain, and is collectively known as NB-LRRs. RESULTS: As part of an effort to accelerate the process of functional R gene isolation, we performed an amino acid motif based search of the annotated potato genome and identified 438 NB-LRR type genes among the ~39,000 potato gene models. Of the predicted genes, 77 contain an N-terminal toll/interleukin 1 receptor (TIR)-like domain, and 107 of the remaining 361 non-TIR genes contain an N-terminal coiled-coil (CC) domain. Physical map positions were established for 370 predicted NB-LRR genes across all 12 potato chromosomes. The majority of NB-LRRs are physically organised within 63 identified clusters, of which 50 are homogeneous in that they contain NB-LRRs derived from a recent common ancestor. CONCLUSIONS: By establishing the phylogenetic and positional relationship of potato NB-LRRs, our analysis offers significant insight into the evolution of potato R genes. Furthermore, the data provide a blueprint for future efforts to identify and more rapidly clone functional NB-LRR genes from Solanum species.


Asunto(s)
Proteínas de Plantas/genética , Solanum tuberosum/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Mapeo Cromosómico , Análisis por Conglomerados , Genoma de Planta , Leucina/química , Datos de Secuencia Molecular , Proteínas de Plantas/análisis , Solanum tuberosum/clasificación
17.
GigaByte ; 2022: gigabyte51, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36824523

RESUMEN

We present LT1, the first high-quality human reference genome from the Baltic States. LT1 is a female de novo human reference genome assembly, constructed using 57× nanopore long reads and polished using 47× short paired-end reads. We utilized 72 GB of Hi-C chromosomal mapping data for scaffolding, to maximize assembly contiguity and accuracy. The contig assembly of LT1 was 2.73 Gbp in length, comprising 4490 contigs with an NG50 value of 12.0 Mbp. After scaffolding with Hi-C data and manual curation, the final assembly has an NG50 value of 137 Mbp and 4699 scaffolds. Assessment of gene prediction quality using Benchmarking Universal Single-Copy Orthologs (BUSCO) identified 89.3% of the single-copy orthologous genes included in the benchmark. Detailed characterization of LT1 suggests it has 73,744 predicted transcripts, 4.2 million autosomal SNPs, 974,616 short indels, and 12,079 large structural variants. These data may be used as a benchmark for further in-depth genomic analyses of Baltic populations.

18.
Mol Ecol Resour ; 22(3): 1168-1177, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34687590

RESUMEN

Cymbidium goeringii, commonly known as the spring orchid, has long been favoured for horticultural purposes in Asian countries. It is a popular orchid with much demand for improvement and development for its valuable varieties. Until now, its reference genome has not been published despite its popularity and conservation efforts. Here, we report the de novo assembly of the C. goeringii genome, which is the largest among the orchids published to date, using a strategy that combines short- and long-read sequencing and chromosome conformation capture (Hi-C) information. The total length of all scaffolds is 3.99 Gb, with an N50 scaffold size of 178.2 Mb. A total of 29,556 protein-coding genes were annotated and 3.55 Gb (88.87% of genome) repetitive sequences were identified. We constructed pseudomolecular chromosomes using Hi-C, incorporating 89.4% of the scaffolds in 20 chromosomes. We identified 220 expanded and 106 contracted genes families in C. goeringii after divergence from its close relative. We also identified new gene families, resistance gene analogues and changes within the MADS-box genes, which control a diverse set of developmental processes during orchid evolution. Our high quality chromosomal-level assembly of C. goeringii can provide a platform for elucidating the genomic evolution of orchids, mining functional genes for agronomic traits and for developing molecular markers for accelerated breeding as well as accelerating conservation efforts.


Asunto(s)
Orchidaceae , Fitomejoramiento , Cromosomas , Genoma , Humanos , Anotación de Secuencia Molecular , Orchidaceae/genética
19.
Mol Cells ; 44(9): 680-687, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34588322

RESUMEN

Coronavirus disease, COVID-19 (coronavirus disease 2019), caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), has a higher case fatality rate in European countries than in others, especially East Asian ones. One potential explanation for this regional difference is the diversity of the viral infection efficiency. Here, we analyzed the allele frequencies of a nonsynonymous variant rs12329760 (V197M) in the TMPRSS2 gene, a key enzyme essential for viral infection and found a significant association between the COVID-19 case fatality rate and the V197M allele frequencies, using over 200,000 present-day and ancient genomic samples. East Asian countries have higher V197M allele frequencies than other regions, including European countries which correlates to their lower case fatality rates. Structural and energy calculation analysis of the V197M amino acid change showed that it destabilizes the TMPRSS2 protein, possibly negatively affecting its ACE2 and viral spike protein processing.


Asunto(s)
COVID-19/genética , COVID-19/mortalidad , Serina Endopeptidasas/genética , Pueblo Asiatico , COVID-19/etnología , Frecuencia de los Genes , Humanos , Modelos Moleculares , Mortalidad , Polimorfismo de Nucleótido Simple , República de Corea , Serina Endopeptidasas/química , Población Blanca
20.
Gigascience ; 10(3)2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33710328

RESUMEN

BACKGROUND: DNBSEQ-T7 is a new whole-genome sequencer developed by Complete Genomics and MGI using DNA nanoball and combinatorial probe anchor synthesis technologies to generate short reads at a very large scale-up to 60 human genomes per day. However, it has not been objectively and systematically compared against Illumina short-read sequencers. FINDINGS: By using the same KOREF sample, the Korean Reference Genome, we have compared 7 sequencing platforms including BGISEQ-500, DNBSEQ-T7, HiSeq2000, HiSeq2500, HiSeq4000, HiSeqX10, and NovaSeq6000. We measured sequencing quality by comparing sequencing statistics (base quality, duplication rate, and random error rate), mapping statistics (mapping rate, depth distribution, and percent GC coverage), and variant statistics (transition/transversion ratio, dbSNP annotation rate, and concordance rate with single-nucleotide polymorphism [SNP] genotyping chip) across the 7 sequencing platforms. We found that MGI platforms showed a higher concordance rate for SNP genotyping than HiSeq2000 and HiSeq4000. The similarity matrix of variant calls confirmed that the 2 MGI platforms have the most similar characteristics to the HiSeq2500 platform. CONCLUSIONS: Overall, MGI and Illumina sequencing platforms showed comparable levels of sequencing quality, uniformity of coverage, percent GC coverage, and variant accuracy; thus we conclude that the MGI platforms can be used for a wide range of genomics research fields at a lower cost than the Illumina platforms.


Asunto(s)
Benchmarking , Secuenciación de Nucleótidos de Alto Rendimiento , Genoma Humano , Humanos , República de Corea , Análisis de Secuencia de ADN , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA