Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Adv ; 10(36): eadn9361, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39231216

RESUMEN

Kv1.3 is a multifunctional potassium channel implicated in multiple pathologies, including cancer. However, how it is involved in disease progression is not fully clear. We interrogated the interactome of Kv1.3 in intact cells using BioID proximity labeling, revealing that Kv1.3 interacts with STAT3- and p53-linked pathways. To prove the relevance of Kv1.3 and of its interactome in the context of tumorigenesis, we generated stable melanoma clones, in which ablation of Kv1.3 remodeled gene expression, reduced proliferation and colony formation, yielded fourfold smaller tumors, and decreased metastasis in vivo in comparison to WT cells. Kv1.3 deletion or pharmacological inhibition of mitochondrial Kv1.3 increased mitochondrial Reactive Oxygen Species release, decreased STAT3 phosphorylation, stabilized the p53 tumor suppressor, promoted metabolic switch, and altered the expression of several BioID-identified Kv1.3-networking proteins in tumor tissues. Collectively, our work revealed the tumor-promoting Kv1.3-interactome landscape, thus opening the way to target Kv1.3 not only as an ion-conducting entity but also as a signaling hub.


Asunto(s)
Canal de Potasio Kv1.3 , Factor de Transcripción STAT3 , Transducción de Señal , Proteína p53 Supresora de Tumor , Canal de Potasio Kv1.3/metabolismo , Canal de Potasio Kv1.3/genética , Proteína p53 Supresora de Tumor/metabolismo , Factor de Transcripción STAT3/metabolismo , Humanos , Animales , Ratones , Línea Celular Tumoral , Melanoma/metabolismo , Melanoma/patología , Melanoma/genética , Mitocondrias/metabolismo , Proliferación Celular , Especies Reactivas de Oxígeno/metabolismo
2.
Cell Death Dis ; 14(2): 162, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36849544

RESUMEN

The approved gene therapies for spinal muscular atrophy (SMA), caused by loss of survival motor neuron 1 (SMN1), greatly ameliorate SMA natural history but are not curative. These therapies primarily target motor neurons, but SMN1 loss has detrimental effects beyond motor neurons and especially in muscle. Here we show that SMN loss in mouse skeletal muscle leads to accumulation of dysfunctional mitochondria. Expression profiling of single myofibers from a muscle specific Smn1 knockout mouse model revealed down-regulation of mitochondrial and lysosomal genes. Albeit levels of proteins that mark mitochondria for mitophagy were increased, morphologically deranged mitochondria with impaired complex I and IV activity and respiration and that produced excess reactive oxygen species accumulated in Smn1 knockout muscles, because of the lysosomal dysfunction highlighted by the transcriptional profiling. Amniotic fluid stem cells transplantation that corrects the SMN knockout mouse myopathic phenotype restored mitochondrial morphology and expression of mitochondrial genes. Thus, targeting muscle mitochondrial dysfunction in SMA may complement the current gene therapy.


Asunto(s)
Músculo Esquelético , Atrofia Muscular Espinal , Animales , Ratones , Atrofia Muscular Espinal/genética , Neuronas Motoras , Ratones Noqueados , Mitocondrias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA