Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Soc Nephrol ; 33(2): 305-325, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34607911

RESUMEN

BACKGROUND: Gitelman syndrome is the most frequent hereditary salt-losing tubulopathy characterized by hypokalemic alkalosis and hypomagnesemia. Gitelman syndrome is caused by biallelic pathogenic variants in SLC12A3, encoding the Na+-Cl- cotransporter (NCC) expressed in the distal convoluted tubule. Pathogenic variants of CLCNKB, HNF1B, FXYD2, or KCNJ10 may result in the same renal phenotype of Gitelman syndrome, as they can lead to reduced NCC activity. For approximately 10 percent of patients with a Gitelman syndrome phenotype, the genotype is unknown. METHODS: We identified mitochondrial DNA (mtDNA) variants in three families with Gitelman-like electrolyte abnormalities, then investigated 156 families for variants in MT-TI and MT-TF, which encode the transfer RNAs for phenylalanine and isoleucine. Mitochondrial respiratory chain function was assessed in patient fibroblasts. Mitochondrial dysfunction was induced in NCC-expressing HEK293 cells to assess the effect on thiazide-sensitive 22Na+ transport. RESULTS: Genetic investigations revealed four mtDNA variants in 13 families: m.591C>T (n=7), m.616T>C (n=1), m.643A>G (n=1) (all in MT-TF), and m.4291T>C (n=4, in MT-TI). Variants were near homoplasmic in affected individuals. All variants were classified as pathogenic, except for m.643A>G, which was classified as a variant of uncertain significance. Importantly, affected members of six families with an MT-TF variant additionally suffered from progressive chronic kidney disease. Dysfunction of oxidative phosphorylation complex IV and reduced maximal mitochondrial respiratory capacity were found in patient fibroblasts. In vitro pharmacological inhibition of complex IV, mimicking the effect of the mtDNA variants, inhibited NCC phosphorylation and NCC-mediated sodium uptake. CONCLUSION: Pathogenic mtDNA variants in MT-TF and MT-TI can cause a Gitelman-like syndrome. Genetic investigation of mtDNA should be considered in patients with unexplained Gitelman syndrome-like tubulopathies.


Asunto(s)
ADN Mitocondrial/genética , Síndrome de Gitelman/genética , Mutación , Adolescente , Adulto , Anciano , Secuencia de Bases , Niño , Preescolar , Femenino , Genotipo , Síndrome de Gitelman/metabolismo , Síndrome de Gitelman/patología , Células HEK293 , Humanos , Lactante , Riñón/metabolismo , Riñón/ultraestructura , Masculino , Persona de Mediana Edad , Mitocondrias/metabolismo , Modelos Biológicos , Conformación de Ácido Nucleico , Linaje , Fenotipo , Polimorfismo de Nucleótido Simple , ARN de Transferencia de Isoleucina/química , ARN de Transferencia de Isoleucina/genética , ARN de Transferencia de Fenilalanina/química , ARN de Transferencia de Fenilalanina/genética , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Adulto Joven
2.
Am J Hum Genet ; 104(3): 530-541, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30827496

RESUMEN

Acetylation of the lysine residues in histones and other DNA-binding proteins plays a major role in regulation of eukaryotic gene expression. This process is controlled by histone acetyltransferases (HATs/KATs) found in multiprotein complexes that are recruited to chromatin by the scaffolding subunit transformation/transcription domain-associated protein (TRRAP). TRRAP is evolutionarily conserved and is among the top five genes intolerant to missense variation. Through an international collaboration, 17 distinct de novo or apparently de novo variants were identified in TRRAP in 24 individuals. A strong genotype-phenotype correlation was observed with two distinct clinical spectra. The first is a complex, multi-systemic syndrome associated with various malformations of the brain, heart, kidneys, and genitourinary system and characterized by a wide range of intellectual functioning; a number of affected individuals have intellectual disability (ID) and markedly impaired basic life functions. Individuals with this phenotype had missense variants clustering around the c.3127G>A p.(Ala1043Thr) variant identified in five individuals. The second spectrum manifested with autism spectrum disorder (ASD) and/or ID and epilepsy. Facial dysmorphism was seen in both groups and included upslanted palpebral fissures, epicanthus, telecanthus, a wide nasal bridge and ridge, a broad and smooth philtrum, and a thin upper lip. RNA sequencing analysis of skin fibroblasts derived from affected individuals skin fibroblasts showed significant changes in the expression of several genes implicated in neuronal function and ion transport. Thus, we describe here the clinical spectrum associated with TRRAP pathogenic missense variants, and we suggest a genotype-phenotype correlation useful for clinical evaluation of the pathogenicity of the variants.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Trastorno Autístico/etiología , Discapacidad Intelectual/etiología , Mutación Missense , Proteínas Nucleares/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Trastorno Autístico/metabolismo , Trastorno Autístico/patología , Niño , Preescolar , Femenino , Estudios de Asociación Genética , Humanos , Lactante , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/patología , Masculino , Pronóstico , Homología de Secuencia , Síndrome , Adulto Joven
3.
Am J Hum Genet ; 104(1): 139-156, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30595372

RESUMEN

Type 2A protein phosphatases (PP2As) are highly expressed in the brain and regulate neuronal signaling by catalyzing phospho-Ser/Thr dephosphorylations in diverse substrates. PP2A holoenzymes comprise catalytic C-, scaffolding A-, and regulatory B-type subunits, which determine substrate specificity and physiological function. Interestingly, de novo mutations in genes encoding A- and B-type subunits have recently been implicated in intellectual disability (ID) and developmental delay (DD). We now report 16 individuals with mild to profound ID and DD and a de novo mutation in PPP2CA, encoding the catalytic Cα subunit. Other frequently observed features were severe language delay (71%), hypotonia (69%), epilepsy (63%), and brain abnormalities such as ventriculomegaly and a small corpus callosum (67%). Behavioral problems, including autism spectrum disorders, were reported in 47% of individuals, and three individuals had a congenital heart defect. PPP2CA de novo mutations included a partial gene deletion, a frameshift, three nonsense mutations, a single amino acid duplication, a recurrent mutation, and eight non-recurrent missense mutations. Functional studies showed complete PP2A dysfunction in four individuals with seemingly milder ID, hinting at haploinsufficiency. Ten other individuals showed mutation-specific biochemical distortions, including poor expression, altered binding to the A subunit and specific B-type subunits, and impaired phosphatase activity and C-terminal methylation. Four were suspected to have a dominant-negative mechanism, which correlated with severe ID. Two missense variants affecting the same residue largely behaved as wild-type in our functional assays. Overall, we found that pathogenic PPP2CA variants impair PP2A-B56(δ) functionality, suggesting that PP2A-related neurodevelopmental disorders constitute functionally converging ID syndromes.


Asunto(s)
Discapacidad Intelectual/genética , Mutación , Proteína Fosfatasa 2/genética , Adolescente , Niño , Preescolar , Análisis Mutacional de ADN , Femenino , Células HEK293 , Haploinsuficiencia/genética , Humanos , Masculino , Unión Proteica/genética , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Síndrome
4.
Am J Kidney Dis ; 73(3): 400-403, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30241959

RESUMEN

Mutations in the NPHS2 gene, which encodes the podocyte slit diaphragm protein podocin, cause autosomal recessive steroid-resistant nephrotic syndrome (Online Mendelian Inheritance in Man [OMIM] #600995). Basic research and clinical studies have provided important insights about genotype-phenotype correlations. This knowledge allows personalized genetic (risk) counseling and should lead to changes in the advice given to patients. A patient who carries the R229Q variant (which has a high allele frequency of 3.7% in the European population) in combination with a pathogenic variant in exon 7 or 8 is at high risk for developing nephrotic syndrome that may not manifest before adulthood, whereas a patient with 2 pathogenic variants will develop congenital or childhood-onset nephrotic syndrome. In contrast, a patient who carries the R229Q variant in combination with a pathogenic variant in exons 1 to 6 is unlikely to develop nephrotic syndrome. In this article, we review the emerging knowledge about the NPHS2 gene and translate these findings from the bench to practical advice for the clinical bedside.


Asunto(s)
Asesoramiento Genético , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Mutación , Síndrome Nefrótico/genética , Variación Genética , Humanos
5.
Kidney Int ; 93(5): 1142-1153, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29459093

RESUMEN

Congenital abnormalities of the kidney and the urinary tract (CAKUT) belong to the most common birth defects in human, but the molecular basis for the majority of CAKUT patients remains unknown. Here we show that the transcription factor SOX11 is a crucial regulator of kidney development. SOX11 is expressed in both mesenchymal and epithelial components of the early kidney anlagen. Deletion of Sox11 in mice causes an extension of the domain expressing Gdnf within rostral regions of the nephrogenic cord and results in duplex kidney formation. On the molecular level SOX11 directly binds and regulates a locus control region of the protocadherin B cluster. At later stages of kidney development, SOX11 becomes restricted to the intermediate segment of the developing nephron where it is required for the elongation of Henle's loop. Finally, mutation analysis in a cohort of patients suffering from CAKUT identified a series of rare SOX11 variants, one of which interferes with the transactivation capacity of the SOX11 protein. Taken together these data demonstrate a key role for SOX11 in normal kidney development and may suggest that variants in this gene predispose to CAKUT in humans.


Asunto(s)
Riñón/anomalías , Mutación , Factores de Transcripción SOXC/genética , Uréter/anomalías , Anomalías Urogenitales/genética , Reflujo Vesicoureteral/genética , Animales , Cadherinas/genética , Cadherinas/metabolismo , Proliferación Celular , Modelos Animales de Enfermedad , Femenino , Regulación del Desarrollo de la Expresión Génica , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Humanos , Riñón/metabolismo , Masculino , Ratones Noqueados , Morfogénesis , Fenotipo , Factores de Riesgo , Factores de Transcripción SOXC/deficiencia , Uréter/metabolismo , Anomalías Urogenitales/metabolismo , Anomalías Urogenitales/patología , Reflujo Vesicoureteral/metabolismo , Reflujo Vesicoureteral/patología
6.
Hum Mol Genet ; 25(5): 892-902, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26721934

RESUMEN

Recently, we marked TRIO for the first time as a candidate gene for intellectual disability (ID). Across diverse vertebrate species, TRIO is a well-conserved Rho GTPase regulator that is highly expressed in the developing brain. However, little is known about the specific events regulated by TRIO during brain development and its clinical impact in humans when mutated. Routine clinical diagnostic testing identified an intragenic de novo deletion of TRIO in a boy with ID. Targeted sequencing of this gene in over 2300 individuals with ID, identified three additional truncating mutations. All index cases had mild to borderline ID combined with behavioral problems consisting of autistic, hyperactive and/or aggressive behavior. Studies in dissociated rat hippocampal neurons demonstrated the enhancement of dendritic formation by suppressing endogenous TRIO, and similarly decreasing endogenous TRIO in organotypic hippocampal brain slices significantly increased synaptic strength by increasing functional synapses. Together, our findings provide new mechanistic insight into how genetic deficits in TRIO can lead to early neuronal network formation by directly affecting both neurite outgrowth and synapse development.


Asunto(s)
Trastorno Autístico/genética , Factores de Intercambio de Guanina Nucleótido/genética , Discapacidad Intelectual/genética , Mutación , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Agitación Psicomotora/genética , Sinapsis/metabolismo , Adulto , Animales , Trastorno Autístico/metabolismo , Trastorno Autístico/patología , Niño , Femenino , Expresión Génica , Factores de Intercambio de Guanina Nucleótido/deficiencia , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/patología , Masculino , Neurogénesis , Neuronas/patología , Cultivo Primario de Células , Proteínas Serina-Treonina Quinasas/deficiencia , Agitación Psicomotora/metabolismo , Agitación Psicomotora/patología , Ratas , Análisis de Secuencia de ADN , Índice de Severidad de la Enfermedad , Sinapsis/patología
7.
Am J Hum Genet ; 97(6): 904-13, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26637980

RESUMEN

Meier-Gorlin syndrome (MGS) is a genetically heterogeneous primordial dwarfism syndrome known to be caused by biallelic loss-of-function mutations in one of five genes encoding pre-replication complex proteins: ORC1, ORC4, ORC6, CDT1, and CDC6. Mutations in these genes cause disruption of the origin of DNA replication initiation. To date, only an autosomal-recessive inheritance pattern has been described in individuals with this disorder, with a molecular etiology established in about three-fourths of cases. Here, we report three subjects with MGS and de novo heterozygous mutations in the 5' end of GMNN, encoding the DNA replication inhibitor geminin. We identified two truncating mutations in exon 2 (the 1(st) coding exon), c.16A>T (p.Lys6(∗)) and c.35_38delTCAA (p.Ile12Lysfs(∗)4), and one missense mutation, c.50A>G (p.Lys17Arg), affecting the second-to-last nucleotide of exon 2 and possibly RNA splicing. Geminin is present during the S, G2, and M phases of the cell cycle and is degraded during the metaphase-anaphase transition by the anaphase-promoting complex (APC), which recognizes the destruction box sequence near the 5' end of the geminin protein. All three GMNN mutations identified alter sites 5' to residue Met28 of the protein, which is located within the destruction box. We present data supporting a gain-of-function mechanism, in which the GMNN mutations result in proteins lacking the destruction box and hence increased protein stability and prolonged inhibition of replication leading to autosomal-dominant MGS.


Asunto(s)
Microtia Congénita/genética , Enanismo/genética , Geminina/genética , Trastornos del Crecimiento/genética , Micrognatismo/genética , Mutación , Rótula/anomalías , Adolescente , Secuencia de Aminoácidos , Secuencia de Bases , Ciclo Celular/genética , Preescolar , Microtia Congénita/metabolismo , Enanismo/metabolismo , Enanismo/patología , Exones , Femenino , Geminina/metabolismo , Expresión Génica , Genes Dominantes , Trastornos del Crecimiento/metabolismo , Heterocigoto , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Patrón de Herencia , Masculino , Micrognatismo/metabolismo , Datos de Secuencia Molecular , Rótula/metabolismo , Linaje , Estabilidad Proteica , Proteolisis , Empalme del ARN , Alineación de Secuencia
8.
Pediatr Nephrol ; 33(10): 1701-1712, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29974258

RESUMEN

BACKGROUND: Nephronophthisis is an autosomal recessive ciliopathy and important cause of end-stage renal disease (ESRD) in children and young adults. Diagnostic delay is frequent. This study investigates clinical characteristics, initial symptoms, and genetic defects in a cohort with nephronophthisis-related ciliopathy, to improve early detection and genetic counseling. METHODS: Forty patients from 36 families with nephronophthisis-related ciliopathy were recruited at university medical centers and online. Comprehensive clinical and genotypic data were recorded. Patients without molecular diagnosis were offered genetic analysis. RESULTS: Of 40 patients, 45% had isolated nephronophthisis, 48% syndromic diagnosis, and 7% nephronophthisis with extrarenal features not constituting a recognizable syndrome. Patients developed ESRD at median 13 years (range 5-47). Median age of symptom onset was 9 years in both isolated and syndromic forms (range 5-26 vs. 5-33). Common presenting symptoms were fatigue (42%), polydipsia/polyuria (33%), and hypertension (21%). Renal ultrasound showed small-to-normal-sized kidneys, increased echogenicity (65%), cysts (43%), and abnormal corticomedullary differentiation (32%). Renal biopsies in eight patients showed nonspecific signs of chronic kidney disease (CKD). Twenty-three patients (58%) had genetic diagnosis upon inclusion. Thirteen of those without a genetic diagnosis gave consent for genetic testing, and a cause was identified in five (38%). CONCLUSIONS: Nephronophthisis is genetically and phenotypically heterogeneous and should be considered in children and young adults presenting with persistent fatigue and polyuria, and in all patients with unexplained CKD. As symptom onset can occur into adulthood, presymptomatic monitoring of kidney function in syndromic ciliopathy patients should continue until at least age 30.


Asunto(s)
Ciliopatías/diagnóstico , Asesoramiento Genético , Pruebas Genéticas , Enfermedades Renales Quísticas/congénito , Fallo Renal Crónico/prevención & control , Proteínas Adaptadoras Transductoras de Señales/genética , Adolescente , Adulto , Edad de Inicio , Biopsia , Niño , Ciliopatías/complicaciones , Ciliopatías/genética , Ciliopatías/patología , Proteínas del Citoesqueleto , Diagnóstico Tardío/prevención & control , Femenino , Humanos , Riñón/diagnóstico por imagen , Riñón/patología , Enfermedades Renales Quísticas/complicaciones , Enfermedades Renales Quísticas/diagnóstico , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/patología , Fallo Renal Crónico/etiología , Masculino , Proteínas de la Membrana/genética , Persona de Mediana Edad , Países Bajos , Sistema de Registros/estadística & datos numéricos , Factores de Tiempo , Ultrasonografía , Secuenciación del Exoma , Adulto Joven
9.
J Med Genet ; 54(6): 371-380, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28289185

RESUMEN

Oral-facial-digital syndromes (OFDS) gather rare genetic disorders characterised by facial, oral and digital abnormalities associated with a wide range of additional features (polycystic kidney disease, cerebral malformations and several others) to delineate a growing list of OFDS subtypes. The most frequent, OFD type I, is caused by a heterozygous mutation in the OFD1 gene encoding a centrosomal protein. The wide clinical heterogeneity of OFDS suggests the involvement of other ciliary genes. For 15 years, we have aimed to identify the molecular bases of OFDS. This effort has been greatly helped by the recent development of whole-exome sequencing (WES). Here, we present all our published and unpublished results for WES in 24 cases with OFDS. We identified causal variants in five new genes (C2CD3, TMEM107, INTU, KIAA0753 and IFT57) and related the clinical spectrum of four genes in other ciliopathies (C5orf42, TMEM138, TMEM231 and WDPCP) to OFDS. Mutations were also detected in two genes previously implicated in OFDS. Functional studies revealed the involvement of centriole elongation, transition zone and intraflagellar transport defects in OFDS, thus characterising three ciliary protein modules: the complex KIAA0753-FOPNL-OFD1, a regulator of centriole elongation; the Meckel-Gruber syndrome module, a major component of the transition zone; and the CPLANE complex necessary for IFT-A assembly. OFDS now appear to be a distinct subgroup of ciliopathies with wide heterogeneity, which makes the initial classification obsolete. A clinical classification restricted to the three frequent/well-delineated subtypes could be proposed, and for patients who do not fit one of these three main subtypes, a further classification could be based on the genotype.


Asunto(s)
Cara/anomalías , Síndromes Orofaciodigitales/genética , Anomalías Múltiples/genética , Trastornos de la Motilidad Ciliar/genética , Encefalocele/genética , Femenino , Heterocigoto , Humanos , Masculino , Mutación/genética , Enfermedades Renales Poliquísticas/genética , Proteínas/genética , Retinitis Pigmentosa
10.
J Am Soc Nephrol ; 28(10): 3118-3128, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28674042

RESUMEN

Mice lacking distal tubular expression of CLDN10, the gene encoding the tight junction protein Claudin-10, show enhanced paracellular magnesium and calcium permeability and reduced sodium permeability in the thick ascending limb (TAL), leading to a urine concentrating defect. However, the function of renal Claudin-10 in humans remains undetermined. We identified and characterized CLDN10 mutations in two patients with a hypokalemic-alkalotic salt-losing nephropathy. The first patient was diagnosed with Bartter syndrome (BS) >30 years ago. At re-evaluation, we observed hypocalciuria and hypercalcemia, suggesting Gitelman syndrome (GS). However, serum magnesium was in the upper normal to hypermagnesemic range, thiazide responsiveness was not blunted, and genetic analyses did not show mutations in genes associated with GS or BS. Whole-exome sequencing revealed compound heterozygous CLDN10 sequence variants [c.446C>G (p.Pro149Arg) and c.465-1G>A (p.Glu157_Tyr192del)]. The patient had reduced urinary concentrating ability, with a preserved aquaporin-2 response to desmopressin and an intact response to furosemide. These findings were not in line with any other known salt-losing nephropathy. Subsequently, we identified a second unrelated patient showing a similar phenotype, in whom we detected compound heterozygous CLDN10 sequence variants [c.446C>G (p.(Pro149Arg) and c.217G>A (p.Asp73Asn)]. Cell surface biotinylation and immunofluorescence experiments in cells expressing the encoded mutants showed that only one mutation caused significant differences in Claudin-10 membrane localization and tight junction strand formation, indicating that these alterations do not fully explain the phenotype. These data suggest that pathogenic CLDN10 mutations affect TAL paracellular ion transport and cause a novel tight junction disease characterized by a non-BS, non-GS autosomal recessive hypokalemic-alkalotic salt-losing phenotype.


Asunto(s)
Alcalosis/genética , Claudinas/genética , Hipopotasemia/genética , Defectos Congénitos del Transporte Tubular Renal/genética , Adolescente , Femenino , Humanos , Masculino , Adulto Joven
12.
Ophthalmology ; 124(7): 992-1003, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28412069

RESUMEN

PURPOSE: To identify the genetic cause of and describe the phenotype in 4 families with autosomal recessive retinitis pigmentosa (arRP) that can be associated with pseudocoloboma. DESIGN: Case series. PARTICIPANTS: Seven patients from 4 unrelated families with arRP, among whom 3 patients had bilateral early-onset macular pseudocoloboma. METHODS: We performed homozygosity mapping and whole-exome sequencing in 5 probands and 2 unaffected family members from 4 unrelated families. Subsequently, Sanger sequencing and segregation analysis were performed in additional family members. We reviewed the medical history of individuals carrying IDH3A variants and performed additional ophthalmic examinations, including full-field electroretinography, fundus photography, fundus autofluorescence imaging, and optical coherence tomography. MAIN OUTCOME MEASURES: IDH3A variants, age at diagnosis, visual acuity, fundus appearance, visual field, and full-field electroretinography, fundus autofluorescence, and optical coherence tomography findings. RESULTS: We identified 7 different variants in IDH3A in 4 unrelated families, that is, 5 missense, 1 nonsense, and 1 frameshift variant. All participants showed symptoms early in life, ranging from night blindness to decreased visual acuity, and were diagnosed between the ages of 1 and 11 years. Four participants with biallelic IDH3A variants displayed a typical arRP phenotype and 3 participants were diagnosed with arRP and pseudocoloboma of the macula. CONCLUSIONS: IDH3A variants were identified as a novel cause of typical arRP in some individuals associated with macular pseudocoloboma. We observed both phenotypes in 2 siblings carrying the same compound heterozygous variants, which could be explained by variable disease expression and warrants caution when making assertions about genotype-phenotype correlations.


Asunto(s)
Coloboma/genética , ADN/genética , Proteínas del Ojo/genética , Estudios de Asociación Genética , Mácula Lútea/patología , Mutación , Retinitis Pigmentosa/genética , Adolescente , Adulto , Niño , Preescolar , Coloboma/diagnóstico , Coloboma/metabolismo , Análisis Mutacional de ADN , Electrorretinografía , Exoma , Proteínas del Ojo/metabolismo , Femenino , Genes Recesivos , Homocigoto , Humanos , Masculino , Linaje , Fenotipo , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/metabolismo , Tomografía de Coherencia Óptica , Agudeza Visual , Campos Visuales , Adulto Joven
13.
Kidney Int ; 89(2): 476-86, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26489027

RESUMEN

The leading cause of end-stage renal disease in children is attributed to congenital anomalies of the kidney and urinary tract (CAKUT). Familial clustering and mouse models support the presence of monogenic causes. Genetic testing is insufficient as it mainly focuses on HNF1B and PAX2 mutations that are thought to explain CAKUT in 5­15% of patients. To identify novel, potentially pathogenic variants in additional genes, we designed a panel of genes identified from studies on familial forms of isolated or syndromic CAKUT and genes suggested by in vitro and in vivo CAKUT models. The coding exons of 208 genes were analyzed in 453 patients with CAKUT using next-generation sequencing. Rare truncating, splice-site variants, and non-synonymous variants, predicted to be deleterious and conserved, were prioritized as the most promising variants to have an effect on CAKUT. Previously reported disease-causing mutations were detected, but only five were fully penetrant causal mutations that improved diagnosis. We prioritized 148 candidate variants in 151 patients, found in 82 genes, for follow-up studies. Using a burden test, no significant excess of rare variants in any of the genes in our cohort compared with controls was found. Thus, in a study representing the largest set of genes analyzed in CAKUT patients to date, the contribution of previously implicated genes to CAKUT risk was significantly smaller than expected, and the disease may be more complex than previously assumed.


Asunto(s)
Anomalías Urogenitales/genética , Exones , Eliminación de Gen , Humanos , Análisis de Secuencia de ADN
14.
Birth Defects Res A Clin Mol Teratol ; 106(7): 596-603, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27040999

RESUMEN

BACKGROUND: Congenital anomalies of the kidney and urinary tract (CAKUT) comprise a heterogeneous group of birth defects with a variety of genetic and nongenetic factors suspected of involvement in the etiology. However, little is known about risk factors in specific CAKUT phenotypes. Therefore, we studied potential maternal risk factors in individual phenotypes within the CAKUT spectrum. METHODS: Questionnaire data were collected from parents of 562 children with CAKUT and 2139 healthy controls within the AGORA data- and biobank. Potential maternal risk factors investigated included folic acid use, overweight and obesity, smoking, alcohol consumption, subfertility, and diabetes mellitus. We performed logistic regression analyses to assess associations between these potential risk factors and CAKUT phenotypes. RESULTS: Increased risks of CAKUT were observed for folic acid use and maternal obesity, while fertility treatment by in vitro fertilization or intrauterine insemination and diabetes diagnosed during pregnancy also seem to be associated with CAKUT. Use of multivitamins reduced the risk (odds ratio [OR], 0.5; 95% confidence interval [CI], 0.2-1.0) as opposed to use of folic acid supplements only (OR, 1.3; 95% CI, 1.0-1.8). Folic acid use was associated with duplex collecting systems (OR, 1.8; 95% CI, 1.0-3.4) and vesicoureteral reflux (OR, 1.8; 95% CI, 1.1-2.9) in particular. A relatively strong association was observed between diabetes during pregnancy and posterior urethral valves (OR, 2.6; 95% CI, 1.1-5.9). CONCLUSION: Use of folic acid only seems to be counterproductive for prevention of CAKUT, in contrast to multivitamin use. Furthermore, we observed differences in risk factor patterns among CAKUT phenotypes, which stress the importance of separate analyses for each phenotype. Birth Defects Research (Part A) 106:596-603, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Consumo de Bebidas Alcohólicas/efectos adversos , Anomalías Congénitas , Riñón/anomalías , Obesidad , Embarazo en Diabéticas/epidemiología , Fumar/efectos adversos , Encuestas y Cuestionarios , Adulto , Anomalías Congénitas/epidemiología , Anomalías Congénitas/etiología , Femenino , Ácido Fólico/uso terapéutico , Humanos , Masculino , Obesidad/complicaciones , Obesidad/epidemiología , Embarazo , Factores de Riesgo
15.
Birth Defects Res A Clin Mol Teratol ; 106(8): 675-84, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27150573

RESUMEN

BACKGROUND: Research regarding the etiology of birth defects and childhood cancer is essential to develop preventive measures, but often requires large study populations. Therefore, we established the AGORA data- and biobank in the Netherlands. In this study, we describe its rationale, design, and ongoing data collection. METHODS: Children diagnosed with and/or treated for a structural birth defect or childhood cancer and their parents are invited to participate in the AGORA data- and biobank. Controls are recruited through random sampling from municipal registries. The parents receive questionnaires about demographics, family and pregnancy history, health status, prescribed medication, lifestyle, and occupational exposures before and during the index pregnancy. In addition, blood or saliva is collected from children and parents, while medical records are reviewed for diagnostic information. RESULTS: So far, we have collected data from over 6,860 families (3,747 birth defects, 905 childhood cancers, and 2,208 controls). The types of birth defects vary widely and comprise malformations of the digestive, respiratory, and urogenital tracts as well as facial, cardiovascular, kidney, skeletal, and central nervous system anomalies. The most frequently occurring childhood cancer types are acute lymphatic leukemia, Hodgkin and non-Hodgkin lymphoma, Wilms' tumor, and brain and spinal cord tumors. Our genetic and/or epidemiologic studies have been focused on hypospadias, anorectal malformations, congenital anomalies of the kidney and urinary tract (CAKUT), and orofacial clefts. CONCLUSION: The large AGORA data- and biobank offers great opportunities for investigating genetic and nongenetic risk factors for disorders in children and is open to collaborative initiatives. Birth Defects Research (Part A) 106:675-684, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Bancos de Muestras Biológicas/organización & administración , Anomalías Congénitas/diagnóstico , Bases de Datos Factuales , Neoplasias/diagnóstico , Efectos Tardíos de la Exposición Prenatal/diagnóstico , Adulto , Estudios de Casos y Controles , Niño , Preescolar , Anomalías Congénitas/clasificación , Anomalías Congénitas/genética , Anomalías Congénitas/patología , Femenino , Humanos , Lactante , Recién Nacido , Estilo de Vida , Masculino , Neoplasias/clasificación , Neoplasias/genética , Neoplasias/patología , Embarazo , Efectos Tardíos de la Exposición Prenatal/clasificación , Factores de Riesgo , Encuestas y Cuestionarios
16.
PLoS Genet ; 9(3): e1003360, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23516378

RESUMEN

Mutations in ORC1, ORC4, ORC6, CDT1, and CDC6, which encode proteins required for DNA replication origin licensing, cause Meier-Gorlin syndrome (MGS), a disorder conferring microcephaly, primordial dwarfism, underdeveloped ears, and skeletal abnormalities. Mutations in ATR, which also functions during replication, can cause Seckel syndrome, a clinically related disorder. These findings suggest that impaired DNA replication could underlie the developmental defects characteristic of these disorders. Here, we show that although origin licensing capacity is impaired in all patient cells with mutations in origin licensing component proteins, this does not correlate with the rate of progression through S phase. Thus, the replicative capacity in MGS patient cells does not correlate with clinical manifestation. However, ORC1-deficient cells from MGS patients and siRNA-mediated depletion of origin licensing proteins also have impaired centrosome and centriole copy number. As a novel and unexpected finding, we show that they also display a striking defect in the rate of formation of primary cilia. We demonstrate that this impacts sonic hedgehog signalling in ORC1-deficient primary fibroblasts. Additionally, reduced growth factor-dependent signaling via primary cilia affects the kinetics of cell cycle progression following cell cycle exit and re-entry, highlighting an unexpected mechanism whereby origin licensing components can influence cell cycle progression. Finally, using a cell-based model, we show that defects in cilia function impair chondroinduction. Our findings raise the possibility that a reduced efficiency in forming cilia could contribute to the clinical features of MGS, particularly the bone development abnormalities, and could provide a new dimension for considering developmental impacts of licensing deficiency.


Asunto(s)
Replicación del ADN/genética , Enanismo/genética , Trastornos del Crecimiento/genética , Microcefalia/genética , Micrognatismo/genética , Complejo de Reconocimiento del Origen/genética , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/genética , Centriolos/genética , Centriolos/metabolismo , Cilios/genética , Cilios/fisiología , Microtia Congénita , Oído/anomalías , Facies , Trastornos del Crecimiento/etiología , Humanos , Micrognatismo/etiología , Rótula/anomalías , Proteínas Serina-Treonina Quinasas/genética , Fase S/genética
18.
Am J Hum Genet ; 90(3): 426-33, 2012 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-22341970

RESUMEN

Revertant mosaicism is an infrequently observed phenomenon caused by spontaneous correction of a pathogenic allele. We have observed such reversions caused by mitotic recombination of mutant TERC (telomerase RNA component) alleles in six patients from four families affected by dyskeratosis congenita (DC). DC is a multisystem disorder characterized by mucocutaneous abnormalities, dystrophic nails, bone-marrow failure, lung fibrosis, liver cirrhosis, and cancer. We identified a 4 nt deletion in TERC in a family with an autosomal-dominant form of DC. In two affected brothers without bone-marrow failure, sequence analysis revealed pronounced overrepresentation of the wild-type allele in blood cells, whereas no such skewing was observed in the other tissues tested. These observations suggest that this mosaic pattern might have resulted from somatic reversion of the mutated allele to the normal allele in blood-forming cells. SNP-microarray analysis on blood DNA from the two brothers indeed showed independent events of acquired segmental isodisomy of chromosome 3q, including TERC, indicating that the reversions must have resulted from mitotic recombination events. Subsequently, after developing a highly sensitive method of detecting mosaic homozygosity, we have found four additional cases with a mosaic-reversion pattern in blood cells; these four cases are part of a cohort of 17 individuals with germline TERC mutations. This shows that revertant mosaicism is a recurrent event in DC. This finding has important implications for improving diagnostic testing and understanding the variable phenotype of DC.


Asunto(s)
Disqueratosis Congénita/genética , Mitosis/genética , Mosaicismo , ARN/genética , Recombinación Genética , Telomerasa/genética , Adolescente , Adulto , Anciano , Alelos , Linaje de la Célula , Niño , Preescolar , Estudios de Cohortes , Femenino , Mutación de Línea Germinal , Homocigoto , Humanos , Masculino , Persona de Mediana Edad , Linaje , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN/métodos , Adulto Joven
19.
Am J Hum Genet ; 90(2): 290-4, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-22265017

RESUMEN

Genitopatellar syndrome (GPS) is a rare disorder in which patellar aplasia or hypoplasia is associated with external genital anomalies and severe intellectual disability. Using an exome-sequencing approach, we identified de novo mutations of KAT6B in five individuals with GPS; a single nonsense variant and three frameshift indels, including a 4 bp deletion observed in two cases. All identified mutations are located within the terminal exon of the gene and are predicted to generate a truncated protein product lacking evolutionarily conserved domains. KAT6B encodes a member of the MYST family of histone acetyltranferases. We demonstrate a reduced level of both histone H3 and H4 acetylation in patient-derived cells suggesting that dysregulation of histone acetylation is a direct functional consequence of GPS alleles. These findings define the genetic basis of GPS and illustrate the complex role of the regulation of histone acetylation during development.


Asunto(s)
Histona Acetiltransferasas/genética , Anomalías Musculoesqueléticas/genética , Mutación , Anomalías Urogenitales/genética , Acetilación , Alelos , Animales , Exoma , Exones , Femenino , Histonas/metabolismo , Humanos , Discapacidad Intelectual/enzimología , Discapacidad Intelectual/genética , Masculino , Ratones , Anomalías Musculoesqueléticas/enzimología , Análisis de Secuencia de ADN/métodos , Anomalías Urogenitales/enzimología
20.
Genet Med ; 17(6): 460-6, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25232846

RESUMEN

PURPOSE: Submicroscopic deletions of chromosome band 2p25.3 are associated with intellectual disability and/or central obesity. Although MYT1L is believed to be a critical gene responsible for intellectual disability, so far no unequivocal data have confirmed this hypothesis. METHODS: In this study we evaluated a cohort of 22 patients (15 sporadic patients and two families) with a 2p25.3 aberration to further refine the clinical phenotype and to delineate the role of MYT1L in intellectual disability and obesity. In addition, myt1l spatiotemporal expression in zebrafish embryos was analyzed by quantitative polymerase chain reaction and whole-mount in situ hybridization. RESULTS: Complete MYT1L deletion, intragenic deletion, or duplication was observed in all sporadic patients, in addition to two patients with a de novo point mutation in MYT1L. The familial cases comprise a 6-Mb deletion in a father and his three children and a 5' MYT1L overlapping duplication in a father and his two children. Expression analysis in zebrafish embryos shows specific myt1l expression in the developing brain. CONCLUSION: Our data strongly strengthen the hypothesis that MYT1L is the causal gene for the observed syndromal intellectual disability. Moreover, because 17 patients present with obesity/overweight, haploinsufficiency of MYT1L might predispose to weight problems with childhood onset.Genet Med 17 6, 460-466.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 2 , Discapacidad Intelectual/genética , Proteínas del Tejido Nervioso/genética , Obesidad/genética , Factores de Transcripción/genética , Adolescente , Adulto , Animales , Niño , Preescolar , Mapeo Cromosómico , Estudios de Cohortes , Facies , Femenino , Duplicación de Gen , Expresión Génica , Estudios de Asociación Genética , Humanos , Masculino , Persona de Mediana Edad , Mutación Puntual , Adulto Joven , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA