Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Gynecol Oncol ; 171: 106-113, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36868112

RESUMEN

RATIONALE: Homologous recombination deficiency (HRD), defined as BRCA1/2 mutation (BRCAmut) or high genomic instability, is used to identify ovarian cancer (OC) patients most likely to benefit from PARP inhibitors. While these tests are useful, they are imperfect. Another approach is to measure the capacity of tumor cells to form RAD51 foci in the presence of DNA damage using an immunofluorescence assay (IF). We aimed to describe for the first time this assay in OC and correlate it to platinum response and BRCAmut. METHODS: Tumor samples were prospectively collected from the randomized CHIVA trial of neoadjuvant platinum +/- nintedanib. IF for RAD51, GMN and gH2AX was performed on FFPE blocks. Tumors were considered RAD51-low if ≤10% of GMN-positive tumor cells had ≥5 RAD51 foci. BRCAmut were identified by NGS. RESULTS: 155 samples were available. RAD51 assay was contributive for 92% of samples and NGS available for 77%. gH2AX foci confirmed the presence of significant basal DNA damage. 54% of samples were considered HRD by RAD51 and presented higher overall response rates to neoadjuvant platinum (P = 0.04) and longer progression-free survival (P = 0.02). In addition, 67% of BRCAmut were HRD by RAD51. Among BRCAmut, RAD51-high tumors seem to harbor poorer response to chemotherapy (P = 0.02). CONCLUSIONS: We evaluated a functional assay of HR competency. OC demonstrate high levels of DNA damage, yet 54% fail to form RAD51 foci. These RAD51-low OC tend to be more sensitive to neoadjuvant platinum. The RAD51 assay also identified a subset of RAD51-high BRCAmut tumors with unexpected poor platinum response.


Asunto(s)
Neoplasias Ováricas , Platino (Metal) , Humanos , Femenino , Platino (Metal)/uso terapéutico , Recombinación Homóloga , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Daño del ADN , Proteína BRCA1/genética , Recombinasa Rad51/genética
3.
Clin Cancer Res ; 30(13): 2790-2800, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38669064

RESUMEN

PURPOSE: This study investigates changes in CD8+ cells, CD8+/Foxp3 ratio, HLA I expression, and immune coregulator density at diagnosis and upon neoadjuvant chemotherapy (NACT), correlating changes with clinical outcomes. EXPERIMENTAL DESIGN: Multiplexed immune profiling and cell clustering analysis were performed on paired matched ovarian cancer samples to characterize the immune tumor microenvironment (iTME) at diagnosis and under NACT in patients enrolled in the CHIVA trial (NCT01583322). RESULTS: Several immune cell (IC) subsets and immune coregulators were quantified pre/post-NACT. At diagnosis, patients with higher CD8+ T cells and HLA I+-enriched tumors were associated with a better outcome. The CD8+/Foxp3+ ratio increased significantly post-NACT in favor of increased immune surveillance, and the influx of CD8+ T cells predicted better outcomes. Clustering analysis stratified pre-NACT tumors into four subsets: high Binf, enriched in B clusters; high Tinf and low Tinf, according to their CD8+ density; and desert clusters. At baseline, these clusters were not correlated with patient outcomes. Under NACT, tumors were segregated into three clusters: high BinfTinf, low Tinf, and desert. The high BinfTinf, more diverse in IC composition encompassing T, B, and NK cells, correlated with improved survival. PDL1 was rarely expressed, whereas TIM3, LAG3, and IDO1 were more prevalent. CONCLUSIONS: Several iTMEs exist during tumor evolution, and the NACT impact on iTME is heterogeneous. Clustering analysis of patients unravels several IC subsets within ovarian cancer and can guide future personalized approaches. Targeting different checkpoints such as TIM3, LAG3, and IDO1, more prevalent than PDL1, could more effectively harness antitumor immunity in this anti-PDL1-resistant malignancy.


Asunto(s)
Linfocitos T CD8-positivos , Terapia Neoadyuvante , Neoplasias Ováricas , Microambiente Tumoral , Humanos , Femenino , Microambiente Tumoral/inmunología , Terapia Neoadyuvante/métodos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/mortalidad , Linfocitos T CD8-positivos/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Persona de Mediana Edad , Factores de Transcripción Forkhead/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Anciano , Adulto , Biomarcadores de Tumor , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA