Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Genet ; 25(4): 286-302, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38093095

RESUMEN

Modern health care faces several serious challenges, including an ageing population and its inherent burden of chronic diseases, rising costs and marginal quality metrics. By assessing and optimizing the health trajectory of each individual using a data-driven personalized approach that reflects their genetics, behaviour and environment, we can start to address these challenges. This assessment includes longitudinal phenome measures, such as the blood proteome and metabolome, gut microbiome composition and function, and lifestyle and behaviour through wearables and questionnaires. Here, we review ongoing large-scale genomics and longitudinal phenomics efforts and the powerful insights they provide into wellness. We describe our vision for the transformation of the current health care from disease-oriented to data-driven, wellness-oriented and personalized population health.


Asunto(s)
Genómica , Fenómica
2.
Cell ; 147(5): 1171-85, 2011 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-22118469

RESUMEN

We present the draft 273 Mb genome of the migratory monarch butterfly (Danaus plexippus) and a set of 16,866 protein-coding genes. Orthology properties suggest that the Lepidoptera are the fastest evolving insect order yet examined. Compared to the silkmoth Bombyx mori, the monarch genome shares prominent similarity in orthology content, microsynteny, and protein family sizes. The monarch genome reveals a vertebrate-like opsin whose existence in insects is widespread; a full repertoire of molecular components for the monarch circadian clockwork; all members of the juvenile hormone biosynthetic pathway whose regulation shows unexpected sexual dimorphism; additional molecular signatures of oriented flight behavior; microRNAs that are differentially expressed between summer and migratory butterflies; monarch-specific expansions of chemoreceptors potentially important for long-distance migration; and a variant of the sodium/potassium pump that underlies a valuable chemical defense mechanism. The monarch genome enhances our ability to better understand the genetic and molecular basis of long-distance migration.


Asunto(s)
Migración Animal , Mariposas Diurnas/genética , Genoma de los Insectos , Anotación de Secuencia Molecular , Secuencia de Aminoácidos , Animales , Evolución Biológica , Mariposas Diurnas/fisiología , Femenino , Vuelo Animal , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Masculino , Datos de Secuencia Molecular , Mariposas Nocturnas/genética , Neuropéptidos/química , Neuropéptidos/genética , Filogenia , Alineación de Secuencia , Olfato
3.
Mol Biol Evol ; 40(1)2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36625177

RESUMEN

Recent advances in long-read sequencing technology have allowed for single-molecule sequencing of entire mitochondrial genomes, opening the door for direct investigation of the mitochondrial genome architecture and recombination. We used PacBio sequencing to reassemble mitochondrial genomes from two species of New Zealand freshwater snails, Potamopyrgus antipodarum and Potamopyrgus estuarinus. These assemblies revealed a ∼1.7 kb structure within the mitochondrial genomes of both species that was previously undetected by an assembly of short reads and likely corresponding to a large noncoding region commonly present in the mitochondrial genomes. The overall architecture of these Potamopyrgus mitochondrial genomes is reminiscent of the chloroplast genomes of land plants, harboring a large single-copy (LSC) region and a small single-copy (SSC) region separated by a pair of inverted repeats (IRa and IRb). Individual sequencing reads that spanned across the Potamopyrgus IRa-SSC-IRb structure revealed the occurrence of a "flip-flop" recombination. We also detected evidence for two distinct IR haplotypes and recombination between them in wild-caught P. estuarinus, as well as extensive intermolecular recombination between single-nucleotide polymorphisms in the LSC region. The chloroplast-like architecture and repeat-mediated mitochondrial recombination we describe here raise fundamental questions regarding the origins and commonness of inverted repeats in cytoplasmic genomes and their role in mitochondrial genome evolution.


Asunto(s)
Genoma del Cloroplasto , Genoma Mitocondrial , Animales , Análisis de Secuencia de ADN , Recombinación Genética , Cloroplastos , Filogenia
4.
Mol Biol Evol ; 38(9): 3581-3592, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-33885820

RESUMEN

How does asexual reproduction influence genome evolution? Although is it clear that genomic structural variation is common and important in natural populations, we know very little about how one of the most fundamental of eukaryotic traits-mode of genomic inheritance-influences genome structure. We address this question with the New Zealand freshwater snail Potamopyrgus antipodarum, which features multiple separately derived obligately asexual lineages that coexist and compete with otherwise similar sexual lineages. We used whole-genome sequencing reads from a diverse set of sexual and asexual individuals to analyze genomic abundance of a critically important gene family, rDNA (the genes encoding rRNAs), that is notable for dynamic and variable copy number. Our genomic survey of rDNA in P. antipodarum revealed two striking results. First, the core histone and 5S rRNA genes occur between tandem copies of the 18S-5.8S-28S gene cluster, a unique architecture for these crucial gene families. Second, asexual P. antipodarum harbor dramatically more rDNA-histone copies than sexuals, which we validated through molecular and cytogenetic analysis. The repeated expansion of this genomic region in asexual P. antipodarum lineages following distinct transitions to asexuality represents a dramatic genome structural change associated with asexual reproduction-with potential functional consequences related to the loss of sexual reproduction.


Asunto(s)
Genoma , Histonas , Animales , Genómica , Histonas/genética , Humanos , Reproducción Asexuada/genética , Caracoles/genética
5.
BMC Genomics ; 20(1): 73, 2019 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-30669991

RESUMEN

BACKGROUND: Although animal mitochondrial DNA sequences are known to evolve rapidly, their gene arrangements often remain unchanged over long periods of evolutionary time. Therefore, comparisons of mitochondrial genomes may result in significant insights into the evolution both of organisms and of genomes. Mammalian mitochondrial genomes recently published in the GenBank database of NCBI show numerous rearrangements in various regions of the genome, from which it may be inferred that the mammalian mitochondrial genome is more dynamic than expected. However, it is alternatively possible that these are errors of annotation and, if so, are misleading our interpretations. In order to verify these possible errors of annotation, we performed a comparative genomic analysis of mammalian mitochondrial genomes available in the NCBI database. RESULTS: Using a combination of bioinformatics methods to carefully examine the mitochondrial gene arrangements in 304 mammalian species, we determined that there are only two sets of gene arrangements, one that is shared by all of the marsupials and another that is shared by all of the monotremes and eutherians, with these two arrangements differing only by the positions of tRNA genes in the region commonly designated as "WANCY" for the genes it comprises. All of the 68 other cases of reported gene rearrangements are errors. We note that there are also numerous errors of impossibly short, incorrect gene annotations, cases where genomes that are reported as complete are actually missing portions of the sequence, and genes that are clearly present but were not annotated in these records. CONCLUSIONS: We judge that the application of simple bioinformatic tools in the verification of gene annotation, particularly for organelle genomes, would be a very useful enhancement for the curation of genome sequences submitted to GenBank.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Genoma Mitocondrial , Anotación de Secuencia Molecular , Análisis de Secuencia de ADN , Animales , Humanos , Alineación de Secuencia
6.
Nature ; 493(7433): 526-31, 2013 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-23254933

RESUMEN

Current genomic perspectives on animal diversity neglect two prominent phyla, the molluscs and annelids, that together account for nearly one-third of known marine species and are important both ecologically and as experimental systems in classical embryology. Here we describe the draft genomes of the owl limpet (Lottia gigantea), a marine polychaete (Capitella teleta) and a freshwater leech (Helobdella robusta), and compare them with other animal genomes to investigate the origin and diversification of bilaterians from a genomic perspective. We find that the genome organization, gene structure and functional content of these species are more similar to those of some invertebrate deuterostome genomes (for example, amphioxus and sea urchin) than those of other protostomes that have been sequenced to date (flies, nematodes and flatworms). The conservation of these genomic features enables us to expand the inventory of genes present in the last common bilaterian ancestor, establish the tripartite diversification of bilaterians using multiple genomic characteristics and identify ancient conserved long- and short-range genetic linkages across metazoans. Superimposed on this broadly conserved pan-bilaterian background we find examples of lineage-specific genome evolution, including varying rates of rearrangement, intron gain and loss, expansions and contractions of gene families, and the evolution of clade-specific genes that produce the unique content of each genome.


Asunto(s)
Tipificación del Cuerpo/genética , Evolución Molecular , Genoma/genética , Sanguijuelas/genética , Moluscos/genética , Filogenia , Poliquetos/genética , Animales , Secuencia Conservada/genética , Genes Homeobox/genética , Ligamiento Genético , Especiación Genética , Humanos , Mutación INDEL/genética , Intrones/genética , Sanguijuelas/anatomía & histología , Moluscos/anatomía & histología , Familia de Multigenes/genética , Poliquetos/anatomía & histología , Sintenía/genética
7.
Mol Ecol ; 26(14): 3663-3675, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28429458

RESUMEN

Reciprocal co-evolving interactions between hosts and parasites are a primary source of strong selection that can promote rapid and often population- or genotype-specific evolutionary change. These host-parasite interactions are also a major source of disease. Despite their importance, very little is known about the genomic basis of co-evolving host-parasite interactions in natural populations, especially in animals. Here, we use gene expression and sequence evolution approaches to take critical steps towards characterizing the genomic basis of interactions between the freshwater snail Potamopyrgus antipodarum and its co-evolving sterilizing trematode parasite, Microphallus sp., a textbook example of natural coevolution. We found that Microphallus-infected P. antipodarum exhibit systematic downregulation of genes relative to uninfected P. antipodarum. The specific genes involved in parasite response differ markedly across lakes, consistent with a scenario where population-level co-evolution is leading to population-specific host-parasite interactions and evolutionary trajectories. We also used an FST -based approach to identify a set of loci that represent promising candidates for targets of parasite-mediated selection across lakes as well as within each lake population. These results constitute the first genomic evidence for population-specific responses to co-evolving infection in the P. antipodarum-Microphallus interaction and provide new insights into the genomic basis of co-evolutionary interactions in nature.


Asunto(s)
Coevolución Biológica , Genética de Población , Interacciones Huésped-Parásitos/genética , Caracoles/genética , Caracoles/parasitología , Trematodos/patogenicidad , Animales , Nueva Zelanda
8.
Genome Res ; 22(3): 498-507, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22128133

RESUMEN

We report here the isolation and sequencing of 10 Y-specific tammar wallaby (Macropus eugenii) BAC clones, revealing five hitherto undescribed tammar wallaby Y genes (in addition to the five genes already described) and several pseudogenes. Some genes on the wallaby Y display testis-specific expression, but most have low widespread expression. All have partners on the tammar X, along with homologs on the human X. Nonsynonymous and synonymous substitution ratios for nine of the tammar XY gene pairs indicate that they are each under purifying selection. All 10 were also identified as being on the Y in Tasmanian devil (Sarcophilus harrisii; a distantly related Australian marsupial); however, seven have been lost from the human Y. Maximum likelihood phylogenetic analyses of the wallaby YX genes, with respective homologs from other vertebrate representatives, revealed that three marsupial Y genes (HCFC1X/Y, MECP2X/Y, and HUWE1X/Y) were members of the ancestral therian pseudoautosomal region (PAR) at the time of the marsupial/eutherian split; three XY pairs (SOX3/SRY, RBMX/Y, and ATRX/Y) were isolated from each other before the marsupial/eutherian split, and the remaining three (RPL10X/Y, PHF6X/Y, and UBA1/UBE1Y) have a more complex evolutionary history. Thus, the small marsupial Y chromosome is surprisingly rich in ancient genes that are retained in at least Australian marsupials and evolved from testis-brain expressed genes on the X.


Asunto(s)
Evolución Molecular , Genes sry , Macropodidae/genética , Cromosoma Y , Animales , Mapeo Cromosómico , Cromosomas Artificiales Bacterianos , Expresión Génica , Biblioteca de Genes , Masculino , Filogenia , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico
9.
BMC Genomics ; 15: 383, 2014 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-24884426

RESUMEN

BACKGROUND: Mosses are the largest of the three extant clades of gametophyte-dominant land plants and remain poorly studied using comparative genomic methods. Major monophyletic moss lineages are characterised by different types of a spore dehiscence apparatus called the peristome, and the most important unsolved problem in higher-level moss systematics is the branching order of these peristomate clades. Organellar genome sequencing offers the potential to resolve this issue through the provision of both genomic structural characters and a greatly increased quantity of nucleotide substitution characters, as well as to elucidate organellar evolution in mosses. We publish and describe the chloroplast and mitochondrial genomes of Tetraphis pellucida, representative of the most phylogenetically intractable and morphologically isolated peristomate lineage. RESULTS: Assembly of reads from Illumina SBS and Pacific Biosciences RS sequencing reveals that the Tetraphis chloroplast genome comprises 127,489 bp and the mitochondrial genome 107,730 bp. Although genomic structures are similar to those of the small number of other known moss organellar genomes, the chloroplast lacks the petN gene (in common with Tortula ruralis) and the mitochondrion has only a non-functional pseudogenised remnant of nad7 (uniquely amongst known moss chondromes). CONCLUSIONS: Structural genomic features exist with the potential to be informative for phylogenetic relationships amongst the peristomate moss lineages, and thus organellar genome sequences are urgently required for exemplars from other clades. The unique genomic and morphological features of Tetraphis confirm its importance for resolving one of the major questions in land plant phylogeny and for understanding the evolution of the peristome, a likely key innovation underlying the diversity of mosses. The functional loss of nad7 from the chondrome is now shown to have occurred independently in all three bryophyte clades as well as in the early-diverging tracheophyte Huperzia squarrosa.


Asunto(s)
Briófitas/genética , Genoma de Planta , Secuencia de Bases , Briófitas/clasificación , Mapeo Cromosómico , Genoma del Cloroplasto , Genoma Mitocondrial , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ARN
10.
Genome Biol Evol ; 16(5)2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38776329

RESUMEN

We have sequenced, assembled, and analyzed the nuclear and mitochondrial genomes and transcriptomes of Potamopyrgus estuarinus and Potamopyrgus kaitunuparaoa, two prosobranch snail species native to New Zealand that together span the continuum from estuary to freshwater. These two species are the closest known relatives of the freshwater species Potamopyrgus antipodarum-a model for studying the evolution of sex, host-parasite coevolution, and biological invasiveness-and thus provide key evolutionary context for understanding its unusual biology. The P. estuarinus and P. kaitunuparaoa genomes are very similar in size and overall gene content. Comparative analyses of genome content indicate that these two species harbor a near-identical set of genes involved in meiosis and sperm functions, including seven genes with meiosis-specific functions. These results are consistent with obligate sexual reproduction in these two species and provide a framework for future analyses of P. antipodarum-a species comprising both obligately sexual and obligately asexual lineages, each separately derived from a sexual ancestor. Genome-wide multigene phylogenetic analyses indicate that P. kaitunuparaoa is likely the closest relative to P. antipodarum. We nevertheless show that there has been considerable introgression between P. estuarinus and P. kaitunuparaoa. That introgression does not extend to the mitochondrial genome, which appears to serve as a barrier to hybridization between P. estuarinus and P. kaitunuparaoa. Nuclear-encoded genes whose products function in joint mitochondrial-nuclear enzyme complexes exhibit similar patterns of nonintrogression, indicating that incompatibilities between the mitochondrial and the nuclear genome may have prevented more extensive gene flow between these two species.


Asunto(s)
Filogenia , Caracoles , Animales , Caracoles/genética , Nueva Zelanda , Introgresión Genética , Evolución Molecular , Genoma Mitocondrial , Genoma
11.
Mol Biol Evol ; 28(1): 583-600, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20805190

RESUMEN

Geraniaceae plastid genomes (plastomes) have experienced a remarkable number of genomic changes. The plastomes of Erodium texanum, Geranium palmatum, and Monsonia speciosa were sequenced and compared with other rosids and the previously published Pelargonium hortorum plastome. Geraniaceae plastomes were found to be highly variable in size, gene content and order, repetitive DNA, and codon usage. Several unique plastome rearrangements include the disruption of two highly conserved operons (S10 and rps2-atpA), and the inverted repeat (IR) region in M. speciosa does not contain all genes in the ribosomal RNA operon. The sequence of M. speciosa is unusually small (128,787 bp); among angiosperm plastomes sequenced to date, only those of nonphotosynthetic species and those that have lost one IR copy are smaller. In contrast, the plastome of P. hortorum is the largest, at 217,942 bp. These genomes have experienced numerous gene and intron losses and partial and complete gene duplications. Some of the losses are shared throughout the family (e.g., trnT-GGU and the introns of rps16 and rpl16); however, other losses are homoplasious (e.g., trnG-UCC intron in G. palmatum and M. speciosa). IR length is also highly variable. The IR in P. hortorum was previously shown to be greatly expanded to 76 kb, and the IR is lost in E. texanum and reduced in G. palmatum (11 kb) and M. speciosa (7 kb). Geraniaceae plastomes contain a high frequency of large repeats (>100 bp) relative to other rosids. Within each plastome, repeats are often located at rearrangement end points and many repeats shared among the four Geraniaceae flank rearrangement end points. GC content is elevated in the genomes and also in coding regions relative to other rosids. Codon usage per amino acid and GC content at third position sites are significantly different for Geraniaceae protein-coding sequences relative to other rosids. Our findings suggest that relaxed selection and/or mutational biases lead to increased GC content, and this in turn altered codon usage. We propose that increases in genomic rearrangements, repetitive DNA, nucleotide substitutions, and GC content may be caused by relaxed selection resulting from improper DNA repair.


Asunto(s)
Codón , Reordenamiento Génico , Genoma de Plastidios , Geraniaceae/genética , Animales , Composición de Base/genética , Secuencia de Bases , ADN de Plantas/genética , Evolución Molecular , Geraniaceae/clasificación , Geraniaceae/citología , Datos de Secuencia Molecular , Filogenia , Secuencias Repetitivas de Ácidos Nucleicos
12.
Sci Rep ; 12(1): 5479, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35361853

RESUMEN

Vertebrate mitochondrial genomes have been extensively studied for genetic and evolutionary purposes, these are normally believed to be extremely conserved, however, different cases of gene rearrangements have been reported. To verify the level of rearrangement and the mitogenome evolution, we performed a comparative genomic analysis of the 2831 vertebrate mitochondrial genomes representing 12 classes available in the NCBI database. Using a combination of bioinformatics methods, we determined there is a high number of errors in the annotation of mitochondrial genes, especially in tRNAs. We determined there is a large variation in the proportion of rearrangements per gene and per taxonomic class, with higher values observed in Actinopteri, Amphibia and Reptilia. We highlight that these are results for currently available vertebrate sequences, so an increase in sequence representativeness in some groups may alter the rearrangement rates, so in a few years it would be interesting to see if these rates are maintained or altered with the new mitogenome sequences. In addition, within each vertebrate class, different patterns in rearrangement proportion with distinct hotspots in the mitochondrial genome were found. We also determined that there are eleven convergence events in gene rearrangement, nine of which are new reports to the scientific community.


Asunto(s)
Evolución Molecular , Genoma Mitocondrial , Animales , Reordenamiento Génico/genética , Genoma Mitocondrial/genética , Genómica , Reptiles/genética
13.
BMC Evol Biol ; 11: 120, 2011 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-21554730

RESUMEN

BACKGROUND: Divergence within cis-regulatory sequences may contribute to the adaptive evolution of gene expression, but functional alleles in these regions are difficult to identify without abundant genomic resources. Among African cichlid fishes, the differential expression of seven opsin genes has produced adaptive differences in visual sensitivity. Quantitative genetic analysis suggests that cis-regulatory alleles near the SWS2-LWS opsins may contribute to this variation. Here, we sequence BACs containing the opsin genes of two cichlids, Oreochromis niloticus and Metriaclima zebra. We use phylogenetic footprinting and shadowing to examine divergence in conserved non-coding elements, promoter sequences, and 3'-UTRs surrounding each opsin in search of candidate cis-regulatory sequences that influence cichlid opsin expression. RESULTS: We identified 20 conserved non-coding elements surrounding the opsins of cichlids and other teleosts, including one known enhancer and a retinal microRNA. Most conserved elements contained computationally-predicted binding sites that correspond to transcription factors that function in vertebrate opsin expression; O. niloticus and M. zebra were significantly divergent in two of these. Similarly, we found a large number of relevant transcription factor binding sites within each opsin's proximal promoter, and identified five opsins that were considerably divergent in both expression and the number of transcription factor binding sites shared between O. niloticus and M. zebra. We also found several microRNA target sites within the 3'-UTR of each opsin, including two 3'-UTRs that differ significantly between O. niloticus and M. zebra. Finally, we examined interspecific divergence among 18 phenotypically diverse cichlids from Lake Malawi for one conserved non-coding element, two 3'-UTRs, and five opsin proximal promoters. We found that all regions were highly conserved with some evidence of CRX transcription factor binding site turnover. We also found three SNPs within two opsin promoters and one non-coding element that had weak association with cichlid opsin expression. CONCLUSIONS: This study is the first to systematically search the opsins of cichlids for putative cis-regulatory sequences. Although many putative regulatory regions are highly conserved across a large number of phenotypically diverse cichlids, we found at least nine divergent sequences that could contribute to opsin expression differences in cis and stand out as candidates for future functional analyses.


Asunto(s)
Cíclidos/genética , Proteínas de Peces/genética , Opsinas/genética , Regiones no Traducidas 3' , Animales , Secuencia de Bases , Datos de Secuencia Molecular , Filogenia , Regiones Promotoras Genéticas , Alineación de Secuencia , Regiones no Traducidas
14.
Proc Natl Acad Sci U S A ; 105(47): 18424-9, 2008 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-19011103

RESUMEN

Angiosperm plastid genomes are generally conserved in gene content and order with rates of nucleotide substitutions for protein-coding genes lower than for nuclear protein-coding genes. A few groups have experienced genomic change, and extreme changes in gene content and order are found within the flowering plant family Geraniaceae. The complete plastid genome sequence of Pelargonium X hortorum (Geraniaceae) reveals the largest and most rearranged plastid genome identified to date. Highly elevated rates of sequence evolution in Geraniaceae mitochondrial genomes have been reported, but rates in Geraniaceae plastid genomes have not been characterized. Analysis of nucleotide substitution rates for 72 plastid genes for 47 angiosperm taxa, including nine Geraniaceae, show that values of dN are highly accelerated in ribosomal protein and RNA polymerase genes throughout the family. Furthermore, dN/dS is significantly elevated in the same two classes of plastid genes as well as in ATPase genes. A relatively high dN/dS ratio could be interpreted as evidence of two phenomena, namely positive or relaxed selection, neither of which is consistent with our current understanding of plastid genome evolution in photosynthetic plants. These analyses are the first to use protein-coding sequences from complete plastid genomes to characterize rates and patterns of sequence evolution for a broad sampling of photosynthetic angiosperms, and they reveal unprecedented accumulation of nucleotide substitutions in Geraniaceae. To explain these remarkable substitution patterns in the highly rearranged Geraniaceae plastid genomes, we propose a model of aberrant DNA repair coupled with altered gene expression.


Asunto(s)
ADN de Plantas/genética , Genoma de Planta , Geraniaceae/genética , Mutación , Plastidios , Geraniaceae/fisiología , Fotosíntesis/genética
15.
Philos Trans R Soc Lond B Biol Sci ; 376(1825): 20200159, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-33813887

RESUMEN

The first animal mitochondrial genomes to be sequenced were of several vertebrates and model organisms, and the consistency of genomic features found has led to a 'textbook description'. However, a more broad phylogenetic sampling of complete animal mitochondrial genomes has found many cases where these features do not exist, and the phylum Mollusca is especially replete with these exceptions. The characterization of full mollusc mitogenomes required considerable effort involving challenging molecular biology, but has created an enormous catalogue of surprising deviations from that textbook description, including wide variation in size, radical genome rearrangements, gene duplications and losses, the introduction of novel genes, and a complex system of inheritance dubbed 'doubly uniparental inheritance'. Here, we review the extraordinary variation in architecture, molecular functioning and intergenerational transmission of molluscan mitochondrial genomes. Such features represent a great potential for the discovery of biological history, processes and functions that are novel for animal mitochondrial genomes. This provides a model system for studying the evolution and the manifold roles that mitochondria play in organismal physiology, and many ways that the study of mitochondrial genomes are useful for phylogeny and population biology. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.


Asunto(s)
Duplicación de Gen , Reordenamiento Génico , Genoma Mitocondrial , Moluscos/genética , Animales , Herencia
16.
BMC Evol Biol ; 10: 321, 2010 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-20969798

RESUMEN

BACKGROUND: Despite considerable progress in our understanding of land plant phylogeny, several nodes in the green tree of life remain poorly resolved. Furthermore, the bulk of currently available data come from only a subset of major land plant clades. Here we examine early land plant evolution using complete plastome sequences including two previously unexamined and phylogenetically critical lineages. To better understand the evolution of land plants and their plastomes, we examined aligned nucleotide sequences, indels, gene and nucleotide composition, inversions, and gene order at the boundaries of the inverted repeats. RESULTS: We present the plastome sequences of Equisetum arvense, a horsetail, and of Isoetes flaccida, a heterosporous lycophyte. Phylogenetic analysis of aligned nucleotides from 49 plastome genes from 43 taxa supported monophyly for the following clades: embryophytes (land plants), lycophytes, monilophytes (leptosporangiate ferns + Angiopteris evecta + Psilotum nudum + Equisetum arvense), and seed plants. Resolution among the four monilophyte lineages remained moderate, although nucleotide analyses suggested that P. nudum and E. arvense form a clade sister to A. evecta + leptosporangiate ferns. Results from phylogenetic analyses of nucleotides were consistent with the distribution of plastome gene rearrangements and with analysis of sequence gaps resulting from insertions and deletions (indels). We found one new indel and an inversion of a block of genes that unites the monilophytes. CONCLUSIONS: Monophyly of monilophytes has been disputed on the basis of morphological and fossil evidence. In the context of a broad sampling of land plant data we find several new pieces of evidence for monilophyte monophyly. Results from this study demonstrate resolution among the four monilophytes lineages, albeit with moderate support; we posit a clade consisting of Equisetaceae and Psilotaceae that is sister to the "true ferns," including Marattiaceae.


Asunto(s)
Equisetum/clasificación , Equisetum/genética , Evolución Molecular , Lycopodiaceae/clasificación , Lycopodiaceae/genética , Filogenia , Plastidios/genética , ADN de Plantas/genética
17.
BMC Genomics ; 11: 440, 2010 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-20642828

RESUMEN

BACKGROUND: Widespread sampling of vertebrates, which comprise the majority of published animal mitochondrial genomes, has led to the view that mitochondrial gene rearrangements are relatively rare, and that gene orders are typically stable across major taxonomic groups. In contrast, more limited sampling within the Phylum Mollusca has revealed an unusually high number of gene order arrangements. Here we provide evidence that the lability of the molluscan mitochondrial genome extends to the family level by describing extensive gene order changes that have occurred within the Vermetidae, a family of sessile marine gastropods that radiated from a basal caenogastropod stock during the Cenozoic Era. RESULTS: Major mitochondrial gene rearrangements have occurred within this family at a scale unexpected for such an evolutionarily young group and unprecedented for any caenogastropod examined to date. We determined the complete mitochondrial genomes of four species (Dendropoma maximum, D. gregarium, Eualetes tulipa, and Thylacodes squamigerus) and the partial mitochondrial genomes of two others (Vermetus erectus and Thylaeodus sp.). Each of the six vermetid gastropods assayed possessed a unique gene order. In addition to the typical mitochondrial genome complement of 37 genes, additional tRNA genes were evident in D. gregarium (trnK) and Thylacodes squamigerus (trnV, trnLUUR). Three pseudogenes and additional tRNAs found within the genome of Thylacodes squamigerus provide evidence of a past duplication event in this taxon. Likewise, high sequence similarities between isoaccepting leucine tRNAs in Thylacodes, Eualetes, and Thylaeodus suggest that tRNA remolding has been rife within this family. While vermetids exhibit gene arrangements diagnostic of this family, they also share arrangements with littorinimorph caenogastropods, with which they have been linked based on sperm morphology and primary sequence-based phylogenies. CONCLUSIONS: We have uncovered major changes in gene order within a family of caenogastropod molluscs that are indicative of a highly dynamic mitochondrial genome. Studies of mitochondrial genomes at such low taxonomic levels should help to illuminate the dynamics of gene order change, since the telltale vestiges of gene duplication, translocation, and remolding have not yet been erased entirely. Likewise, gene order characters may improve phylogenetic hypotheses at finer taxonomic levels than once anticipated and aid in investigating the conditions under which sequence-based phylogenies lack resolution or prove misleading.


Asunto(s)
Reordenamiento Génico , Genoma Mitocondrial/genética , Caracoles/genética , Animales , Composición de Base , Secuencia de Bases , Codón/genética , Duplicación de Gen , Orden Génico/genética , Genómica , Datos de Secuencia Molecular , Filogenia , ARN de Transferencia/genética , Caracoles/clasificación , Caracoles/fisiología
18.
BMC Genomics ; 11: 143, 2010 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-20187961

RESUMEN

BACKGROUND: Tortula ruralis, a widely distributed species in the moss family Pottiaceae, is increasingly used as a model organism for the study of desiccation tolerance and mechanisms of cellular repair. In this paper, we present the chloroplast genome sequence of T. ruralis, only the second published chloroplast genome for a moss, and the first for a vegetatively desiccation-tolerant plant. RESULTS: The Tortula chloroplast genome is approximately 123,500 bp, and differs in a number of ways from that of Physcomitrella patens, the first published moss chloroplast genome. For example, Tortula lacks the approximately 71 kb inversion found in the large single copy region of the Physcomitrella genome and other members of the Funariales. Also, the Tortula chloroplast genome lacks petN, a gene found in all known land plant plastid genomes. In addition, an unusual case of nucleotide polymorphism was discovered. CONCLUSIONS: Although the chloroplast genome of Tortula ruralis differs from that of the only other sequenced moss, Physcomitrella patens, we have yet to determine the biological significance of the differences. The polymorphisms we have uncovered in the sequencing of the genome offer a rare possibility (for mosses) of the generation of DNA markers for fine-level phylogenetic studies, or to investigate individual variation within populations.


Asunto(s)
Briófitas/genética , Genoma del Cloroplasto , Secuencia de Bases , ADN de Cloroplastos/genética , ADN de Plantas/genética , Datos de Secuencia Molecular , Polimorfismo Genético , Alineación de Secuencia , Análisis de Secuencia de ADN
19.
J Mol Evol ; 70(2): 149-66, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20091301

RESUMEN

Plastid genomes of the grasses (Poaceae) are unusual in their organization and rates of sequence evolution. There has been a recent surge in the availability of grass plastid genome sequences, but a comprehensive comparative analysis of genome evolution has not been performed that includes any related families in the Poales. We report on the plastid genome of Typha latifolia, the first non-grass Poales sequenced to date, and we present comparisons of genome organization and sequence evolution within Poales. Our results confirm that grass plastid genomes exhibit acceleration in both genomic rearrangements and nucleotide substitutions. Poaceae have multiple structural rearrangements, including three inversions, three genes losses (accD, ycf1, ycf2), intron losses in two genes (clpP, rpoC1), and expansion of the inverted repeat (IR) into both large and small single-copy regions. These rearrangements are restricted to the Poaceae, and IR expansion into the small single-copy region correlates with the phylogeny of the family. Comparisons of 73 protein-coding genes for 47 angiosperms including nine Poaceae genera confirm that the branch leading to Poaceae has significantly accelerated rates of change relative to other monocots and angiosperms. Furthermore, rates of sequence evolution within grasses are lower, indicating a deceleration during diversification of the family. Overall there is a strong correlation between accelerated rates of genomic rearrangements and nucleotide substitutions in Poaceae, a phenomenon that has been noted recently throughout angiosperms. The cause of the correlation is unknown, but faulty DNA repair has been suggested in other systems including bacterial and animal mitochondrial genomes.


Asunto(s)
Evolución Molecular , Genoma de Plastidios/genética , Poaceae/genética , Typhaceae/genética , Genoma de Planta , Genómica , Modelos Genéticos , Filogenia , Proteínas de Plantas/genética , Homología de Secuencia de Ácido Nucleico
20.
Proc Natl Acad Sci U S A ; 104(49): 19369-74, 2007 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-18048330

RESUMEN

Angiosperms are the largest and most successful clade of land plants with >250,000 species distributed in nearly every terrestrial habitat. Many phylogenetic studies have been based on DNA sequences of one to several genes, but, despite decades of intensive efforts, relationships among early diverging lineages and several of the major clades remain either incompletely resolved or weakly supported. We performed phylogenetic analyses of 81 plastid genes in 64 sequenced genomes, including 13 new genomes, to estimate relationships among the major angiosperm clades, and the resulting trees are used to examine the evolution of gene and intron content. Phylogenetic trees from multiple methods, including model-based approaches, provide strong support for the position of Amborella as the earliest diverging lineage of flowering plants, followed by Nymphaeales and Austrobaileyales. The plastid genome trees also provide strong support for a sister relationship between eudicots and monocots, and this group is sister to a clade that includes Chloranthales and magnoliids. Resolution of relationships among the major clades of angiosperms provides the necessary framework for addressing numerous evolutionary questions regarding the rapid diversification of angiosperms. Gene and intron content are highly conserved among the early diverging angiosperms and basal eudicots, but 62 independent gene and intron losses are limited to the more derived monocot and eudicot clades. Moreover, a lineage-specific correlation was detected between rates of nucleotide substitutions, indels, and genomic rearrangements.


Asunto(s)
Evolución Molecular , Genes de Plantas , Genoma de Plastidios/genética , Magnoliopsida/clasificación , Variación Genética , Magnoliopsida/genética , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA