Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 578(7793): 102-111, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32025015

RESUMEN

The discovery of drivers of cancer has traditionally focused on protein-coding genes1-4. Here we present analyses of driver point mutations and structural variants in non-coding regions across 2,658 genomes from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium5 of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). For point mutations, we developed a statistically rigorous strategy for combining significance levels from multiple methods of driver discovery that overcomes the limitations of individual methods. For structural variants, we present two methods of driver discovery, and identify regions that are significantly affected by recurrent breakpoints and recurrent somatic juxtapositions. Our analyses confirm previously reported drivers6,7, raise doubts about others and identify novel candidates, including point mutations in the 5' region of TP53, in the 3' untranslated regions of NFKBIZ and TOB1, focal deletions in BRD4 and rearrangements in the loci of AKR1C genes. We show that although point mutations and structural variants that drive cancer are less frequent in non-coding genes and regulatory sequences than in protein-coding genes, additional examples of these drivers will be found as more cancer genomes become available.


Asunto(s)
Genoma Humano/genética , Mutación/genética , Neoplasias/genética , Roturas del ADN , Bases de Datos Genéticas , Regulación Neoplásica de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Mutación INDEL
2.
Brief Bioinform ; 24(5)2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37523217

RESUMEN

Annotation of cell-types is a critical step in the analysis of single-cell RNA sequencing (scRNA-seq) data that allows the study of heterogeneity across multiple cell populations. Currently, this is most commonly done using unsupervised clustering algorithms, which project single-cell expression data into a lower dimensional space and then cluster cells based on their distances from each other. However, as these methods do not use reference datasets, they can only achieve a rough classification of cell-types, and it is difficult to improve the recognition accuracy further. To effectively solve this issue, we propose a novel supervised annotation method, scDeepInsight. The scDeepInsight method is capable of performing manifold assignments. It is competent in executing data integration through batch normalization, performing supervised training on the reference dataset, doing outlier detection and annotating cell-types on query datasets. Moreover, it can help identify active genes or marker genes related to cell-types. The training of the scDeepInsight model is performed in a unique way. Tabular scRNA-seq data are first converted to corresponding images through the DeepInsight methodology. DeepInsight can create a trainable image transformer to convert non-image RNA data to images by comprehensively comparing interrelationships among multiple genes. Subsequently, the converted images are fed into convolutional neural networks such as EfficientNet-b3. This enables automatic feature extraction to identify the cell-types of scRNA-seq samples. We benchmarked scDeepInsight with six other mainstream cell annotation methods. The average accuracy rate of scDeepInsight reached 87.5%, which is more than 7% higher compared with the state-of-the-art methods.


Asunto(s)
Aprendizaje Profundo , Análisis de Expresión Génica de una Sola Célula , Algoritmos , Benchmarking , Análisis por Conglomerados , Análisis de Secuencia de ARN , Perfilación de la Expresión Génica
3.
J Hum Genet ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424184

RESUMEN

The field of omics, driven by advances in high-throughput sequencing, faces a data explosion. This abundance of data offers unprecedented opportunities for predictive modeling in precision medicine, but also presents formidable challenges in data analysis and interpretation. Traditional machine learning (ML) techniques have been partly successful in generating predictive models for omics analysis but exhibit limitations in handling potential relationships within the data for more accurate prediction. This review explores a revolutionary shift in predictive modeling through the application of deep learning (DL), specifically convolutional neural networks (CNNs). Using transformation methods such as DeepInsight, omics data with independent variables in tabular (table-like, including vector) form can be turned into image-like representations, enabling CNNs to capture latent features effectively. This approach not only enhances predictive power but also leverages transfer learning, reducing computational time, and improving performance. However, integrating CNNs in predictive omics data analysis is not without challenges, including issues related to model interpretability, data heterogeneity, and data size. Addressing these challenges requires a multidisciplinary approach, involving collaborations between ML experts, bioinformatics researchers, biologists, and medical doctors. This review illuminates these complexities and charts a course for future research to unlock the full predictive potential of CNNs in omics data analysis and related fields.

5.
Brief Bioinform ; 22(6)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34368836

RESUMEN

Artificial intelligence methods offer exciting new capabilities for the discovery of biological mechanisms from raw data because they are able to detect vastly more complex patterns of association that cannot be captured by classical statistical tests. Among these methods, deep neural networks are currently among the most advanced approaches and, in particular, convolutional neural networks (CNNs) have been shown to perform excellently for a variety of difficult tasks. Despite that applications of this type of networks to high-dimensional omics data and, most importantly, meaningful interpretation of the results returned from such models in a biomedical context remains an open problem. Here we present, an approach applying a CNN to nonimage data for feature selection. Our pipeline, DeepFeature, can both successfully transform omics data into a form that is optimal for fitting a CNN model and can also return sets of the most important genes used internally for computing predictions. Within the framework, the Snowfall compression algorithm is introduced to enable more elements in the fixed pixel framework, and region accumulation and element decoder is developed to find elements or genes from the class activation maps. In comparative tests for cancer type prediction task, DeepFeature simultaneously achieved superior predictive performance and better ability to discover key pathways and biological processes meaningful for this context. Capabilities offered by the proposed framework can enable the effective use of powerful deep learning methods to facilitate the discovery of causal mechanisms in high-dimensional biomedical data.


Asunto(s)
Aprendizaje Profundo , Redes Neurales de la Computación , Algoritmos , Humanos
6.
BMC Genomics ; 23(1): 351, 2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35525921

RESUMEN

BACKGROUND: Immune status in the tumor microenvironment is an important determinant of cancer progression and patient prognosis. Although a higher immune activity is often associated with a better prognosis, this trend is not absolute and differs across cancer types. We aimed to give insights into why some cancers do not show better survival despite higher immunity by assessing the relationship between different biological factors, including cytotoxicity, and patient prognosis in various cancer types using RNA-seq data collected by The Cancer Genome Atlas. RESULTS: Results showed that a higher immune activity was associated with worse overall survival in patients with uveal melanoma and low-grade glioma, which are cancers of immune-privileged sites. In these cancers, epithelial or endothelial mesenchymal transition and inflammatory state as well as immune activation had a notable negative correlation with patient survival. Further analysis using additional single-cell data of uveal melanoma and glioma revealed that epithelial or endothelial mesenchymal transition was mainly induced in retinal pigment cells or endothelial cells that comprise the blood-retinal and blood-brain barriers, which are unique structures of the eye and central nervous system, respectively. Inflammation was mainly promoted by macrophages, and their infiltration increased significantly in response to immune activation. Furthermore, we found the expression of inflammatory chemokines, particularly CCL5, was strongly correlated with immune activity and associated with poor survival, particularly in these cancers, suggesting that these inflammatory mediators are potential molecular targets for therapeutics. CONCLUSIONS: In uveal melanoma and low-grade glioma, inflammation from macrophages and epithelial or endothelial mesenchymal transition are particularly associated with a poor prognosis. This implies that they loosen the structures of the blood barrier and impair homeostasis and further recruit immune cells, which could result in a feedback loop of additional inflammatory effects leading to runaway conditions.


Asunto(s)
Glioma , Transcriptoma , Células Endoteliales , Glioma/genética , Humanos , Inflamación , Melanoma , Pronóstico , Microambiente Tumoral/genética , Neoplasias de la Úvea
7.
Int J Cancer ; 146(9): 2488-2497, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32020592

RESUMEN

Metastasis is a major cause of cancer-related mortality, and it is essential to understand how metastasis occurs in order to overcome it. One relevant question is the origin of a metastatic tumor cell population. Although the hypothesis of a single-cell origin for metastasis from a primary tumor has long been prevalent, several recent studies using mouse models have supported a multicellular origin of metastasis. Human bulk whole-exome sequencing (WES) studies also have demonstrated a multiple "clonal" origin of metastasis, with different mutational compositions. Specifically, there has not yet been strong research to determine how many founder cells colonize a metastatic tumor. To address this question, under the metastatic model of "single bottleneck followed by rapid growth," we developed a method to quantify the "founder cell population size" in a metastasis using paired WES data from primary and metachronous metastatic tumors. Simulation studies demonstrated the proposed method gives unbiased results with sufficient accuracy in the range of realistic settings. Applying the proposed method to real WES data from four colorectal cancer patients, all samples supported a multicellular origin of metastasis and the founder size was quantified, ranging from 3 to 17 cells. Such a wide-range of founder sizes estimated by the proposed method suggests that there are large variations in genetic similarity between primary and metastatic tumors in the same subjects, which may explain the observed (dis)similarity of drug responses between tumors.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Variaciones en el Número de Copia de ADN , Secuenciación del Exoma/métodos , Exoma/genética , Mutación , Estudios de Cohortes , Regulación Neoplásica de la Expresión Génica , Humanos , Metástasis de la Neoplasia , Pronóstico
8.
Hum Genet ; 137(6-7): 521-533, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30006735

RESUMEN

Alzheimer's disease (AD) is a common neurological disease that causes dementia in humans. Although the reports of associated pathological genes have been increasing, the molecular mechanism leading to the accumulation of amyloid-ß (Aß) in human brain is still not well understood. To identify novel genes that cause accumulation of Aß in AD patients, we conducted an integrative analysis by combining a human genetic association study and transcriptome analysis in mouse brain. First, we examined genome-wide gene expression levels in the hippocampus, comparing them to amyloid Aß level in mice with mixed genetic backgrounds. Next, based on a GWAS statistics obtained by a previous study with human AD subjects, we obtained gene-based statistics from the SNP-based statistics. We combined p values from the two types of analysis across orthologous gene pairs in human and mouse into one p value for each gene to evaluate AD susceptibility. As a result, we found five genes with significant p values in this integrated analysis among the 373 genes analyzed. We also examined the gene expression level of these five genes in the hippocampus of independent human AD cases and control subjects. Two genes, LBH and SHF, showed lower expression levels in AD cases than control subjects. This is consistent with the gene expression levels of both the genes in mouse which were negatively correlated with Aß accumulation. These results, obtained from the integrative approach, suggest that LBH and SHF are associated with the AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Péptidos y Proteínas de Señalización Intracelular , Proteínas Nucleares , Polimorfismo de Nucleótido Simple , Transcriptoma , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Proteínas de Ciclo Celular , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Péptidos y Proteínas de Señalización Intracelular/biosíntesis , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Transgénicos , Proteínas Nucleares/genética , Factores de Transcripción
9.
J Hum Genet ; 63(9): 957-963, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29907875

RESUMEN

Microcephaly-capillary malformation syndrome is a congenital and neurodevelopmental disorder caused by biallelic mutations in the STAMBP gene. Here we identify the novel homozygous mutation located in the SH3 binding motif of STAMBP (NM_006463.4) (c.707C>T: p.Ser236Phe) through whole-exome sequencing. The case patient was a 2-year-old boy showing severe global developmental delay, progressive microcephaly, refractory seizures, dysmorphic facial features, and multiple capillary malformations. Immunoblot analysis of patient-derived lymphoblastoid cell lines (LCLs) revealed a severe reduction in STAMBP expression, indicating that Ser236Phe induces protein instability. STAMBP interacts with the SH3 domain of STAM and transduces downstream signals from the Jaks-STAM complex. The substitution of Ser236Phe found in the case patient was located in the SH3-binding motif, and we propose the mutation may block STAM binding and subsequently induce STAMBP degradation. Contrary to previously reported STAMBP mutations, the Ser236Phe mutation did not lead to constitutive activation of the PI3K-AKT-mTOR pathway in patient-derived LCLs, as indicated by the expression of phosphorylated S6 ribosomal protein, suggesting that it is not the major pathomechanism underlying the disorder in this patient.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte , Homocigoto , Microcefalia , Mutación Missense , Transducción de Señal , Ubiquitina Tiolesterasa , Dominios Homologos src , Secuencias de Aminoácidos , Preescolar , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Humanos , Masculino , Microcefalia/genética , Microcefalia/metabolismo , Microcefalia/patología , Síndrome , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo
10.
J Hepatol ; 66(2): 363-373, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27742377

RESUMEN

BACKGROUND & AIMS: Patients with hepatocellular carcinoma (HCC) have a high-risk of multi-centric (MC) tumor occurrence due to a strong carcinogenic background in the liver. In addition, they have a high risk of intrahepatic metastasis (IM). Liver tumors withIM or MC are profoundly different in their development and clinical outcome. However, clinically or pathologically discriminating between IM and MC can be challenging. This study investigated whether IM or MC could be diagnosed at the molecular level. METHODS: We performed whole genome and RNA sequencing analyses of 49 tumors including two extra-hepatic metastases, and one nodule-in-nodule tumor from 23 HCC patients. RESULTS: Sequencing-based molecular diagnosis using somatic single nucleotide variation information showed higher sensitivity compared to previous techniques due to the inclusion of a larger number of mutation events. This proved useful in cases, which showed inconsistent clinical diagnoses. In addition, whole genome sequencing offered advantages in profiling of other genetic alterations, such as structural variations, copy number alterations, and variant allele frequencies, and helped to confirm the IM/MCdiagnosis. Divergent alterations between IM tumors with sorafenib treatment, long time-intervals, or tumor-in-tumor nodules indicated high intra-tumor heterogeneity, evolution, and clonal switching of liver cancers. CONCLUSIONS: It is important to analyze the differences between IM tumors, in addition to IM/MC diagnosis, before selecting a therapeutic strategy for multiple tumors in the liver. LAY SUMMARY: Whole genome sequencing of multiple liver tumors enabled the accuratediagnosis ofmulti-centric occurrence and intrahepatic metastasis using somatic single nucleotide variation information. In addition, genetic discrepancies between tumors help us to understand the physical changes during recurrence and cancer spread.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Metástasis de la Neoplasia , Neoplasias Primarias Múltiples , Adulto , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/terapia , Variaciones en el Número de Copia de ADN , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Japón , Hígado/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/terapia , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Metástasis de la Neoplasia/terapia , Neoplasias Primarias Múltiples/genética , Neoplasias Primarias Múltiples/patología , Neoplasias Primarias Múltiples/terapia , Selección de Paciente , Secuenciación Completa del Genoma/métodos
11.
Am J Med Genet A ; 173(10): 2690-2696, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28777490

RESUMEN

Intellectual disability (ID) is one of neurodevelopmental disorders characterized by serious defects in both intelligence and adaptive behavior. Although it has been suggested that genetic aberrations associated with the process of cell division underlie ID, the cytological evidence for mitotic defects in actual patient's cells is rarely reported. Here, we report a novel mutation in the STARD9 (also known as KIF16A) gene found in a patient with severe ID, characteristic features, epilepsy, acquired microcephaly, and blindness. Using whole-exome sequence analysis, we sequenced potential candidate genes in the patient. We identified a homozygous single-nucleotide deletion creating a premature stop codon in the STARD9 gene. STARD9 encodes a 4,700 amino acid protein belonging to the kinesin superfamily. Depletion of STARD9 or overexpression of C-terminally truncated STARD9 mutants were known to induce spindle assembly defects in human culture cells. To determine cytological features in the patient cells, we isolated lymphoblast cells from the patient, and performed immunofluorescence analysis. Remarkably, mitotic defects, including multipolar spindle formation, fragmentation of pericentriolar materials and centrosome amplification, were observed in the cells. Taken together, our findings raise the possibility that controlled expression of full-length STARD9 is necessary for proper spindle assembly in cell division during human development. We propose that mutations in STARD9 result in abnormal spindle morphology and cause a novel genetic syndrome with ID.


Asunto(s)
Proteínas Portadoras/genética , Mutación del Sistema de Lectura , Discapacidad Intelectual/patología , Mitosis/genética , Huso Acromático/patología , Centrosoma , Niño , Femenino , Humanos , Discapacidad Intelectual/genética , Huso Acromático/genética , Síndrome
12.
BMC Bioinformatics ; 17(1): 319, 2016 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-27553625

RESUMEN

BACKGROUND: Biological/genetic data is a complex mix of various forms or topologies which makes it quite difficult to analyze. An abundance of such data in this modern era requires the development of sophisticated statistical methods to analyze it in a reasonable amount of time. In many biological/genetic analyses, such as genome-wide association study (GWAS) analysis or multi-omics data analysis, it is required to cluster the plethora of data into sub-categories to understand the subtypes of populations, cancers or any other diseases. Traditionally, the k-means clustering algorithm is a dominant clustering method. This is due to its simplicity and reasonable level of accuracy. Many other clustering methods, including support vector clustering, have been developed in the past, but do not perform well with the biological data, either due to computational reasons or failure to identify clusters. RESULTS: The proposed SIML clustering algorithm has been tested on microarray datasets and SNP datasets. It has been compared with a number of clustering algorithms. On MLL datasets, SIML achieved highest clustering accuracy and rand score on 4/9 cases; similarly on SRBCT dataset, it got for 3/5 cases; on ALL subtype it got highest clustering accuracy for 5/7 cases and highest rand score for 4/7 cases. In addition, SIML overall clustering accuracy on a 3 cluster problem using SNP data were 97.3, 94.7 and 100 %, respectively, for each of the clusters. CONCLUSIONS: In this paper, considering the nature of biological data, we proposed a maximum likelihood clustering approach using a stepwise iterative procedure. The advantage of this proposed method is that it not only uses the distance information, but also incorporate variance information for clustering. This method is able to cluster when data appeared in overlapping and complex forms. The experimental results illustrate its performance and usefulness over other clustering methods. A Matlab package of this method (SIML) is provided at the web-link http://www.riken.jp/en/research/labs/ims/med_sci_math/ .


Asunto(s)
Algoritmos , Perfilación de la Expresión Génica , Polimorfismo de Nucleótido Simple , Análisis por Conglomerados , Humanos , Funciones de Verosimilitud , Análisis de Secuencia por Matrices de Oligonucleótidos
13.
Sci Rep ; 14(1): 12851, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834670

RESUMEN

Tabular data analysis is a critical task in various domains, enabling us to uncover valuable insights from structured datasets. While traditional machine learning methods can be used for feature engineering and dimensionality reduction, they often struggle to capture the intricate relationships and dependencies within real-world datasets. In this paper, we present Multi-representation DeepInsight (MRep-DeepInsight), a novel extension of the DeepInsight method designed to enhance the analysis of tabular data. By generating multiple representations of samples using diverse feature extraction techniques, our approach is able to capture a broader range of features and reveal deeper insights. We demonstrate the effectiveness of MRep-DeepInsight on single-cell datasets, Alzheimer's data, and artificial data, showcasing an improved accuracy over the original DeepInsight approach and machine learning methods like random forest, XGBoost, LightGBM, FT-Transformer and L2-regularized logistic regression. Our results highlight the value of incorporating multiple representations for robust and accurate tabular data analysis. By leveraging the power of diverse representations, MRep-DeepInsight offers a promising new avenue for advancing decision-making and scientific discovery across a wide range of fields.

14.
Sci Rep ; 13(1): 2483, 2023 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-36774402

RESUMEN

Modern oncology offers a wide range of treatments and therefore choosing the best option for particular patient is very important for optimal outcome. Multi-omics profiling in combination with AI-based predictive models have great potential for streamlining these treatment decisions. However, these encouraging developments continue to be hampered by very high dimensionality of the datasets in combination with insufficiently large numbers of annotated samples. Here we proposed a novel deep learning-based method to predict patient-specific anticancer drug response from three types of multi-omics data. The proposed DeepInsight-3D approach relies on structured data-to-image conversion that then allows use of convolutional neural networks, which are particularly robust to high dimensionality of the inputs while retaining capabilities to model highly complex relationships between variables. Of particular note, we demonstrate that in this formalism additional channels of an image can be effectively used to accommodate data from different omics layers while implicitly encoding the connection between them. DeepInsight-3D was able to outperform other state-of-the-art methods applied to this task. The proposed improvements can facilitate the development of better personalized treatment strategies for different cancers in the future.


Asunto(s)
Antineoplásicos , Aprendizaje Profundo , Neoplasias , Humanos , Multiómica , Neoplasias/tratamiento farmacológico , Redes Neurales de la Computación , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
15.
iScience ; 26(5): 106640, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37250307

RESUMEN

Accumulating evidence indicates that long intergenic non-coding RNAs (lincRNAs) show more tissue-specific expression patterns than protein-coding genes (PCGs). However, although lincRNAs are subject to canonical transcriptional regulation like PCGs, the molecular basis for the specificity of their expression patterns remains unclear. Here, using expression data and coordinates of topologically associating domains (TADs) in human tissues, we show that lincRNA loci are significantly enriched in the more internal region of TADs compared to PCGs and that lincRNAs within TADs have higher tissue specificity than those outside TADs. Based on these, we propose an analytical framework to interpret transcriptional status using lincRNA as an indicator. We applied it to hypertrophic cardiomyopathy data and found disease-specific transcriptional regulation: ectopic expression of keratin at the TAD level and derepression of myocyte differentiation-related genes by E2F1 with down-regulation of LINC00881. Our results provide understanding of the function and regulation of lincRNAs according to genomic structure.

16.
iScience ; 25(2): 103740, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35128352

RESUMEN

Elimination of cancerous cells by the immune system is an important mechanism of protection from cancer, however, its effectiveness can be reduced owing to development of resistance and evasion. To understand the systemic immune response in advanced untreated primary colorectal cancer, we analyze immune subtypes and immune evasion via neoantigen-related mechanisms. We identify a distinctive cancer subtype characterized by immune evasion and very poor overall survival. This subtype has less clonal highly expressed neoantigens and high chromosomal instability, resulting in adaptive immune resistance mediated by the immune checkpoint molecules and neoantigen presentation disorders. We also observe that neoantigen depletion caused by immunoediting and high clonal neoantigen load are correlated with a good overall survival. Our results indicate that the status of the tumor microenvironment and neoantigen composition are promising new prognostic biomarkers with potential relevance for treatment plan decisions in advanced CRC.

17.
BMC Genomics ; 11: 539, 2010 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-20923558

RESUMEN

BACKGROUND: The genomes of salmonids are considered pseudo-tetraploid undergoing reversion to a stable diploid state. Given the genome duplication and extensive biological data available for salmonids, they are excellent model organisms for studying comparative genomics, evolutionary processes, fates of duplicated genes and the genetic and physiological processes associated with complex behavioral phenotypes. The evolution of the tetrapod hemoglobin genes is well studied; however, little is known about the genomic organization and evolution of teleost hemoglobin genes, particularly those of salmonids. The Atlantic salmon serves as a representative salmonid species for genomics studies. Given the well documented role of hemoglobin in adaptation to varied environmental conditions as well as its use as a model protein for evolutionary analyses, an understanding of the genomic structure and organization of the Atlantic salmon α and ß hemoglobin genes is of great interest. RESULTS: We identified four bacterial artificial chromosomes (BACs) comprising two hemoglobin gene clusters spanning the entire α and ß hemoglobin gene repertoire of the Atlantic salmon genome. Their chromosomal locations were established using fluorescence in situ hybridization (FISH) analysis and linkage mapping, demonstrating that the two clusters are located on separate chromosomes. The BACs were sequenced and assembled into scaffolds, which were annotated for putatively functional and pseudogenized hemoglobin-like genes. This revealed that the tail-to-tail organization and alternating pattern of the α and ß hemoglobin genes are well conserved in both clusters, as well as that the Atlantic salmon genome houses substantially more hemoglobin genes, including non-Bohr ß globin genes, than the genomes of other teleosts that have been sequenced. CONCLUSIONS: We suggest that the most parsimonious evolutionary path leading to the present organization of the Atlantic salmon hemoglobin genes involves the loss of a single hemoglobin gene cluster after the whole genome duplication (WGD) at the base of the teleost radiation but prior to the salmonid-specific WGD, which then produced the duplicated copies seen today. We also propose that the relatively high number of hemoglobin genes as well as the presence of non-Bohr ß hemoglobin genes may be due to the dynamic life history of salmon and the diverse environmental conditions that the species encounters.Data deposition: BACs S0155C07 and S0079J05 (fps135): GenBank GQ898924; BACs S0055H05 and S0014B03 (fps1046): GenBank GQ898925.


Asunto(s)
Evolución Molecular , Genoma/genética , Hemoglobinas/genética , Salmo salar/genética , Animales , Océano Atlántico , Mapeo Cromosómico , Cromosomas Artificiales Bacterianos/genética , Secuencia Conservada , Femenino , Orden Génico/genética , Ligamiento Genético , Cariotipificación , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Familia de Multigenes , Filogenia , Sintenía/genética , Transcripción Genética , Xenopus/genética
18.
Alzheimers Res Ther ; 12(1): 145, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33172501

RESUMEN

BACKGROUND: Mild cognitive impairment (MCI) is a precursor to Alzheimer's disease (AD), but not all MCI patients develop AD. Biomarkers for early detection of individuals at high risk for MCI-to-AD conversion are urgently required. METHODS: We used blood-based microRNA expression profiles and genomic data of 197 Japanese MCI patients to construct a prognosis prediction model based on a Cox proportional hazard model. We examined the biological significance of our findings with single nucleotide polymorphism-microRNA pairs (miR-eQTLs) by focusing on the target genes of the miRNAs. We investigated functional modules from the target genes with the occurrence of hub genes though a large-scale protein-protein interaction network analysis. We further examined the expression of the genes in 610 blood samples (271 ADs, 248 MCIs, and 91 cognitively normal elderly subjects [CNs]). RESULTS: The final prediction model, composed of 24 miR-eQTLs and three clinical factors (age, sex, and APOE4 alleles), successfully classified MCI patients into low and high risk of MCI-to-AD conversion (log-rank test P = 3.44 × 10-4 and achieved a concordance index of 0.702 on an independent test set. Four important hub genes associated with AD pathogenesis (SHC1, FOXO1, GSK3B, and PTEN) were identified in a network-based meta-analysis of miR-eQTL target genes. RNA-seq data from 610 blood samples showed statistically significant differences in PTEN expression between MCI and AD and in SHC1 expression between CN and AD (PTEN, P = 0.023; SHC1, P = 0.049). CONCLUSIONS: Our proposed model was demonstrated to be effective in MCI-to-AD conversion prediction. A network-based meta-analysis of miR-eQTL target genes identified important hub genes associated with AD pathogenesis. Accurate prediction of MCI-to-AD conversion would enable earlier intervention for MCI patients at high risk, potentially reducing conversion to AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , MicroARNs , Anciano , Enfermedad de Alzheimer/genética , Biomarcadores , Disfunción Cognitiva/genética , Progresión de la Enfermedad , Humanos , MicroARNs/genética , Pronóstico
19.
Diabetes Res Clin Pract ; 169: 108461, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32971154

RESUMEN

AIMS: Monogenic diabetes is clinically heterogeneous and differs from common forms of diabetes (type 1 and 2). We aimed to investigate the clinical usefulness of a comprehensive genetic testing system, comprised of targeted next-generation sequencing (NGS) with phenotype-driven bioinformatics analysis in patients with monogenic diabetes, which uses patient genotypic and phenotypic data to prioritize potentially causal variants. METHODS: We performed targeted NGS of 383 genes associated with monogenic diabetes or common forms of diabetes in 13 Japanese patients with suspected (n = 10) or previously diagnosed (n = 3) monogenic diabetes or severe insulin resistance. We performed in silico structural analysis and phenotype-driven bioinformatics analysis of candidate variants from NGS data. RESULTS: Among the patients suspected having monogenic diabetes or insulin resistance, we diagnosed 3 patients as subtypes of monogenic diabetes due to disease-associated variants of INSR, LMNA, and HNF1B. Additionally, in 3 other patients, we detected rare variants with potential phenotypic effects. Notably, we identified a novel missense variant in TBC1D4 and an MC4R variant, which together may cause a mixed phenotype of severe insulin resistance. CONCLUSIONS: This comprehensive approach could assist in the early diagnosis of patients with monogenic diabetes and facilitate the provision of tailored therapy.


Asunto(s)
Diabetes Mellitus/diagnóstico , Diabetes Mellitus/genética , Pruebas Genéticas/métodos , Resistencia a la Insulina/genética , Adolescente , Adulto , Anciano , Biología Computacional , Femenino , Proteínas Activadoras de GTPasa/genética , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Japón , Masculino , Tamizaje Masivo/métodos , Persona de Mediana Edad , Mutación Missense , Fenotipo , Adulto Joven
20.
Trends Genet ; 22(9): 491-500, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16860433

RESUMEN

Cilia are slender microtubule-based appendages that emanate from the surfaces of a large proportion of eukaryotic cells. The motile and non-motile forms of cilia represent bona fide organelles comprising distinct repertoires of proteins that serve specific roles in locomotion or fluid movement, and sense chemical or physical extracellular cues. Owing in part to the growing number of genes associated with ciliary disorders, such as polycystic kidney disease and Bardet-Biedl syndrome, there has been a recent profusion of studies aimed at unveiling the protein makeup of cilia. The approaches used are complementary, involving several different organisms and spanning the fields of bioinformatics, genomics and proteomics. Here we review these studies and assess the various data sets to help define a comprehensive ciliary proteome, or 'ciliome'. We have compiled a cilia protein database that includes known cilia-associated proteins and numerous putative ciliary proteins including RAB-like small GTPases, which might be implicated in vesicular trafficking, and the microtubule-binding protein MIP-T3, some of which might be associated with ciliopathies.


Asunto(s)
Cilios/fisiología , Animales , Cilios/química , Cilios/metabolismo , Cilios/patología , Biología Computacional/métodos , Genómica/métodos , Humanos , Modelos Biológicos , Orgánulos/fisiología , Proteoma/análisis , Proteómica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA