Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37298141

RESUMEN

Due to the paucity of targetable antigens, triple-negative breast cancer (TNBC) remains a challenging subtype of breast cancer to treat. In this study, we developed and evaluated a chimeric antigen receptor (CAR) T cell-based treatment modality for TNBC by targeting stage-specific embryonic antigen 4 (SSEA-4), a glycolipid whose overexpression in TNBC has been correlated with metastasis and chemoresistance. To delineate the optimal CAR configuration, a panel of SSEA-4-specific CARs containing alternative extracellular spacer domains was constructed. The different CAR constructs mediated antigen-specific T cell activation characterized by degranulation of T cells, secretion of inflammatory cytokines, and killing of SSEA-4-expressing target cells, but the extent of this activation differed depending on the length of the spacer region. Adoptive transfer of the CAR-engineered T cells into mice with subcutaneous TNBC xenografts mediated a limited antitumor effect but induced severe toxicity symptoms in the cohort receiving the most bioactive CAR variant. We found that progenitor cells in the lung and bone marrow express SSEA-4 and are likely co-targeted by the CAR T cells. Thus, this study has revealed serious adverse effects that raise safety concerns for SSEA-4-directed CAR therapies because of the risk of eliminating vital cells with stem cell properties.


Asunto(s)
Receptores Quiméricos de Antígenos , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Neoplasias de la Mama Triple Negativas/patología , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Linfocitos T , Ensayos Antitumor por Modelo de Xenoinjerto , Receptores de Antígenos de Linfocitos T , Línea Celular Tumoral
2.
Nat Immunol ; 11(11): 1057-62, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20935646

RESUMEN

After being activated by antigen, helper T lymphocytes switch from a resting state to clonal expansion. This switch requires inactivation of the transcription factor Foxo1, a suppressor of proliferation expressed in resting helper T lymphocytes. In the early antigen-dependent phase of expansion, Foxo1 is inactivated by antigen receptor-mediated post-translational modifications. Here we show that in the late phase of expansion, Foxo1 was no longer post-translationally regulated but was inhibited post-transcriptionally by the interleukin 2 (IL-2)-induced microRNA miR-182. Specific inhibition of miR-182 in helper T lymphocytes limited their population expansion in vitro and in vivo. Our results demonstrate a central role for miR-182 in the physiological regulation of IL-2-driven helper T cell-mediated immune responses and open new therapeutic possibilities.


Asunto(s)
Interleucina-2/inmunología , MicroARNs/inmunología , Linfocitos T Colaboradores-Inductores/citología , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Artritis/inmunología , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
3.
Mol Psychiatry ; 26(11): 6125-6148, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34188164

RESUMEN

While the transcription factor NEUROD2 has recently been associated with epilepsy, its precise role during nervous system development remains unclear. Using a multi-scale approach, we set out to understand how Neurod2 deletion affects the development of the cerebral cortex in mice. In Neurod2 KO embryos, cortical projection neurons over-migrated, thereby altering the final size and position of layers. In juvenile and adults, spine density and turnover were dysregulated in apical but not basal compartments in layer 5 neurons. Patch-clamp recordings in layer 5 neurons of juvenile mice revealed increased intrinsic excitability. Bulk RNA sequencing showed dysregulated expression of many genes associated with neuronal excitability and synaptic function, whose human orthologs were strongly associated with autism spectrum disorders (ASD). At the behavior level, Neurod2 KO mice displayed social interaction deficits, stereotypies, hyperactivity, and occasionally spontaneous seizures. Mice heterozygous for Neurod2 had similar defects, indicating that Neurod2 is haploinsufficient. Finally, specific deletion of Neurod2 in forebrain excitatory neurons recapitulated cellular and behavioral phenotypes found in constitutive KO mice, revealing the region-specific contribution of dysfunctional Neurod2 in symptoms. Informed by these neurobehavioral features in mouse mutants, we identified eleven patients from eight families with a neurodevelopmental disorder including intellectual disability and ASD associated with NEUROD2 pathogenic mutations. Our findings demonstrate crucial roles for Neurod2 in neocortical development, whose alterations can cause neurodevelopmental disorders including intellectual disability and ASD.


Asunto(s)
Trastorno Autístico , Neuropéptidos , Animales , Trastorno Autístico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Corteza Cerebral/metabolismo , Humanos , Ratones , Neuronas/metabolismo , Neuropéptidos/metabolismo , Prosencéfalo/metabolismo , Factores de Transcripción/metabolismo
4.
Development ; 145(6)2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29467240

RESUMEN

The intestine is maintained by stem cells located at the base of crypts and distinguished by the expression of LGR5. Genetically engineered mouse models have provided a wealth of information about intestinal stem cells, whereas less is known about human intestinal stem cells owing to difficulty detecting and isolating these cells. We established an organoid repository from patient-derived adenomas, adenocarcinomas and normal colon, which we analyzed for variants in 71 colorectal cancer (CRC)-associated genes. Normal and neoplastic colon tissue organoids were analyzed by immunohistochemistry and fluorescent-activated cell sorting for LGR5. LGR5-positive cells were isolated from four adenoma organoid lines and were subjected to RNA sequencing. We found that LGR5 expression in the epithelium and stroma was associated with tumor stage, and by integrating functional experiments with LGR5-sorted cell RNA sequencing data from adenoma and normal organoids, we found correlations between LGR5 and CRC-specific genes, including dickkopf WNT signaling pathway inhibitor 4 (DKK4) and SPARC-related modular calcium binding 2 (SMOC2). Collectively, this work provides resources, methods and new markers to isolate and study stem cells in human tissue homeostasis and carcinogenesis.


Asunto(s)
Adenoma/metabolismo , Colon/metabolismo , Neoplasias del Colon/metabolismo , Mucosa Intestinal/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Adenoma/genética , Línea Celular Tumoral , Colon/patología , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Citometría de Flujo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunohistoquímica , Mucosa Intestinal/citología , Organoides/metabolismo , Transducción de Señal
5.
J Neurosci Res ; 99(9): 2228-2249, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34060113

RESUMEN

The formation of the cerebellum is highly coordinated to obtain its characteristic morphology and all cerebellar cell types. During mouse postnatal development, cerebellar progenitors with astroglial-like characteristics generate mainly astrocytes and oligodendrocytes. However, a subset of astroglial-like progenitors found in the prospective white matter (PWM) produces astroglia and interneurons. Characterizing these cerebellar astroglia-like progenitors and distinguishing their developmental fates is still elusive. Here, we reveal that astrocyte cell surface antigen-2 (ACSA-2), lately identified as ATPase, Na+/K+ transporting, beta 2 polypeptide, is expressed by glial precursors throughout postnatal cerebellar development. In contrast to common astrocyte markers, ACSA-2 appears on PWM cells but is absent on Bergmann glia (BG) precursors. In the adult cerebellum, ACSA-2 is broadly expressed extending to velate astrocytes in the granular layer, white matter astrocytes, and to a lesser extent to BG. Cell transplantation and transcriptomic analysis revealed that marker staining discriminates two postnatal progenitor pools. One subset is defined by the co-expression of ACSA-2 and GLAST and the expression of markers typical of parenchymal astrocytes. These are PWM precursors that are exclusively gliogenic. They produce predominantly white matter and granular layer astrocytes. Another subset is constituted by GLAST positive/ACSA-2 negative precursors that express neurogenic and BG-like progenitor genes. This population displays multipotency and gives rise to interneurons besides all glial types, including BG. In conclusion, this work reports about ACSA-2, a marker that in combination with GLAST enables for the discrimination and isolation of multipotent and glia-committed progenitors, which generate different types of cerebellar astrocytes.


Asunto(s)
Antígenos de Superficie/análisis , Cerebelo/química , Cerebelo/citología , Transportador 1 de Aminoácidos Excitadores/análisis , Células Madre Multipotentes/química , Neuroglía/química , Animales , Animales Recién Nacidos , Femenino , Separación Inmunomagnética/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuroglía/clasificación , Análisis de Secuencia de ARN/métodos
6.
Development ; 144(21): 3968-3977, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28982684

RESUMEN

In vivo brain electroporation of DNA expression vectors is a widely used method for lineage and gene function studies in the developing and postnatal brain. However, transfection efficiency of DNA is limited and adult brain tissue is refractory to electroporation. Here, we present a systematic study of mRNA as a vector for acute genetic manipulation in the developing and adult brain. We demonstrate that mRNA electroporation is far more efficient than DNA electroporation, and leads to faster and more homogeneous protein expression in vivo Importantly, mRNA electroporation allows the manipulation of neural stem cells and postmitotic neurons in the adult brain using minimally invasive procedures. Finally, we show that this approach can be efficiently used for functional studies, as exemplified by transient overexpression of the neurogenic factor Myt1l and by stably inactivating Dicer nuclease in vivo in adult born olfactory bulb interneurons and in fully integrated cortical projection neurons.


Asunto(s)
Diferenciación Celular , Electroporación/métodos , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Transfección/métodos , Animales , Animales Recién Nacidos , Compartimento Celular , Diferenciación Celular/genética , Femenino , Regulación de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Integrasas/metabolismo , Masculino , Ratones , Células-Madre Neurales/citología , Neuronas/citología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Recombinación Genética , Factores de Tiempo , Transgenes
7.
Proc Natl Acad Sci U S A ; 114(7): E1234-E1242, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28137879

RESUMEN

Medium spiny neurons (MSNs) are a key population in the basal ganglia network, and their degeneration causes a severe neurodegenerative disorder, Huntington's disease. Understanding how ventral neuroepithelial progenitors differentiate into MSNs is critical for regenerative medicine to develop specific differentiation protocols using human pluripotent stem cells. Studies performed in murine models have identified some transcriptional determinants, including GS Homeobox 2 (Gsx2) and Early B-cell factor 1 (Ebf1). Here, we have generated human embryonic stem (hES) cell lines inducible for these transcription factors, with the aims of (i) studying their biological role in human neural progenitors and (ii) incorporating TF conditional expression in a developmental-based protocol for generating MSNs from hES cells. Using this approach, we found that Gsx2 delays cell-cycle exit and reduces Pax6 expression, whereas Ebf1 promotes neuronal differentiation. Moreover, we found that Gsx2 and Ebf1 combined overexpression in hES cells achieves high yields of MSNs, expressing Darpp32 and Ctip2, in vitro as well in vivo after transplantation. We show that hES-derived striatal progenitors can be transplanted in animal models and can differentiate and integrate into the host, extending fibers over a long distance.


Asunto(s)
Diferenciación Celular/genética , Proteínas de Homeodominio/genética , Células Madre Embrionarias Humanas/metabolismo , Neuronas/metabolismo , Transactivadores/genética , Animales , Ciclo Celular/genética , Línea Celular , Fosfoproteína 32 Regulada por Dopamina y AMPc/genética , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Expresión Génica , Proteínas de Homeodominio/metabolismo , Células Madre Embrionarias Humanas/trasplante , Humanos , Ratones Desnudos , Neuronas/citología , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Trasplante de Células Madre/métodos , Telencéfalo/citología , Transactivadores/metabolismo , Trasplante Heterólogo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
8.
Nat Methods ; 13(5): 446-52, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27088312

RESUMEN

We report that the efficiency of reprogramming human somatic cells to induced pluripotent stem cells (hiPSCs) can be dramatically improved in a microfluidic environment. Microliter-volume confinement resulted in a 50-fold increase in efficiency over traditional reprogramming by delivery of synthetic mRNAs encoding transcription factors. In these small volumes, extracellular components of the TGF-ß and other signaling pathways exhibited temporal regulation that appears critical to acquisition of pluripotency. The high quality and purity of the resulting hiPSCs (µ-hiPSCs) allowed direct differentiation into functional hepatocyte- and cardiomyocyte-like cells in the same platform without additional expansion.


Asunto(s)
Técnicas de Reprogramación Celular/métodos , Reprogramación Celular/genética , Células Madre Pluripotentes Inducidas/citología , Microfluídica/métodos , Células Cultivadas , Fibroblastos/citología , Humanos , ARN Mensajero/genética
9.
J Neurosci ; 37(44): 10611-10623, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28972122

RESUMEN

In the postnatal forebrain regionalized neural stem cells along the ventricular walls produce olfactory bulb (OB) interneurons with varying neurotransmitter phenotypes and positions. To understand the molecular basis of this region-specific variability we analyzed gene expression in the postnatal dorsal and lateral lineages in mice of both sexes from stem cells to neurons. We show that both lineages maintain transcription factor signatures of their embryonic site of origin, the pallium and subpallium. However, additional factors, including Zic1 and Zic2, are postnatally expressed in the dorsal stem cell compartment and maintained in the lineage that generates calretinin-positive GABAergic neurons for the OB. Functionally, we show that Zic1 and Zic2 induce the generation of calretinin-positive neurons while suppressing dopaminergic fate in the postnatal dorsal lineage. We investigated the evolutionary conservation of the dopaminergic repressor function of Zic proteins and show that it is already present in C. elegansSIGNIFICANCE STATEMENT The vertebrate brain generates thousands of different neuron types. In this work we investigate the molecular mechanisms underlying this variability. Using a genomics approach we identify the transcription factor signatures of defined neural stem cells and neuron populations. Based thereon we show that two related transcription factors, Zic1 and Zic2, are essential to control the balance between two defined neuron types in the postnatal brain. We show that this mechanism is conserved in evolutionary very distant species.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Prosencéfalo/metabolismo , Factores de Transcripción/biosíntesis , Animales , Animales Recién Nacidos , Caenorhabditis elegans , Femenino , Masculino , Ratones , Prosencéfalo/citología , Prosencéfalo/crecimiento & desarrollo , Especificidad de la Especie
10.
Glia ; 65(6): 990-1004, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28317180

RESUMEN

Astrocytes are the most abundant cell type of the central nervous system and cover a broad range of functionalities. We report here the generation of a novel monoclonal antibody, anti-astrocyte cell surface antigen-2 (Anti-ACSA-2). Flow cytometry, immunohistochemistry and immunocytochemistry revealed that Anti-ACSA-2 reacted specifically with a not yet identified glycosylated surface molecule of murine astrocytes at all developmental stages. It did not show any labeling of non-astroglial cells such as neurons, oligodendrocytes, NG2+ cells, microglia, endothelial cells, leukocytes, or erythrocytes. Co-labeling studies of GLAST and ACSA-2 showed largely overlapping expression. However, there were also notable differences in protein expression levels and frequencies of single-positive subpopulations of cells in some regions of the CNS such as cerebellum, most prominently at early postnatal stages. In the neurogenic niches, the dentate gyrus of the hippocampus and the subventricular zone (SVZ), again a general overlap with slight differences in expression levels were observed. ACSA-2 was unlike GLAST not sensitive to papain-based tissue dissociation and allowed for a highly effective, acute, specific, and prospective purification of viable astrocytes based on a new rapid sorting procedure using Anti-ACSA-2 directly coupled to superparamagnetic MicroBeads. In conclusion, ACSA-2 appears to be a new surface marker for astrocytes, radial glia, neural stem cells and bipotent glial progenitor cells which opens up the possibility of further dissecting the characteristics of astroglial subpopulations and lineages.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Antígenos de Superficie/análisis , Antígenos de Superficie/inmunología , Astrocitos/citología , Astrocitos/inmunología , Separación Inmunomagnética/métodos , Animales , Animales Recién Nacidos , Especificidad de Anticuerpos , Antígenos de Superficie/metabolismo , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Células Cultivadas , Células Endoteliales/citología , Células Endoteliales/inmunología , Eritrocitos/citología , Eritrocitos/metabolismo , Transportador 1 de Aminoácidos Excitadores/análisis , Leucocitos/citología , Leucocitos/inmunología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/citología , Microglía/inmunología , Células-Madre Neurales/inmunología , Neuronas/citología , Neuronas/metabolismo , Oligodendroglía/citología , Oligodendroglía/inmunología , Ratas Wistar
12.
Breast Cancer Res ; 17(1): 146, 2015 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-26607327

RESUMEN

INTRODUCTION: Chemotherapy resistance resulting in incomplete pathologic response is associated with high risk of metastasis and early relapse in breast cancer. The aim of this study was to identify and evaluate biomarkers of treatment-resistant tumor cells. METHODS: We performed a cell surface marker screen in triple-negative breast cancer patient-derived xenograft models treated with standard care genotoxic chemotherapy. Global expression profiling was used to further characterize the identified treatment-resistant subpopulations. RESULTS: High expression of sialyl-glycolipid stage-specific embryonic antigen 4 (SSEA4) was found in residual tumor cells surviving chemotherapy and in samples from metastatic patients who relapsed after neoadjuvant chemotherapy. Gene and microRNA (miRNA) expression profiling linked SSEA4 positivity with a mesenchymal phenotype and a deregulation of drug resistance pathways. Functional assays demonstrated a direct link between epithelial-mesenchymal transition (EMT) and SSEA4 expression. Interestingly, SSEA4 expression, EMT, and drug resistance seemed to be regulated posttranscriptionally. Finally, high expression of CMP-N-acetylneuraminate-ß-galactosamide-α-2,3-sialyltransferase 2 (ST3GAL2), the rate-limiting enzyme of SSEA4 synthesis, was found to be associated with poor clinical outcome in breast and ovarian cancer patients treated with chemotherapy. CONCLUSIONS: In this study, we identified SSEA4 as highly expressed in a subpopulation of tumor cells resistant to multiple commonly used chemotherapy drugs, as well as ST3GAL2, the rate-limiting enzyme of SSEA4 synthesis, as a predictive marker of poor outcome for breast and ovarian cancer patients undergoing chemotherapy. Both biomarkers and additionally identified regulatory miRNAs may be used to further understand chemoresistance, to stratify patient groups in order to avoid ineffective and painful therapies, and to develop alternative treatment regimens for breast cancer patients.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/metabolismo , Resistencia a Antineoplásicos , Antígenos Embrionarios Específico de Estadio/metabolismo , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , Transición Epitelial-Mesenquimal , Femenino , Humanos , Ratones , Trasplante de Neoplasias
13.
Cancer Lett ; 595: 216985, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-38821255

RESUMEN

Cancer-associated fibroblasts play a crucial role within the tumor microenvironment. However, a comprehensive characterization of CAF in colorectal cancer (CRC) is still missing. We combined scRNA-seq and spatial proteomics to decipher fibroblast heterogeneity in healthy human colon and CRC at high resolution. Analyzing nearly 23,000 fibroblasts, we identified 11 distinct clusters and verified them by spatial proteomics. Four clusters, consisting of myofibroblastic CAF (myCAF)-like, inflammatory CAF (iCAF)-like and proliferating fibroblasts as well as a novel cluster, which we named "T cell-inhibiting CAF" (TinCAF), were primarily found in CRC. This new cluster was characterized by the expression of immune-interacting receptors and ligands, including CD40 and NECTIN2. Co-culture of CAF and T cells resulted in a reduction of the effector T cell compartment, impaired proliferation, and increased exhaustion. By blocking its receptor interaction, we demonstrated that NECTIN2 was the key driver of T cell inhibition. Analysis of clinical datasets showed that NECTIN2 expression is a poor prognostic factor in CRC and other tumors. In conclusion, we identified a new class of immuno-suppressive CAF with features rendering them a potential target for future immunotherapies.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Colorrectales , Nectinas , Transducción de Señal , Microambiente Tumoral , Humanos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , Nectinas/metabolismo , Nectinas/genética , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Fibroblastos Asociados al Cáncer/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Proliferación Celular , Técnicas de Cocultivo , Proteómica/métodos
14.
Cancers (Basel) ; 16(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38254822

RESUMEN

Treatment options for ovarian cancer patients are limited, and a high unmet clinical need remains for targeted and long-lasting, efficient drugs. Genetically modified T cells expressing chimeric antigen receptors (CAR), are promising new drugs that can be directed towards a defined target and have shown efficient, as well as persisting, anti-tumor responses in many patients. We sought to develop novel CAR T cells targeting ovarian cancer and to assess these candidates preclinically. First, we identified potential CAR targets on ovarian cancer samples. We confirmed high and consistent expressions of the tumor-associated antigen FOLR1 on primary ovarian cancer samples. Subsequently, we designed a series of CAR T cell candidates against the identified target and demonstrated their functionality against ovarian cancer cell lines in vitro and in an in vivo xenograft model. Finally, we performed additional in vitro assays recapitulating immune suppressive mechanisms present in solid tumors and developed a process for the automated manufacturing of our CAR T cell candidate. These findings demonstrate the feasibility of anti-FOLR1 CAR T cells for ovarian cancer and potentially other FOLR1-expressing tumors.

15.
Clin Cancer Res ; : OF1-OF14, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38593230

RESUMEN

PURPOSE: Cytokine-engineering of chimeric antigen receptor-redirected T cells (CAR T cells) is a promising principle to overcome the limited activity of canonical CAR T cells against solid cancers. EXPERIMENTAL DESIGN: We developed an investigational medicinal product, GD2IL18CART, consisting of CAR T cells directed against ganglioside GD2 with CAR-inducible IL18 to enhance their activation response and cytolytic effector functions in the tumor microenvironment. To allow stratification of patients according to tumor GD2 expression, we established and validated immunofluorescence detection of GD2 on paraffin-embedded tumor tissues. RESULTS: Lentiviral all-in-one vector engineering of human T cells with the GD2-specific CAR with and without inducible IL18 resulted in cell products with comparable proportions of CAR-expressing central memory T cells. Production of IL18 strictly depends on GD2 antigen engagement. GD2IL18CART respond to interaction with GD2-positive tumor cells with higher IFNγ and TNFα cytokine release and more effective target cytolysis compared with CAR T cells without inducible IL18. GD2IL18CART further have superior in vivo antitumor activity, with eradication of GD2-positive tumor xenografts. Finally, we established GMP-compliant manufacturing of GD2IL18CART and found it to be feasible and efficient at clinical scale. CONCLUSIONS: These results pave the way for clinical investigation of GD2IL18CART in pediatric and adult patients with neuroblastoma and other GD2-positive cancers (EU CT 2022-501725-21-00).

16.
J Neurosci ; 32(11): 3759-64, 2012 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-22423096

RESUMEN

In the adult forebrain, new interneurons are continuously generated and integrated into the existing circuitry of the olfactory bulb (OB). In an attempt to identify signals that regulate this synaptic integration process, we found strong expression of agrin in adult generated neuronal precursors that arrive in the olfactory bulb after their generation in the subventricular zone. While the agrin receptor components MuSK and Lrp4 were below detection level in neuron populations that represent synaptic targets for the new interneurons, the alternative receptor α3-Na(+)K(+)-ATPase was strongly expressed in mitral cells. Using a transplantation approach, we demonstrate that agrin-deficient interneuron precursors migrate correctly into the OB. However, in contrast to wild-type neurons, which form synapses and survive for prolonged periods, mutant neurons do not mature and are rapidly eliminated. Using in vivo brain electroporation of the olfactory system, we show that the transmembrane form of agrin alone is sufficient to mediate integration and demonstrate that excess transmembrane agrin increases the number of dendritic spines. Last, we provide in vivo evidence that an interaction between agrin and α3-Na(+)K(+)-ATPase is of functional importance in this system.


Asunto(s)
Agrina/fisiología , Neurogénesis/fisiología , Neuronas/metabolismo , Bulbo Olfatorio/metabolismo , Transducción de Señal/fisiología , ATPasa Intercambiadora de Sodio-Potasio/fisiología , Factores de Edad , Agrina/biosíntesis , Agrina/deficiencia , Animales , Células Cultivadas , Femenino , Regulación Enzimológica de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neuronas/enzimología , Bulbo Olfatorio/enzimología , Bulbo Olfatorio/crecimiento & desarrollo , Transducción de Señal/genética , ATPasa Intercambiadora de Sodio-Potasio/biosíntesis , Sinapsis/genética
17.
J Hepatol ; 58(1): 104-11, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22989567

RESUMEN

BACKGROUND & AIMS: Factor VII activating protease (FSAP) is a circulating serine protease produced in the liver. A single nucleotide polymorphism (G534E, Marburg I, MI-SNP) in the gene encoding FSAP (HABP2) leads to lower enzymatic activity and is associated with enhanced liver fibrosis in humans. FSAP is activated by damaged cells and its substrates include growth factors and hemostasis proteins. METHODS: We have investigated the progression of liver fibrosis in FSAP deficient mice and FSAP expression in human liver fibrosis. RESULTS: Serum FSAP concentrations declined in patients with end-stage liver disease, and hepatic FSAP expression was decreased in patients with advanced liver fibrosis and liver inflammation. Moreover, there was an inverse correlation between hepatic FSAP expression and inflammatory chemokines, chemokine receptors as well as pro-fibrotic mediators. Upon experimental bile duct ligation, FSAP(-/-) mice showed enhanced liver fibrosis in comparison to wild type mice, alongside increased expression of α-smooth muscle actin, collagen type I and fibronectin that are markers of stellate cell activation. Microarray analyses indicated that FSAP modulates inflammatory pathways. CONCLUSIONS: Lower FSAP expression is associated with enhanced liver fibrosis and inflammation in patients with chronic hepatic disorders and murine experimental liver injury. This strengthens the concept that FSAP is a "protective factor" in liver fibrosis and explains why carriers of the Marburg I SNP have more pronounced liver fibrosis.


Asunto(s)
Hepatitis/inmunología , Cirrosis Hepática/inmunología , Hígado/enzimología , Hígado/inmunología , Serina Endopeptidasas/inmunología , Adolescente , Adulto , Anciano , Animales , Modelos Animales de Enfermedad , Activación Enzimática/genética , Femenino , Hepatitis/genética , Hepatitis/metabolismo , Humanos , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , ARN Mensajero/metabolismo , Serina Endopeptidasas/sangre , Serina Endopeptidasas/genética , Transcriptoma , Adulto Joven
18.
Proc Natl Acad Sci U S A ; 107(3): 1201-6, 2010 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-20080708

RESUMEN

After their generation and specification in periventricular regions, neuronal precursors maintain an immature and migratory state until their arrival in the respective target structures. Only here are terminal differentiation and synaptic integration induced. Although the molecular control of neuronal specification has started to be elucidated, little is known about the factors that control the latest maturation steps. We aimed at identifying factors that induce terminal differentiation during postnatal and adult neurogenesis, thereby focusing on the generation of periglomerular interneurons in the olfactory bulb. We isolated neuronal precursors and mature neurons from the periglomerular neuron lineage and analyzed their gene expression by microarray. We found that expression of the bHLH transcription factor NeuroD1 strikingly coincides with terminal differentiation. Using brain electroporation, we show that overexpression of NeuroD1 in the periventricular region in vivo leads to the rapid appearance of cells with morphological and molecular characteristics of mature neurons in the subventricular zone and rostral migratory stream. Conversely, shRNA-induced knockdown of NeuroD1 inhibits terminal neuronal differentiation. Thus, expression of a single transcription factor is sufficient to induce neuronal differentiation of neural progenitors in regions that normally do not show addition of new neurons. These results suggest a considerable potential of NeuroD1 for use in cell-therapeutic approaches in the nervous system.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Diferenciación Celular/fisiología , Interneuronas/química , Bulbo Olfatorio/citología , Animales , Electroporación , Ratones
19.
Glia ; 60(6): 894-907, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22374709

RESUMEN

Astrocytes show large morphological and functional heterogeneity and are involved in many aspects of neural function. Progress in defining astrocyte subpopulations has been hampered by the lack of a suitable antibody for their direct detection and isolation. Here, we describe a new monoclonal antibody, ACSA-1, which was generated by immunization of GLAST1 knockout mice. The antibody specifically detects an extracellular epitope of the astrocyte-specific L-glutamate/L-aspartate transporter GLAST (EAAT1, Slc1a3). As shown by immunohistochemistry, immunocytochemistry, and flow cytometry, ACSA-1 was cross-reactive for mouse, human, and rat. It labeled virtually all astrocytes positive for GFAP, GS, BLBP, RC2, and Nestin, including protoplastic, fibrous, and reactive astrocytes as well as Bergmann glia, Müller glia, and radial glia. Oligodendrocytes, microglia, neurons, and neuronal progenitors were negative for ACSA-1. Using an immunomagnetic approach, we established a method for the isolation of GLAST-positive cells with high purity. Binding of the antibody to GLAST and subsequent sorting of GLAST-positive cells neither interfered with cellular glutamate transport nor compromised astrocyte viability in vitro. The ACSA-1 antibody is not only a valuable tool to identify and track astrocytes by immunostaining, but also provides the possibility of separation and further analysis of pure astrocytes.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Astrocitos/metabolismo , Encéfalo/citología , Transportador 1 de Aminoácidos Excitadores/inmunología , Transportador 1 de Aminoácidos Excitadores/metabolismo , Animales , Animales Recién Nacidos , Ácido Ascórbico , Ácido Aspártico/metabolismo , Encéfalo/metabolismo , Antígeno CD11b/metabolismo , Células Cultivadas , Electroporación/métodos , Transportador 1 de Aminoácidos Excitadores/deficiencia , Transportador 1 de Aminoácidos Excitadores/farmacología , Femenino , Citometría de Flujo , Gangliósidos/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo , Humanos , Magnesio , Ratones , Ratones Noqueados , Proteínas de la Mielina/metabolismo , Glicoproteína Mielina-Oligodendrócito , Proteínas del Tejido Nervioso/metabolismo , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Neuronas/metabolismo , Ratas , Ácidos Siálicos/metabolismo , Tritio/metabolismo , Vitamina B 6
20.
Haematologica ; 97(2): 160-7, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22058204

RESUMEN

Hematopoiesis is regulated by microRNAs (miRNAs). These small regulatory RNAs are master regulators of developmental processes that modulate expression of several target genes post-transcriptionally. Various miRNAs are up-regulated at specific stages during hematopoietic development and the functional relevance of miRNAs has been proven at many different stages of lineage specification. Knockout of specific miRNAs can produce dramatic phenotypes leading to severe hematopoietic defects. Furthermore, several studies demonstrated that specific miRNAs are differentially expressed in hematopoietic stem cells. However, the emerging picture is extremely complex due to differences between species, cell type dependent variation in miRNA expression and differential expression of diverse target genes that are involved in various regulatory networks. There is also evidence that miRNAs play a role in cellular aging or in the inter-cellular crosstalk between hematopoietic cells and their microenvironment. The field is rapidly evolving due to new profiling tools and deep sequencing technology. The expression profiles of miRNAs are of diagnostic relevance for classification of different diseases. Recent reports on the generation of induced pluripotent stem cells with miRNAs have fuelled the hope that specific miRNAs and culture conditions facilitate directed differentiation or culture expansion of the hematopoietic stem cell pool. This review summarizes our current knowledge about miRNA expression in hematopoietic stem and progenitor cells, and their role in the hematopoietic stem cell niche.


Asunto(s)
Hematopoyesis , Células Madre Hematopoyéticas/fisiología , MicroARNs/genética , MicroARNs/metabolismo , Animales , Diferenciación Celular , Humanos , Nicho de Células Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA