Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell ; 184(16): 4284-4298.e27, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34233164

RESUMEN

Many organisms evolved strategies to survive desiccation. Plant seeds protect dehydrated embryos from various stressors and can lay dormant for millennia. Hydration is the key trigger to initiate germination, but the mechanism by which seeds sense water remains unresolved. We identified an uncharacterized Arabidopsis thaliana prion-like protein we named FLOE1, which phase separates upon hydration and allows the embryo to sense water stress. We demonstrate that biophysical states of FLOE1 condensates modulate its biological function in vivo in suppressing seed germination under unfavorable environments. We find intragenic, intraspecific, and interspecific natural variation in FLOE1 expression and phase separation and show that intragenic variation is associated with adaptive germination strategies in natural populations. This combination of molecular, organismal, and ecological studies uncovers FLOE1 as a tunable environmental sensor with direct implications for the design of drought-resistant crops, in the face of climate change.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Germinación , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Priones/metabolismo , Semillas/crecimiento & desarrollo , Agua/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/ultraestructura , Deshidratación , Imagenología Tridimensional , Péptidos y Proteínas de Señalización Intercelular/química , Mutación/genética , Latencia en las Plantas , Plantas Modificadas Genéticamente , Dominios Proteicos , Isoformas de Proteínas/metabolismo , Semillas/ultraestructura
2.
Development ; 149(11)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35574989

RESUMEN

Body size varies widely among species, populations and individuals, depending on the environment. Transitioning between proliferation and differentiation is a crucial determinant of final organ size, but how the timing of this transition is established and maintained remains unknown. Using cell proliferation markers and genetic analysis, we show that CHIQUITA1 (CHIQ1) is required to maintain the timing of the transition from proliferation to differentiation in Arabidopsis thaliana. Combining kinematic and cell lineage-tracking studies, we found that the number of actively dividing cells in chiquita1-1 plants decreases prematurely compared with wild-type plants, suggesting CHIQ1 maintains the proliferative capacity in dividing cells and ensures that cells divide a specific number of times. CHIQ1 belongs to a plant-specific gene family of unknown molecular function and genetically interacts with three close members of its family to control the timing of proliferation exit. Our work reveals the interdependency between cellular and organ-level processes underlying final organ size determination.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proliferación Celular/genética , Regulación de la Expresión Génica de las Plantas/genética , Humanos , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/metabolismo
3.
Plant Physiol ; 190(4): 2115-2121, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36053183

RESUMEN

Understanding the molecular and physiological mechanisms of how plants respond to drought is paramount to breeding more drought-resistant crops. Certain mutations or allelic variations result in plants with altered water-use requirements. To correctly identify genetic differences which confer a drought phenotype, plants with different genotypes must be subjected to equal levels of drought stress. Many reports of advantageous mutations conferring drought resistance do not control for soil water content (SWC) variations across genotypes and may therefore need to be re-examined. Here, we reassessed the drought phenotype of the Arabidopsis (Arabidopsis thaliana) dwarf mutant, chiquita1-1 (chiq1-1, also called constitutively stressed 1 (cost1)), by growing mutant seedlings together with the wild-type to ensure uniform soil water availability across genotypes. Our results demonstrate that the dwarf phenotype conferred by loss of CHIQ1 function results in constitutively lower water usage per plant, but not increased drought resistance. Our study provides an easily reproducible, low-cost method to measure and control for SWC and to compare drought-resistant genotypes more accurately.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Sequías , Agua/metabolismo , Fitomejoramiento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Suelo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
4.
BMC Genomics ; 18(1): 480, 2017 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-28651538

RESUMEN

BACKGROUND: The molecular function of a gene is most commonly inferred by sequence similarity. Therefore, genes that lack sufficient sequence similarity to characterized genes (such as certain classes of transcriptional regulators) are difficult to classify using most function prediction algorithms and have remained uncharacterized. RESULTS: To identify novel transcriptional regulators systematically, we used a feature-based pipeline to screen protein families of unknown function. This method predicted 43 transcriptional regulator families in Arabidopsis thaliana, 7 families in Drosophila melanogaster, and 9 families in Homo sapiens. Literature curation validated 12 of the predicted families to be involved in transcriptional regulation. We tested 33 out of the 195 Arabidopsis putative transcriptional regulators for their ability to activate transcription of a reporter gene in planta and found twelve coactivators, five of which had no prior literature support. To investigate mechanisms of action in which the predicted regulators might work, we looked for interactors of an Arabidopsis candidate that did not show transactivation activity in planta and found that it might work with other members of its own family and a subunit of the Polycomb Repressive Complex 2 to regulate transcription. CONCLUSIONS: Our results demonstrate the feasibility of assigning molecular function to proteins of unknown function without depending on sequence similarity. In particular, we identified novel transcriptional regulators using biological features enriched in transcription factors. The predictions reported here should accelerate the characterization of novel regulators.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Biología Computacional , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Homología de Secuencia , Factores de Transcripción/metabolismo , Animales , Simulación por Computador , Humanos , Especificidad de la Especie , Transcripción Genética
5.
Curr Biol ; 33(9): 1778-1786.e5, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36963384

RESUMEN

Nutrient sensing and signaling are essential for adjusting growth and development to available resources. Deprivation of the essential mineral phosphorus (P) inhibits root growth.1 The molecular processes that sense P limitation to trigger early root growth inhibition are not known yet. Target of rapamycin (TOR) kinase is a central regulatory hub in eukaryotes to adapt growth to internal and external nutritional cues.2,3 How nutritional signals are transduced to TOR to control plant growth remains unclear. Here, we identify Arabidopsis-root-specific kinase 1 (ARSK1), which attenuates initial root growth inhibition in response to P limitation. We demonstrate that ARSK1 phosphorylates and stabilizes the regulatory-associated protein of TOR 1B (RAPTOR1B), a component of the TOR complex 1, to adjust root growth to P availability. These findings uncover signaling components acting upstream of TOR to balance growth to P availability.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosfatos/metabolismo , Transducción de Señal/fisiología , Sirolimus/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
6.
Plant J ; 59(3): 359-74, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19392689

RESUMEN

The transcription factor ABA INSENSITIVE 4 (ABI4), discovered nearly 10 years ago, plays a central role in a variety of functions in plants, including sugar responses. However, not until very recently has its mechanism of action begun to be elucidated. Modulating gene expression is one of the primary mechanisms of sugar regulation in plants. Nevertheless, the transcription factors involved in regulating sugar responses and their role(s) during the signal transduction cascade remain poorly defined. In this paper we analyzed the participation of ABI4, as it is one of the main transcription factors implicated in glucose signaling during early seedling development. Our studies show that ABI4 is an essential activator of its own expression during development, in ABA signaling and in sugar responses. It is also important for the glucose-mediated expression of the genes ABI5 and SBE2.2. We demonstrate that ABI4 binds directly to the promoter region of all three genes and activates their expression in vivo through at CE1-like element. Previous studies found that ABI4 also functions as a transcriptional repressor of sugar-regulated genes, therefore this transcription factor is a versatile protein with dual functions for modulating gene expression.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Secuencia de Bases , Regulación de la Expresión Génica de las Plantas , Glucosa/metabolismo , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Unión Proteica , ARN de Planta/genética , Plantones/crecimiento & desarrollo , Transducción de Señal , Factores de Transcripción/genética , Sitio de Iniciación de la Transcripción
7.
Plant Physiol ; 133(1): 231-42, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12970489

RESUMEN

Mutant characterization has demonstrated that ABI4 (Abscisic Acid [ABA] Insensitive 4), ABI5 (ABA Insensitive 5), and CTR1 (Constitutive Triple Response 1) genes play an important role in the sugar signaling response in plants. The present study shows that the transcripts of these three genes are modulated by glucose (Glc) independently of the developmental arrest caused by high Glc concentrations. ABI4 and ABI5 transcripts accumulate in response to sugars, whereas the CTR1 transcript is transiently reduced followed by a rapid recovery. The results of our kinetic studies on gene expression indicate that ABI4, ABI5, and CTR1 are regulated by multiple signals including Glc, osmotic stress, and ABA. However, the differential expression profiles caused by these treatments suggest that distinct signaling pathways are used for each signal. ABI4 and ABI5 response to the Glc analog 2-deoxy-Glc supports this conclusion. Glc regulation of ABI4 and CTR1 transcripts is dependent on the developmental stage. Finally, the Glc-mediated regulation of ABI4 and ABI5 is affected in mutants displaying Glc-insensitive phenotypes such as gins, abas, abi4, abi5, and ctr1 but not in abi1-1, abi2-1, and abi3-1, which do not show a Glc-insensitive phenotype. The capacity of transcription factors, like the ones analyzed in this work, to be regulated by a variety of signals might contribute to the ability of plants to respond in a flexible and integral way to continuous changes in the internal and external environment.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Glucosa/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Mutación , Presión Osmótica/efectos de los fármacos , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA