Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
PLoS Pathog ; 18(3): e1010313, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35298557

RESUMEN

Apicomplexa are obligate intracellular parasites responsible for major human infectious diseases such as toxoplasmosis and malaria, which pose social and economic burdens around the world. To survive and propagate, these parasites need to acquire a significant number of essential biomolecules from their hosts. Among these biomolecules, lipids are a key metabolite required for parasite membrane biogenesis, signaling events, and energy storage. Parasites can either scavenge lipids from their host or synthesize them de novo in a relict plastid, the apicoplast. During their complex life cycle (sexual/asexual/dormant), Apicomplexa infect a large variety of cells and their metabolic flexibility allows them to adapt to different host environments such as low/high fat content or low/high sugar levels. In this review, we discuss the role of lipids in Apicomplexa parasites and summarize recent findings on the metabolic mechanisms in host nutrient adaptation.


Asunto(s)
Apicomplexa , Apicoplastos , Parásitos , Animales , Apicomplexa/metabolismo , Humanos , Metabolismo de los Lípidos , Lípidos
2.
PLoS Pathog ; 18(10): e1010901, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36265000

RESUMEN

Fundamental processes that govern the lytic cycle of the intracellular parasite Toxoplasma gondii are regulated by several signalling pathways. However, how these pathways are connected remains largely unknown. Here, we compare the phospho-signalling networks during Toxoplasma egress from its host cell by artificially raising cGMP or calcium levels. We show that both egress inducers trigger indistinguishable signalling responses and provide evidence for a positive feedback loop linking calcium and cyclic nucleotide signalling. Using WT and conditional knockout parasites of the non-essential calcium-dependent protein kinase 3 (CDPK3), which display a delay in calcium inonophore-mediated egress, we explore changes in phosphorylation and lipid signalling in sub-minute timecourses after inducing Ca2+ release. These studies indicate that cAMP and lipid metabolism are central to the feedback loop, which is partly dependent on CDPK3 and allows the parasite to respond faster to inducers of egress. Biochemical analysis of 4 phosphodiesterases (PDEs) identified in our phosphoproteomes establishes PDE2 as a cAMP-specific PDE which regulates Ca2+ induced egress in a CDPK3-independent manner. The other PDEs display dual hydrolytic activity and play no role in Ca2+ induced egress. In summary, we uncover a positive feedback loop that enhances signalling during egress, thereby linking several signalling pathways.


Asunto(s)
Toxoplasma , Toxoplasma/metabolismo , Calcio/metabolismo , Nucleótidos Cíclicos/metabolismo , Retroalimentación , Lípidos
3.
EMBO Rep ; 23(2): e54022, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34866326

RESUMEN

PfCDPK7 is an atypical member of the calcium-dependent protein kinase (CDPK) family and is crucial for the development of Plasmodium falciparum. However, the mechanisms whereby PfCDPK7 regulates parasite development remain unknown. Here, we perform quantitative phosphoproteomics and phospholipid analysis and find that PfCDPK7 promotes phosphatidylcholine (PC) synthesis by regulating two key enzymes involved in PC synthesis, phosphoethanolamine-N-methyltransferase (PMT) and ethanolamine kinase (EK). In the absence of PfCDPK7, both enzymes are hypophosphorylated and PMT is degraded. We further find that PfCDPK7 interacts with 4'-phosphorylated phosphoinositides (PIPs) generated by PI4-kinase. Inhibition of PI4K activity disrupts the vesicular localization PfCDPK7. P. falciparum PI4-kinase, PfPI4K is a prominent drug target and one of its inhibitors, MMV39048, has reached Phase I clinical trials. Using this inhibitor, we demonstrate that PfPI4K controls phospholipid biosynthesis and may act in part by regulating PfCDPK7 localization and activity. These studies not only unravel a signaling pathway involving PfPI4K/4'-PIPs and PfCDPK7 but also provide novel insights into the mechanism of action of a promising series of candidate anti-malarial drugs.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Humanos , Fosfolípidos/metabolismo , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Transducción de Señal
4.
J Biol Chem ; 298(8): 102243, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35810787

RESUMEN

Like many other apicomplexan parasites, Toxoplasma gondii contains a plastid harboring key metabolic pathways, including the sulfur utilization factor (SUF) pathway that is involved in the biosynthesis of iron-sulfur clusters. These cofactors are crucial for a variety of proteins involved in important metabolic reactions, potentially including plastidic pathways for the synthesis of isoprenoid and fatty acids. It was shown previously that impairing the NFS2 cysteine desulfurase, involved in the first step of the SUF pathway, leads to an irreversible killing of intracellular parasites. However, the metabolic impact of disrupting the pathway remained unexplored. Here, we generated another mutant of this pathway, deficient in the SUFC ATPase, and investigated in details the phenotypic consequences of TgNFS2 and TgSUFC depletion on the parasites. Our analysis confirms that Toxoplasma SUF mutants are severely and irreversibly impacted in division and membrane homeostasis, and suggests a defect in apicoplast-generated fatty acids. However, we show that increased scavenging from the host or supplementation with exogenous fatty acids do not fully restore parasite growth, suggesting that this is not the primary cause for the demise of the parasites and that other important cellular functions were affected. For instance, we also show that the SUF pathway is key for generating the isoprenoid-derived precursors necessary for the proper targeting of GPI-anchored proteins and for parasite motility. Thus, we conclude plastid-generated iron-sulfur clusters support the functions of proteins involved in several vital downstream cellular pathways, which implies the SUF machinery may be explored for new potential anti-Toxoplasma targets.


Asunto(s)
Apicoplastos , Proteínas Hierro-Azufre , Proteínas Protozoarias , Toxoplasma , Apicoplastos/genética , Apicoplastos/metabolismo , Ácidos Grasos/metabolismo , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Plastidios/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Terpenos/metabolismo , Toxoplasma/genética , Toxoplasma/metabolismo
5.
PLoS Pathog ; 17(2): e1009325, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33635921

RESUMEN

Apicomplexan parasites are causative agents of major human diseases. Calcium Dependent Protein Kinases (CDPKs) are crucial components for the intracellular development of apicomplexan parasites and are thus considered attractive drug targets. CDPK7 is an atypical member of this family, which initial characterization suggested to be critical for intracellular development of both Apicomplexa Plasmodium falciparum and Toxoplasma gondii. However, the mechanisms via which it regulates parasite replication have remained unknown. We performed quantitative phosphoproteomics of T. gondii lacking TgCDPK7 to identify its parasitic targets. Our analysis lead to the identification of several putative TgCDPK7 substrates implicated in critical processes like phospholipid (PL) synthesis and vesicular trafficking. Strikingly, phosphorylation of TgRab11a via TgCDPK7 was critical for parasite intracellular development and protein trafficking. Lipidomic analysis combined with biochemical and cellular studies confirmed that TgCDPK7 regulates phosphatidylethanolamine (PE) levels in T. gondii. These studies provide novel insights into the regulation of these processes that are critical for parasite development by TgCDPK7.


Asunto(s)
Lipogénesis , Fosfatidiletanolaminas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/enzimología , Toxoplasmosis/metabolismo , Vesículas Transportadoras/metabolismo , Transporte Biológico , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/parasitología , Humanos , Fosforilación , Proteínas Quinasas/genética , Proteínas Protozoarias/genética , Toxoplasma/crecimiento & desarrollo , Toxoplasmosis/parasitología
6.
BMC Biol ; 19(1): 159, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34380472

RESUMEN

BACKGROUND: Plasmodium falciparum is the pathogen responsible for the most devastating form of human malaria. As it replicates asexually in the erythrocytes of its human host, the parasite feeds on haemoglobin uptaken from these cells. Heme, a toxic by-product of haemoglobin utilization by the parasite, is neutralized into inert hemozoin in the food vacuole of the parasite. Lipid homeostasis and phospholipid metabolism are crucial for this process, as well as for the parasite's survival and propagation within the host. P. falciparum harbours a uniquely large family of phospholipases, which are suggested to play key roles in lipid metabolism and utilization. RESULTS: Here, we show that one of the parasite phospholipase (P. falciparum lysophospholipase, PfLPL1) plays an essential role in lipid homeostasis linked with the haemoglobin degradation and heme conversion pathway. Fluorescence tagging showed that the PfLPL1 in infected blood cells localizes to dynamic vesicular structures that traffic from the host-parasite interface at the parasite periphery, through the cytosol, to get incorporated into a large vesicular lipid rich body next to the food-vacuole. PfLPL1 is shown to harbour enzymatic activity to catabolize phospholipids, and its transient downregulation in the parasite caused a significant reduction of neutral lipids in the food vacuole-associated lipid bodies. This hindered the conversion of heme, originating from host haemoglobin, into the hemozoin, and disrupted the parasite development cycle and parasite growth. Detailed lipidomic analyses of inducible knock-down parasites deciphered the functional role of PfLPL1 in generation of neutral lipid through recycling of phospholipids. Further, exogenous fatty-acids were able to complement downregulation of PfLPL1 to rescue the parasite growth as well as restore hemozoin levels. CONCLUSIONS: We found that the transient downregulation of PfLPL1 in the parasite disrupted lipid homeostasis and caused a reduction in neutral lipids essentially required for heme to hemozoin conversion. Our study suggests a crucial link between phospholipid catabolism and generation of neutral lipids (TAGs) with the host haemoglobin degradation pathway.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Eritrocitos , Hemo , Hemoproteínas , Humanos , Fosfolipasas , Fosfolípidos
7.
PLoS Biol ; 16(9): e2005642, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30208022

RESUMEN

The phylum Apicomplexa comprises a group of obligate intracellular parasites that alternate between intracellular replicating stages and actively motile extracellular forms that move through tissue. Parasite cytosolic Ca2+ signalling activates motility, but how this is switched off after invasion is complete to allow for replication to begin is not understood. Here, we show that the cyclic adenosine monophosphate (cAMP)-dependent protein kinase A catalytic subunit 1 (PKAc1) of Toxoplasma is responsible for suppression of Ca2+ signalling upon host cell invasion. We demonstrate that PKAc1 is sequestered to the parasite periphery by dual acylation of PKA regulatory subunit 1 (PKAr1). Upon genetic depletion of PKAc1 we show that newly invaded parasites exit host cells shortly thereafter, in a perforin-like protein 1 (PLP-1)-dependent fashion. Furthermore, we demonstrate that loss of PKAc1 prevents rapid down-regulation of cytosolic [Ca2+] levels shortly after invasion. We also provide evidence that loss of PKAc1 sensitises parasites to cyclic GMP (cGMP)-induced Ca2+ signalling, thus demonstrating a functional link between cAMP and these other signalling modalities. Together, this work provides a new paradigm in understanding how Toxoplasma and related apicomplexan parasites regulate infectivity.


Asunto(s)
Señalización del Calcio , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Toxoplasma/enzimología , Acilación , Animales , Calcio/metabolismo , AMP Cíclico/metabolismo , Citosol/metabolismo , Fibroblastos/parasitología , Interacciones Huésped-Parásitos , Humanos , Estadios del Ciclo de Vida , Ratones , Parásitos/enzimología , Parásitos/crecimiento & desarrollo , Subunidades de Proteína/metabolismo , Proteínas Protozoarias , Transducción de Señal , Toxoplasma/crecimiento & desarrollo
8.
J Biol Chem ; 294(22): 8959-8972, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-30992368

RESUMEN

Protozoan parasites of the phylum Apicomplexa actively move through tissue to initiate and perpetuate infection. The regulation of parasite motility relies on cyclic nucleotide-dependent kinases, but how these kinases are activated remains unknown. Here, using an array of biochemical and cell biology approaches, we show that the apicomplexan parasite Toxoplasma gondii expresses a large guanylate cyclase (TgGC) protein, which contains several upstream ATPase transporter-like domains. We show that TgGC has a dynamic localization, being concentrated at the apical tip in extracellular parasites, which then relocates to a more cytosolic distribution during intracellular replication. Conditional TgGC knockdown revealed that this protein is essential for acute-stage tachyzoite growth, as TgGC-deficient parasites were defective in motility, host cell attachment, invasion, and subsequent host cell egress. We show that TgGC is critical for a rapid rise in cytosolic [Ca2+] and for secretion of microneme organelles upon stimulation with a cGMP agonist, but these deficiencies can be bypassed by direct activation of signaling by a Ca2+ ionophore. Furthermore, we found that TgGC is required for transducing changes in extracellular pH and [K+] to activate cytosolic [Ca2+] flux. Together, the results of our work implicate TgGC as a putative signal transducer that activates Ca2+ signaling and motility in Toxoplasma.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Señalización del Calcio , Guanilato Ciclasa/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo , Adenosina Trifosfatasas/genética , Calcio/metabolismo , Ionóforos de Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , GMP Cíclico/metabolismo , Citosol/metabolismo , Guanilato Ciclasa/antagonistas & inhibidores , Guanilato Ciclasa/genética , Concentración de Iones de Hidrógeno , Oligonucleótidos Antisentido/metabolismo , Potasio/metabolismo , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Pirazoles/farmacología , Pirimidinonas/farmacología , Toxoplasma/crecimiento & desarrollo
9.
J Lipid Res ; 59(6): 994-1004, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29678960

RESUMEN

Apicomplexan parasites are pathogens responsible for major human diseases such as toxoplasmosis caused by Toxoplasma gondii and malaria caused by Plasmodium spp. Throughout their intracellular division cycle, the parasites require vast and specific amounts of lipids to divide and survive. This demand for lipids relies on a fine balance between de novo synthesized lipids and scavenged lipids from the host. Acetyl-CoA is a major and central precursor for many metabolic pathways, especially for lipid biosynthesis. T. gondii possesses a single cytosolic acetyl-CoA synthetase (TgACS). Its role in the parasite lipid synthesis is unclear. Here, we generated an inducible TgACS KO parasite line and confirmed the cytosolic localization of the protein. We conducted 13C-stable isotope labeling combined with mass spectrometry-based lipidomic analyses to unravel its putative role in the parasite lipid synthesis pathway. We show that its disruption has a minor effect on the global FA composition due to the metabolic changes induced to compensate for its loss. However, we could demonstrate that TgACS is involved in providing acetyl-CoA for the essential fatty elongation pathway to generate FAs used for membrane biogenesis. This work provides novel metabolic insight to decipher the complex lipid synthesis in T. gondii.


Asunto(s)
Acetato CoA Ligasa/metabolismo , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Estadios del Ciclo de Vida , Toxoplasma/enzimología , Toxoplasma/crecimiento & desarrollo , Acetato CoA Ligasa/química , Secuencia de Aminoácidos , Citosol/metabolismo , Ácidos Grasos/biosíntesis , Modelos Moleculares , Nutrientes/metabolismo , Conformación Proteica , Toxoplasma/metabolismo
10.
Mol Microbiol ; 105(1): 158-174, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28419631

RESUMEN

Patatin-like phospholipases are involved in numerous cellular functions, including lipid metabolism and membranes remodeling. The patatin-like catalytic domain, whose phospholipase activity relies on a serine-aspartate dyad and an anion binding box, is widely spread among prokaryotes and eukaryotes. We describe TgPL2, a novel patatin-like phospholipase domain-containing protein from the parasitic protist Toxoplasma gondii. TgPL2 is a large protein, in which the key motifs for enzymatic activity are conserved in the patatin-like domain. Using immunofluorescence assays and immunoelectron microscopy analysis, we have shown that TgPL2 localizes to the apicoplast, a non-photosynthetic plastid found in most apicomplexan parasites. This plastid hosts several important biosynthetic pathways, which makes it an attractive organelle for identifying new potential drug targets. We thus addressed TgPL2 function by generating a conditional knockdown mutant and demonstrated it has an essential contribution for maintaining the integrity of the plastid. In absence of TgPL2, the organelle is rapidly lost and remaining apicoplasts appear enlarged, with an abnormal accumulation of membranous structures, suggesting a defect in lipids homeostasis. More precisely, analyses of lipid content upon TgPL2 depletion suggest this protein is important for maintaining levels of apicoplast-generated fatty acids, and also regulating phosphatidylcholine and lysophosphatidylcholine levels in the parasite.


Asunto(s)
Apicoplastos/metabolismo , Fosfolipasas/metabolismo , Toxoplasma/metabolismo , Secuencia de Aminoácidos , Animales , Apicoplastos/genética , Secuencia de Bases , Dominio Catalítico , Ácidos Grasos/metabolismo , Homeostasis , Metabolismo de los Lípidos/fisiología , Lípidos , Parásitos , Plastidios/metabolismo , Dominios Proteicos , Proteínas Protozoarias/metabolismo
11.
PLoS Pathog ; 12(8): e1005765, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27490259

RESUMEN

Most apicomplexan parasites possess a non-photosynthetic plastid (the apicoplast), which harbors enzymes for a number of metabolic pathways, including a prokaryotic type II fatty acid synthesis (FASII) pathway. In Toxoplasma gondii, the causative agent of toxoplasmosis, the FASII pathway is essential for parasite growth and infectivity. However, little is known about the fate of fatty acids synthesized by FASII. In this study, we have investigated the function of a plant-like glycerol 3-phosphate acyltransferase (TgATS1) that localizes to the T. gondii apicoplast. Knock-down of TgATS1 resulted in significantly reduced incorporation of FASII-synthesized fatty acids into phosphatidic acid and downstream phospholipids and a severe defect in intracellular parasite replication and survival. Lipidomic analysis demonstrated that lipid precursors are made in, and exported from, the apicoplast for de novo biosynthesis of bulk phospholipids. This study reveals that the apicoplast-located FASII and ATS1, which are primarily used to generate plastid galactolipids in plants and algae, instead generate bulk phospholipids for membrane biogenesis in T. gondii.


Asunto(s)
Apicoplastos/enzimología , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Fosfolípidos/biosíntesis , Proteínas Protozoarias/biosíntesis , Toxoplasma/metabolismo , Secuencia de Aminoácidos , Cromatografía Liquida , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Lisofosfolípidos/biosíntesis , Espectrometría de Masas , Microscopía Electrónica de Transmisión , Modelos Moleculares , Filogenia , Reacción en Cadena de la Polimerasa , Proteínas Protozoarias/química
12.
Cell Microbiol ; 19(1)2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27324409

RESUMEN

Malaria parasites can synthesize fatty acids via a type II fatty acid synthesis (FASII) pathway located in their apicoplast. The FASII pathway has been pursued as an anti-malarial drug target, but surprisingly little is known about its role in lipid metabolism. Here we characterize the apicoplast glycerol 3-phosphate acyltransferase that acts immediately downstream of FASII in human (Plasmodium falciparum) and rodent (Plasmodium berghei) malaria parasites and investigate how this enzyme contributes to incorporating FASII fatty acids into precursors for membrane lipid synthesis. Apicoplast targeting of the P. falciparum and P. berghei enzymes are confirmed by fusion of the N-terminal targeting sequence to GFP and 3' tagging of the full length protein. Activity of the P. falciparum enzyme is demonstrated by complementation in mutant bacteria, and critical residues in the putative active site identified by site-directed mutagenesis. Genetic disruption of the P. falciparum enzyme demonstrates it is dispensable in blood stage parasites, even in conditions known to induce FASII activity. Disruption of the P. berghei enzyme demonstrates it is dispensable in blood and mosquito stage parasites, and only essential for development in the late liver stage, consistent with the requirement for FASII in rodent malaria models. However, the P. berghei mutant liver stage phenotype is found to only partially phenocopy loss of FASII, suggesting newly made fatty acids can take multiple pathways out of the apicoplast and so giving new insight into the role of FASII and apicoplast glycerol 3-phosphate acyltransferase in malaria parasites.


Asunto(s)
Apicoplastos/metabolismo , Ácidos Grasos/metabolismo , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Plasmodium berghei/metabolismo , Plasmodium falciparum/metabolismo , Apicoplastos/enzimología , Bacterias/genética , Bacterias/metabolismo , Análisis Mutacional de ADN , Técnicas de Inactivación de Genes , Prueba de Complementación Genética , Plasmodium berghei/enzimología , Plasmodium falciparum/enzimología , Plasmodium falciparum/genética , Transporte de Proteínas
13.
Proc Natl Acad Sci U S A ; 110(18): 7506-11, 2013 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-23589867

RESUMEN

The human malaria parasite Plasmodium falciparum harbors a relict, nonphotosynthetic plastid of algal origin termed the apicoplast. Although considerable progress has been made in defining the metabolic functions of the apicoplast, information on the composition and biogenesis of the four delimiting membranes of this organelle is limited. Here, we report an efficient method for preparing highly purified apicoplasts from red blood cell parasite stages and the comprehensive lipidomic analysis of this organelle. Apicoplasts were prepared from transgenic parasites expressing an epitope-tagged triosephosphate transporter and immunopurified on magnetic beads. Gas and liquid chromatography MS analyses of isolated apicoplast lipids indicated significant differences compared with total parasite lipids. In particular, apicoplasts were highly enriched in phosphatidylinositol, consistent with a suggested role for phosphoinositides in targeting membrane vesicles to apicoplasts. Apicoplast phosphatidylinositol and other phospholipids were also enriched in saturated fatty acids, which could reflect limited acyl exchange with other membrane phospholipids and/or a requirement for specific physical properties. Lipids atypical for plastids (sphingomyelins, ceramides, and cholesterol) were detected in apicoplasts. The presence of cholesterol in apicoplast membranes was supported by filipin staining of isolated apicoplasts. Galactoglycerolipids, dominant in plant and algal plastids, were not detected in P. falciparum apicoplasts, suggesting that these glycolipids are a hallmark of photosynthetic plastids and were lost when these organisms assumed a parasitic lifestyle. Apicoplasts thus contain an atypical melange of lipids scavenged from the human host alongside lipids remodeled by the parasite cytoplasm, and stable isotope labeling shows some apicoplast lipids are generated de novo by the organelle itself.


Asunto(s)
Lípidos/química , Malaria Falciparum/parasitología , Plasmodium falciparum/metabolismo , Plastidios/química , Colesterol/metabolismo , Cromatografía Liquida , Ácidos Grasos/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Humanos , Metabolismo de los Lípidos , Plasmodium falciparum/ultraestructura , Plastidios/ultraestructura
14.
Antimicrob Agents Chemother ; 58(5): 2586-97, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24550329

RESUMEN

A piperidinyl-benzimidazolone scaffold has been found in the structure of different inhibitors of membrane glycerolipid metabolism, acting on enzymes manipulating diacylglycerol and phosphatidic acid. Screening a focus library of piperidinyl-benzimidazolone analogs might therefore identify compounds acting against infectious parasites. We first evaluated the in vitro effects of (S)-2-(dibenzylamino)-3-phenylpropyl 4-(1,2-dihydro-2-oxobenzo[d]imidazol-3-yl)piperidine-1-carboxylate (compound 1) on Toxoplasma gondii and Plasmodium falciparum. In T. gondii, motility and apical complex integrity appeared to be unaffected, whereas cell division was inhibited at compound 1 concentrations in the micromolar range. In P. falciparum, the proliferation of erythrocytic stages was inhibited, without any delayed death phenotype. We then explored a library of 250 analogs in two steps. We selected 114 compounds with a 50% inhibitory concentration (IC50) cutoff of 2 µM for at least one species and determined in vitro selectivity indexes (SI) based on toxicity against K-562 human cells. We identified compounds with high gains in the IC50 (in the 100 nM range) and SI (up to 1,000 to 2,000) values. Isobole analyses of two of the most active compounds against P. falciparum indicated that their interactions with artemisinin were additive. Here, we propose the use of structure-activity relationship (SAR) models, which will be useful for designing probes to identify the target compound(s) and optimizations for monotherapy or combined-therapy strategies.


Asunto(s)
Bencimidazoles/farmacología , Plasmodium falciparum/efectos de los fármacos , Toxoplasma/efectos de los fármacos , Antiprotozoarios/farmacología , Línea Celular , Proliferación Celular/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad
15.
Methods Mol Biol ; 2776: 43-62, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38502497

RESUMEN

Chloroplasts are essential organelles that are responsible for photosynthesis in a wide range of organisms that have colonized all biotopes on Earth such as plants and unicellular algae. Interestingly, a secondary endosymbiotic event of a red algal ancestor gave rise to a group of organisms that have adopted an obligate parasitic lifestyle named Apicomplexa parasites. Apicomplexa parasites are some of the most widespread and poorly controlled pathogens in the world. These infectious agents are responsible for major human diseases such as toxoplasmosis, caused by Toxoplasma gondii, and malaria, caused by Plasmodium spp. Most of these parasites harbor this relict plastid named the apicoplast, which is essential for parasite survival. The apicoplast has lost photosynthetic capacities but is metabolically similar to plant and algal chloroplasts. The apicoplast is considered a novel and important drug target against Apicomplexa parasites. This chapter focuses on the apicoplast of apicomplexa parasites, its maintenance, and its metabolic pathways.


Asunto(s)
Apicoplastos , Parásitos , Plasmodium , Toxoplasma , Animales , Humanos , Apicoplastos/genética , Apicoplastos/metabolismo , Simbiosis , Toxoplasma/genética , Toxoplasma/metabolismo
16.
Methods Mol Biol ; 2776: 197-204, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38502506

RESUMEN

Apicomplexan parasites are unicellular eukaryotes responsible for major human diseases such as malaria and toxoplasmosis, which cause massive social and economic burden. Toxoplasmosis, caused by Toxoplasma gondii, is a global chronic infectious disease affecting ~1/3 of the world population and is a major threat for any immunocompromised patient. To date, there is no efficient vaccine against these parasites and existing treatments are threatened by rapid emergence of parasite resistance. Throughout their life cycle, Apicomplexa require large amount of nutrients, especially lipids for propagation and survival. Understanding lipid acquisition is key to decipher host-parasite metabolic interactions. Parasite membrane biogenesis relies on a combination of (a) host lipid scavenging, (b) de novo lipid synthesis in the parasite, and (c) fluxes of lipids between host and parasite and within. We recently uncovered that parasite need to store the host-scavenged lipids to avoid their toxic accumulation and to mobilize them for division. How can parasites orchestrate the many lipids fluxes essential for survival? Here, we developed metabolomics approaches coupled to stable isotope labelling to track, monitor, and quantify fatty acid and lipids fluxes between the parasite, its human host cell, and its extracellular environment to unravel the complex lipid fluxes in any physiological environment the parasite could meet.


Asunto(s)
Parásitos , Toxoplasma , Toxoplasmosis , Animales , Humanos , Parásitos/metabolismo , Plastidios/metabolismo , Ácidos Grasos/metabolismo , Toxoplasma/metabolismo , Toxoplasmosis/metabolismo , Proteínas Protozoarias/metabolismo
17.
mBio ; 15(4): e0042724, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38501871

RESUMEN

Apicomplexa parasites cause major diseases such as toxoplasmosis and malaria that have major health and economic burdens. These unicellular pathogens are obligate intracellular parasites that heavily depend on lipid metabolism for the survival within their hosts. Their lipid synthesis relies on an essential combination of fatty acids (FAs) obtained from both de novo synthesis and scavenging from the host. The constant flux of scavenged FA needs to be channeled toward parasite lipid storage, and these FA storages are timely mobilized during parasite division. In eukaryotes, the utilization of FA relies on their obligate metabolic activation mediated by acyl-co-enzyme A (CoA) synthases (ACSs), which catalyze the thioesterification of FA to a CoA. Besides the essential functions of FA for parasite survival, the presence and roles of ACS are yet to be determined in Apicomplexa. Here, we identified TgACS1 as a Toxoplasma gondii cytosolic ACS that is involved in FA mobilization in the parasite specifically during low host nutrient conditions, especially in extracellular stages where it adopts a different localization. Heterologous complementation of yeast ACS mutants confirmed TgACS1 as being an Acyl-CoA synthetase of the bubble gum family that is most likely involved in ß-oxidation processes. We further demonstrate that TgACS1 is critical for gliding motility of extracellular parasite facing low nutrient conditions, by relocating to peroxisomal-like area.IMPORTANCEToxoplasma gondii, causing human toxoplasmosis, is an Apicomplexa parasite and model within this phylum that hosts major infectious agents, such as Plasmodium spp., responsible for malaria. The diseases caused by apicomplexans are responsible for major social and economic burdens affecting hundreds of millions of people, like toxoplasmosis chronically present in about one-third of the world's population. Lack of efficient vaccines, rapid emergence of resistance to existing treatments, and toxic side effects of current treatments all argue for the urgent need to develop new therapeutic tools to combat these diseases. Understanding the key metabolic pathways sustaining host-intracellular parasite interactions is pivotal to develop new efficient ways to kill these parasites. Current consensus supports parasite lipid synthesis and trafficking as pertinent target for novel treatments. Many processes of this essential lipid metabolism in the parasite are not fully understood. The capacity for the parasites to sense and metabolically adapt to the host physiological conditions has only recently been unraveled. Our results clearly indicate the role of acyl-co-enzyme A (CoA) synthetases for the essential metabolic activation of fatty acid (FA) used to maintain parasite propagation and survival. The significance of our research is (i) the identification of seven of these enzymes that localize at different cellular areas in T. gondii parasites; (ii) using lipidomic approaches, we show that TgACS1 mobilizes FA under low host nutrient content; (iii) yeast complementation showed that acyl-CoA synthase 1 (ACS1) is an ACS that is likely involved in peroxisomal ß-oxidation; (iv) the importance of the peroxisomal targeting sequence for correct localization of TgACS1 to a peroxisomal-like compartment in extracellular parasites; and lastly, (v) that TgACS1 has a crucial role in energy production and extracellular parasite motility.


Asunto(s)
Malaria , Toxoplasma , Toxoplasmosis , Humanos , Toxoplasma/metabolismo , Metabolismo de los Lípidos , Saccharomyces cerevisiae/metabolismo , Toxoplasmosis/parasitología , Ácidos Grasos/metabolismo , Nutrientes , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
18.
iScience ; 27(2): 108837, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38303705

RESUMEN

Obstructive sleep apnea (OSA) induces intermittent hypoxia (IH), an independent risk factor for non-alcoholic fatty liver disease (NAFLD). While the molecular links between IH and NAFLD progression are unclear, immune cell-driven inflammation plays a crucial role in NAFLD pathogenesis. Using lean mice exposed to long-term IH and a cohort of lean OSA patients (n = 71), we conducted comprehensive hepatic transcriptomics, lipidomics, and targeted serum proteomics. Significantly, we demonstrated that long-term IH alone can induce NASH molecular signatures found in human steatohepatitis transcriptomic data. Biomarkers (PPARs, NRFs, arachidonic acid, IL16, IL20, IFNB, TNF-α) associated with early hepatic and systemic inflammation were identified. This molecular link between IH, sleep apnea, and steatohepatitis merits further exploration in clinical trials, advocating for integrating sleep apnea diagnosis in liver disease phenotyping. Our unique signatures offer potential diagnostic and treatment response markers, highlighting therapeutic targets in the comorbidity of NAFLD and OSA.

19.
Nat Chem Biol ; 7(11): 834-42, 2011 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-21946275

RESUMEN

Monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are the main lipids in photosynthetic membranes in plant cells. They are synthesized in the envelope surrounding plastids by MGD and DGD galactosyltransferases. These galactolipids are critical for the biogenesis of photosynthetic membranes, and they act as a source of polyunsaturated fatty acids for the whole cell and as phospholipid surrogates in phosphate shortage. Based on a high-throughput chemical screen, we have characterized a new compound, galvestine-1, that inhibits MGDs in vitro by competing with diacylglycerol binding. Consistent effects of galvestine-1 on Arabidopsis thaliana include root uptake, circulation in the xylem and mesophyll, inhibition of MGDs in vivo causing a reduction of MGDG content and impairment of chloroplast development. The effects on pollen germination shed light on the contribution of galactolipids to pollen-tube elongation. The whole-genome transcriptional response of Arabidopsis points to the potential benefits of galvestine-1 as a unique tool to study lipid homeostasis in plants.


Asunto(s)
Arabidopsis/enzimología , Galactosiltransferasas/antagonistas & inhibidores , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Galactolípidos/metabolismo , Perfilación de la Expresión Génica , Estructura Molecular , Piperidinas/farmacología , Hojas de la Planta/ultraestructura , Raíces de Plantas/metabolismo , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad
20.
Front Cell Infect Microbiol ; 13: 997245, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38089812

RESUMEN

Plasmodium falciparum is an Apicomplexa responsible for human malaria, a major disease causing more than ½ million deaths every year, against which there is no fully efficient vaccine. The current rapid emergence of drug resistances emphasizes the need to identify novel drug targets. Increasing evidences show that lipid synthesis and trafficking are essential for parasite survival and pathogenesis, and that these pathways represent potential points of attack. Large amounts of phospholipids are needed for the generation of membrane compartments for newly divided parasites in the host cell. Parasite membrane homeostasis is achieved by an essential combination of parasite de novo lipid synthesis/recycling and massive host lipid scavenging. Latest data suggest that the mobilization and channeling of lipid resources is key for asexual parasite survival within the host red blood cell, but the molecular actors allowing lipid acquisition are poorly characterized. Enzymes remodeling lipids such as phospholipases are likely involved in these mechanisms. P. falciparum possesses an unusually large set of phospholipases, whose functions are largely unknown. Here we focused on the putative patatin-like phospholipase PfPNPLA2, for which we generated an glmS-inducible knockdown line and investigated its role during blood stages malaria. Disruption of the mitochondrial PfPNPLA2 in the asexual blood stages affected mitochondrial morphology and further induced a significant defect in parasite replication and survival, in particular under low host lipid availability. Lipidomic analyses revealed that PfPNPLA2 specifically degrades the parasite membrane lipid phosphatidylglycerol to generate lysobisphosphatidic acid. PfPNPLA2 knockdown further resulted in an increased host lipid scavenging accumulating in the form of storage lipids and free fatty acids. These results suggest that PfPNPLA2 is involved in the recycling of parasite phosphatidylglycerol to sustain optimal intraerythrocytic development when the host resources are scarce. This work strengthens our understanding of the complex lipid homeostasis pathways to acquire lipids and allow asexual parasite survival.


Asunto(s)
Malaria Falciparum , Malaria , Parásitos , Animales , Humanos , Plasmodium falciparum/genética , Fosfolipasas/metabolismo , Mitofagia , Fosfatidilgliceroles/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Malaria Falciparum/metabolismo , Parásitos/metabolismo , Eritrocitos/parasitología , Malaria/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA