Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 50(22): 13045-13062, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36537190

RESUMEN

Sam68, also known as KHDRBS1, is a member of the STAR family of proteins that directly link signal transduction with post-transcriptional gene regulation. Sam68 controls the alternative splicing of many oncogenic proteins and its role is modulated by post-translational modifications, including serine/threonine phosphorylation, that differ at various stages of the cell cycle. However, the molecular basis and mechanisms of these modulations remain largely unknown. Here, we combined mass spectrometry, nuclear magnetic resonance spectroscopy and cell biology techniques to provide a comprehensive post-translational modification mapping of Sam68 at different stages of the cell cycle in HEK293 and HCT116 cells. We established that Sam68 is specifically phosphorylated at T33 and T317 by Cdk1, and demonstrated that these phosphorylation events reduce the binding of Sam68 to RNA, control its cellular localization and reduce its alternative splicing activity, leading to a reduction in the induction of apoptosis and an increase in the proliferation of HCT116 cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Empalme Alternativo , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Empalme Alternativo/genética , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/genética , Células HEK293 , Fosforilación , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Células HCT116
2.
J Cell Sci ; 134(5)2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32501284

RESUMEN

Eukaryotic cell proliferation requires chromosome replication and precise segregation to ensure daughter cells have identical genomic copies. Species of the genus Plasmodium, the causative agents of malaria, display remarkable aspects of nuclear division throughout their life cycle to meet some peculiar and unique challenges to DNA replication and chromosome segregation. The parasite undergoes atypical endomitosis and endoreduplication with an intact nuclear membrane and intranuclear mitotic spindle. To understand these diverse modes of Plasmodium cell division, we have studied the behaviour and composition of the outer kinetochore NDC80 complex, a key part of the mitotic apparatus that attaches the centromere of chromosomes to microtubules of the mitotic spindle. Using NDC80-GFP live-cell imaging in Plasmodium berghei, we observe dynamic spatiotemporal changes during proliferation, including highly unusual kinetochore arrangements during sexual stages. We identify a very divergent candidate for the SPC24 subunit of the NDC80 complex, previously thought to be missing in Plasmodium, which completes a canonical, albeit unusual, NDC80 complex structure. Altogether, our studies reveal the kinetochore to be an ideal tool to investigate the non-canonical modes of chromosome segregation and cell division in Plasmodium.


Asunto(s)
Parásitos , Plasmodium , Animales , División Celular , Segregación Cromosómica/genética , Cinetocoros , Microtúbulos , Mitosis/genética , Plasmodium/genética , Huso Acromático/genética
3.
J Fluoresc ; 32(2): 569-582, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35006485

RESUMEN

Fluorescently labelling proteins such as insulin have wide ranging applications in a pharmaceutical research and drug delivery. Human insulin (Actrapid®) was labelled with fluorescein isothiocyanate (FITC) and the synthesised conjugate identified using reverse phase high performance liquid chromatography (RP-HPLC) on a C18 column and a gradient method with mobile phase A containing 0.1% trifluoroacetic acid (TFA) in Millipore water and mobile phase B containing 90% Acetonitrile, 10% Millipore water and 0.1% TFA. Syntheses were carried out at varying reaction times between 4 and 20 h. Mono-labelled FITC-insulin conjugate was successfully synthesised with labelling at the B1 position on the insulin chain using a molar ratio of 2:1 (FITC:insulin) at a reaction time of 18 h and confirmed by electrospray mass spectroscopy. Reactions were studied across a pH range of 7-9.8 and the quantities switch from mono-labelled to di-labelled FITC-insulin conjugates at a reaction time of 2 h (2:1 molar ratio) at pH > 8. The conjugates isolated from the studies had biological activities in comparison to native insulin of 99.5% monoB1, 78% monoA1, 51% diA1B1 and 0.06% triA1B1B29 in HUVEC cells by examining AKT phosphorylation levels. MonoB1 FITC-insulin conjugate was also compared to native insulin by examining cell surface GLUT4 in C2C12 skeletal muscle cells. No significant difference in the cellular response was observed for monoB1 produced in-house compared to native insulin. Therefore mono-labelled FITC-insulin at the B1 position showed similar biological activity as native insulin and can potentially be used for future biomedical applications.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Cromatografía de Fase Inversa/métodos , Fluoresceína-5-Isotiocianato/análogos & derivados , Insulina/análogos & derivados , Western Blotting , Células Cultivadas , Fluoresceína-5-Isotiocianato/síntesis química , Fluoresceína-5-Isotiocianato/aislamiento & purificación , Fluorescencia , Transportador de Glucosa de Tipo 4/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Insulina/síntesis química , Insulina/aislamiento & purificación , Insulina/farmacología , Espectrometría de Masas , Células Musculares/efectos de los fármacos , Células Musculares/metabolismo , Músculo Esquelético/citología , Fosfatos , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
4.
Proc Natl Acad Sci U S A ; 116(21): 10463-10472, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31036632

RESUMEN

Paget's disease of bone (PDB) is a chronic skeletal disorder that can affect one or several bones in individuals older than 55 y of age. PDB-like changes have been reported in archaeological remains as old as Roman, although accurate diagnosis and natural history of the disease is lacking. Six skeletons from a collection of 130 excavated at Norton Priory in the North West of England, which dates to medieval times, show atypical and extensive pathological changes resembling contemporary PDB affecting as many as 75% of individual skeletons. Disease prevalence in the remaining collection is high, at least 16% of adults, with age at death estimations as low as 35 y. Despite these atypical features, paleoproteomic analysis identified sequestosome 1 (SQSTM1) or p62, a protein central to the pathological milieu of PDB, as one of the few noncollagenous human sequences preserved in skeletal samples. Targeted proteomic analysis detected >60% of the ancient p62 primary sequence, with Western blotting indicating p62 abnormalities, including in dentition. Direct sequencing of ancient DNA excluded contemporary PDB-associated SQSTM1 mutations. Our observations indicate that the ancient p62 protein is likely modified within its C-terminal ubiquitin-associated domain. Ancient miRNAs were remarkably preserved in an osteosarcoma from a skeleton with extensive disease, with miR-16 expression consistent with that reported in contemporary PDB-associated bone tumors. Our work displays the use of proteomics to inform diagnosis of ancient diseases such as atypical PDB, which has unusual features presumably potentiated by yet-unidentified environmental or genetic factors.


Asunto(s)
Huesos/metabolismo , Osteítis Deformante/metabolismo , Proteoma , Proteína Sequestosoma-1/metabolismo , Huesos/patología , Historia Medieval , Humanos , MicroARNs/metabolismo , Osteítis Deformante/complicaciones , Osteítis Deformante/patología , Osteosarcoma/etiología , Osteosarcoma/metabolismo , Paleopatología , Análisis de Secuencia de ADN , Proteína Sequestosoma-1/química
5.
J Biol Chem ; 295(38): 13277-13286, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32723862

RESUMEN

The EAG (ether-à-go-go) family of voltage-gated K+ channels are important regulators of neuronal and cardiac action potential firing (excitability) and have major roles in human diseases such as epilepsy, schizophrenia, cancer, and sudden cardiac death. A defining feature of EAG (Kv10-12) channels is a highly conserved domain on the N terminus, known as the eag domain, consisting of a Per-ARNT-Sim (PAS) domain capped by a short sequence containing an amphipathic helix (Cap domain). The PAS and Cap domains are both vital for the normal function of EAG channels. Using heme-affinity pulldown assays and proteomics of lysates from primary cortical neurons, we identified that an EAG channel, hERG3 (Kv11.3), binds to heme. In whole-cell electrophysiology experiments, we identified that heme inhibits hERG3 channel activity. In addition, we expressed the Cap and PAS domain of hERG3 in Escherichia coli and, using spectroscopy and kinetics, identified the PAS domain as the location for heme binding. The results identify heme as a regulator of hERG3 channel activity. These observations are discussed in the context of the emerging role for heme as a regulator of ion channel activity in cells.


Asunto(s)
Corteza Cerebral/química , Canales de Potasio Éter-A-Go-Go/química , Hemo/química , Neuronas/química , Corteza Cerebral/metabolismo , Canales de Potasio Éter-A-Go-Go/metabolismo , Hemo/metabolismo , Humanos , Neuronas/metabolismo , Unión Proteica , Dominios Proteicos
6.
Mol Microbiol ; 112(6): 1847-1862, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31562654

RESUMEN

Mycobacterium tuberculosis (Mtb) is able to persist in the body through months of multi-drug therapy. Mycobacteria possess a wide range of regulatory proteins, including the protein kinase B (PknB) which controls peptidoglycan biosynthesis during growth. Here, we observed that depletion of PknB resulted in specific transcriptional changes that are likely caused by reduced phosphorylation of the H-NS-like regulator Lsr2 at threonine 112. The activity of PknB towards this phosphosite was confirmed with purified proteins, and this site was required for adaptation of Mtb to hypoxic conditions, and growth on solid media. Like H-NS, Lsr2 binds DNA in sequence-dependent and non-specific modes. PknB phosphorylation of Lsr2 reduced DNA binding, measured by fluorescence anisotropy and electrophoretic mobility shift assays, and our NMR structure of phosphomimetic T112D Lsr2 suggests that this may be due to increased dynamics of the DNA-binding domain. Conversely, the phosphoablative T112A Lsr2 had increased binding to certain DNA sites in ChIP-sequencing, and Mtb containing this variant showed transcriptional changes that correspond with the change in DNA binding. In summary, PknB controls Mtb growth and adaptations to the changing host environment by phosphorylating the global transcriptional regulator Lsr2.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Mycobacterium tuberculosis/crecimiento & desarrollo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Bacterianas/metabolismo , Secuenciación de Inmunoprecipitación de Cromatina/métodos , Proteínas de Unión al ADN/fisiología , Ensayo de Cambio de Movilidad Electroforética/métodos , Regulación Bacteriana de la Expresión Génica/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/fisiología , Treonina/metabolismo , Factores de Transcripción/metabolismo
7.
Anal Chem ; 91(15): 9516-9521, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31259536

RESUMEN

The growing significance of membrane proteins inspires continuous development and improvement of methods for robust membrane proteomics. Here, we developed a very simple and efficient method for membrane protein digestion using an ionic detergent, sodium dodecyl sulfate (SDS), at high temperature, conditions where trypsin is normally inactivated. Our results suggest that trypsin can be stabilized by a combination of calcium ions and sodium chloride, which enables protein digestion at elevated temperature in the presence of strong ionic detergents such as SDS. Finding the conditions for stabilization of trypsin offers novel opportunities for the application of detergents for the investigation of membrane proteins.


Asunto(s)
Calcio/química , Membrana Celular/química , Listeria monocytogenes/química , Ovalbúmina/química , Dodecil Sulfato de Sodio/química , Electroforesis en Gel de Poliacrilamida , Calor , Espectrometría de Masas , Reproducibilidad de los Resultados
8.
PLoS Pathog ; 13(5): e1006399, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28545104

RESUMEN

Sensing and response to changes in nutrient availability are essential for the lifestyle of environmental and pathogenic bacteria. Serine/threonine protein kinase G (PknG) is required for virulence of the human pathogen Mycobacterium tuberculosis, and its putative substrate GarA regulates the tricarboxylic acid cycle in M. tuberculosis and other Actinobacteria by protein-protein binding. We sought to understand the stimuli that lead to phosphorylation of GarA, and the roles of this regulatory system in pathogenic and non-pathogenic bacteria. We discovered that M. tuberculosis lacking garA was severely attenuated in mice and macrophages and furthermore that GarA lacking phosphorylation sites failed to restore the growth of garA deficient M. tuberculosis in macrophages. Additionally we examined the impact of genetic disruption of pknG or garA upon protein phosphorylation, nutrient utilization and the intracellular metabolome. We found that phosphorylation of GarA requires PknG and depends on nutrient availability, with glutamate and aspartate being the main stimuli. Disruption of pknG or garA caused opposing effects on metabolism: a defect in glutamate catabolism or depletion of intracellular glutamate, respectively. Strikingly, disruption of the phosphorylation sites of GarA was sufficient to recapitulate defects caused by pknG deletion. The results suggest that GarA is a cellular target of PknG and the metabolomics data demonstrate that the function of this signaling system is in metabolic regulation. This function in amino acid homeostasis is conserved amongst the Actinobacteria and provides an example of the close relationship between metabolism and virulence.


Asunto(s)
Aminoácidos/metabolismo , Proteínas Bacterianas/metabolismo , Metabolómica , Mycobacterium tuberculosis , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Ácido Aspártico/metabolismo , Proteínas Bacterianas/genética , Ácido Glutámico/metabolismo , Homeostasis , Macrófagos/microbiología , Ratones , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidad , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Tuberculosis/microbiología , Virulencia
9.
Int J Mol Sci ; 20(10)2019 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-31130675

RESUMEN

Site-specific incorporation of un-natural amino acids (UNAA) is a powerful approach to engineer and understand protein function. Site-specific incorporation of UNAAs is achieved through repurposing the amber codon (UAG) as a sense codon for the UNAA, using a tRNACUA that base pairs with an UAG codon in the mRNA and an orthogonal amino-acyl tRNA synthetase (aaRS) that charges the tRNACUA with the UNAA. Here, we report an expansion of the zebrafish genetic code to incorporate the UNAAs, azido-lysine (AzK), bicyclononyne-lysine (BCNK), and diazirine-lysine (AbK) into green fluorescent protein (GFP) and glutathione-s-transferase (GST). We also present proteomic evidence for UNAA incorporation into GFP. Our work sets the stage for the use of AzK, BCNK, and AbK introduction into proteins as a means to investigate and engineer their function in zebrafish.


Asunto(s)
Lisina/análogos & derivados , Ingeniería de Proteínas/métodos , Pez Cebra/genética , Animales , Codón de Terminación/genética , Código Genético , Glutatión Transferasa/genética , Proteínas Fluorescentes Verdes/genética , Lisina/genética , Proteínas de Pez Cebra/genética
11.
J Biol Chem ; 291(17): 8862-75, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-26826123

RESUMEN

Establishing the in vivo activation status of G protein-coupled receptors would not only indicate physiological roles of G protein-coupled receptors but would also aid drug discovery by establishing drug/receptor engagement. Here, we develop a phospho-specific antibody-based biosensor to detect activation of the M1 muscarinic acetylcholine receptor (M1 mAChR) in vitro and in vivo Mass spectrometry phosphoproteomics identified 14 sites of phosphorylation on the M1 mAChR. Phospho-specific antibodies to four of these sites established that serine at position 228 (Ser(228)) on the M1 mAChR showed extremely low levels of basal phosphorylation that were significantly up-regulated by orthosteric agonist stimulation. In addition, the M1 mAChR-positive allosteric modulator, 1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid, enhanced acetylcholine-mediated phosphorylation at Ser(228) These data supported the hypothesis that phosphorylation at Ser(228) was an indicator of M1 mAChR activation. This was further supported in vivo by the identification of phosphorylated Ser(228) on the M1 mAChR in the hippocampus of mice following administration of the muscarinic ligands xanomeline and 1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid. Finally, Ser(228) phosphorylation was seen to increase in the CA1 region of the hippocampus following memory acquisition, a response that correlated closely with up-regulation of CA1 neuronal activity. Thus, determining the phosphorylation status of the M1 mAChR at Ser(228) not only provides a means of establishing receptor activation following drug treatment both in vitro and in vivo but also allows for the mapping of the activation status of the M1 mAChR in the hippocampus following memory acquisition thereby establishing a link between M1 mAChR activation and hippocampus-based memory and learning.


Asunto(s)
Anticuerpos Monoclonales de Origen Murino/química , Técnicas Biosensibles/métodos , Región CA1 Hipocampal/metabolismo , Aprendizaje/fisiología , Memoria/fisiología , Fosfoproteínas/metabolismo , Receptor Muscarínico M1/metabolismo , Animales , Región CA1 Hipocampal/citología , Células CHO , Cricetinae , Cricetulus , Ratones , Fosfoproteínas/genética , Fosforilación/fisiología , Receptor Muscarínico M1/genética
12.
J Cell Physiol ; 232(4): 842-851, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27430664

RESUMEN

Proteasome-mediated proteolysis is critical for regulation of vast majority of cellular processes. In addition to their well-documented functions in the nucleus and cytoplasm proteasomes have also been found in extracellular space. The origin and functions of these proteasomes, dubbed as circulating/plasmatic or extracellular proteasomes, are unclear. To gain insights into the molecular and functional differences between extracellular (EPs) and cellular proteasomes (CPs) we compared their subunit composition using iTRAQ-based quantitative proteomics (iTRAQ LC/MS-MS). Our analysis of purified from K562 cells or conditioned medium intact proteasome complexes led to an identification and quantification of 114 proteins, out of which 19 were 26S proteasome proteins (all subunits of the 20S proteasome and a small number of the 19S regulatory particle proteins), and 3 belonged to the ubiquitin system. Sixty-two of proteasome interacting proteins (PIPs) were differentially represented in CP versus EP, with folds difference ranging from 1.5 to 4.8. The bioinformatics analysis revealed that functionally most of EP-PIPs were associated with protein biosynthesis and, unlike CP-PIPs, were under represented by chaperon/ATP-binding proteins. Identities of some of the proteasome proteins and PIPs were verified by Western blotting. Importantly, we uncovered that the stoichiometry of the 20S versus 19S complexes in the extracellular proteasomes was different compared to the one calculated for the intracellular proteasomes. Specifically, the EP prep contained only three 19S subunits versus at least 18 in the CP one, suggesting that the extracellular proteasomes are deficient in 19S complexes, which may imply that they have special biological functions. J. Cell. Physiol. 232: 842-851, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Espacio Extracelular/metabolismo , Marcaje Isotópico/métodos , Subunidades de Proteína/metabolismo , Proteómica/métodos , Medios de Cultivo Condicionados/farmacología , Humanos , Células K562 , Modelos Biológicos , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica/efectos de los fármacos , Espectrometría de Masas en Tándem
13.
Microbiology (Reading) ; 163(2): 161-174, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28270263

RESUMEN

In this study, the intestinal microbial proteome of children with established type 1 diabetes (T1D) was compared with the proteome of healthy children (Control) with the aim to identify differences in the activity of the intestinal microbiota that not only will contribute to a deeper knowledge of the functionality of the gut in these children but also may provide new approaches to improve the control of the disease. Faecal protein extracts collected from three T1D children (aged 9.3±0.6 years) and three Control children (aged 9.3±1.5 years) were analysed using a combination of 2D gel electrophoresis and spectral counting. The results evidenced markedly differences between the intestinal proteome of T1D children and the Control. The T1D microbial intestinal proteome was enriched with proteins of clostridial cluster XVa and cluster IV and Bacteroides. In contrast, the Control proteome was enriched with bifidobacterial proteins. In both groups, proteins with moonlight function were observed. Human proteins also distinguished the two groups with T1D children depleted in exocrine pancreatic enzymes.


Asunto(s)
Proteínas Bacterianas/análisis , Bacteroides/metabolismo , Clostridium/metabolismo , Diabetes Mellitus Tipo 1/microbiología , Microbioma Gastrointestinal/fisiología , Proteoma/análisis , Niño , Electroforesis en Gel Bidimensional , Heces/química , Conducta Alimentaria , Femenino , Humanos , Intestinos/microbiología , Masculino , Encuestas y Cuestionarios
14.
Biochem J ; 473(22): 4173-4192, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27623777

RESUMEN

The parathyroid hormone receptor 1 (PTH1R) is a member of family B of G-protein-coupled receptors (GPCRs), predominantly expressed in bone and kidney where it modulates extracellular Ca2+ homeostasis and bone turnover. It is well established that phosphorylation of GPCRs constitutes a key event in regulating receptor function by promoting arrestin recruitment and coupling to G-protein-independent signaling pathways. Mapping phosphorylation sites on PTH1R would provide insights into how phosphorylation at specific sites regulates cell signaling responses and also open the possibility of developing therapeutic agents that could target specific receptor functions. Here, we have used mass spectrometry to identify nine sites of phosphorylation in the C-terminal tail of PTH1R. Mutational analysis revealed identified two clusters of serine and threonine residues (Ser489-Ser495 and Ser501-Thr506) specifically responsible for the majority of PTH(1-34)-induced receptor phosphorylation. Mutation of these residues to alanine did not affect negatively on the ability of the receptor to couple to G-proteins or activate extracellular-signal-regulated kinase 1/2. Using fluorescence resonance energy transfer and bioluminescence resonance energy transfer to monitor PTH(1-34)-induced interaction of PTH1R with arrestin3, we show that the first cluster Ser489-Ser495 and the second cluster Ser501-Thr506 operated in concert to mediate both the efficacy and potency of ligand-induced arrestin3 recruitment. We further demonstrate that Ser503 and Thr504 in the second cluster are responsible for 70% of arrestin3 recruitment and are key determinants for interaction of arrestin with the receptor. Our data are consistent with the hypothesis that the pattern of C-terminal tail phosphorylation on PTH1R may determine the signaling outcome following receptor activation.


Asunto(s)
Receptor de Hormona Paratiroídea Tipo 1/metabolismo , Secuencia de Aminoácidos , Arrestinas/metabolismo , Transferencia de Energía por Resonancia de Bioluminiscencia , Ensayo de Inmunoadsorción Enzimática , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Humanos , Inmunoprecipitación , Espectrometría de Masas , Datos de Secuencia Molecular , Fosforilación , Receptor de Hormona Paratiroídea Tipo 1/química , Receptores Acoplados a Proteínas G/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal
15.
Proteomics ; 16(14): 1961-9, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27037516

RESUMEN

Unanchored polyubiquitin chains are emerging as important regulators of cellular physiology with diverse roles paralleling those of substrate-conjugated polyubiquitin. However tools able to discriminate unanchored polyubiquitin chains of different isopeptide linkages have not been reported. We describe the design of a linker-optimized ubiquitin-binding domain hybrid (t-UBD) containing two UBDs, a ZnF-UBP domain in tandem with a linkage-selective UBA domain, which exploits avidity effects to afford selective recognition of unanchored Lys48-linked polyubiquitin chains. Utilizing native MS to quantitatively probe binding affinities we confirm cooperative binding of the UBDs within the synthetic protein, and desired binding specificity for Lys48-linked ubiquitin dimers. Furthermore, MS/MS analyses indicate that the t-UBD, when applied as an affinity enrichment reagent, can be used to favor the purification of endogenous unanchored Lys48-linked polyubiquitin chains from mammalian cell extracts. Our study indicates that strategies for the rational design and engineering of polyubiquitin chain-selective binding in nonbiological polymers are possible, paving the way for the generation of reagents to probe unanchored polyubiquitin chains of different linkages and more broadly the 'ubiquitome'. All MS data have been deposited in the ProteomeXchange with identifier PXD004059 (http://proteomecentral.proteomexchange.org/dataset/PXD004059).


Asunto(s)
Bioensayo/normas , Lisina/metabolismo , Poliubiquitina/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Sitios de Unión , Mezclas Complejas/química , Expresión Génica , Células HEK293 , Humanos , Cinética , Lisina/química , Modelos Moleculares , Poliubiquitina/química , Unión Proteica , Dominios Proteicos , Ingeniería de Proteínas , Multimerización de Proteína , Proteínas Recombinantes de Fusión/genética , Sensibilidad y Especificidad , Espectrometría de Masas en Tándem , Ubiquitinación
16.
Malar J ; 15(1): 535, 2016 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-27821169

RESUMEN

BACKGROUND: Examining essential biochemical pathways in Plasmodium falciparum presents serious challenges, as standard molecular techniques such as siRNA cannot be employed in this organism, and generating gene knock-outs of essential proteins requires specialized conditional approaches. In the study of protein kinases, pharmacological inhibition presents a feasible alternative option. However, as in mammalian systems, inhibitors often lack the desired selectivity. Described here is a chemical genetic approach to selectively inhibit Pfnek-2 in P. falciparum, a member of the NIMA-related kinase family that is essential for completion of the sexual development of the parasite. RESULTS: Introduction of a valine to cysteine mutation at position 24 in the glycine rich loop of Pfnek-2 does not affect kinase activity but confers sensitivity to the protein kinase inhibitor 4-(6-ethynyl-9H-purin-2-ylamino) benzene sulfonamide (NCL-00016066). Using a combination of in vitro kinase assays and mass spectrometry, (including phosphoproteomics) the study shows that this compound acts as an irreversible inhibitor to the mutant Pfnek2 likely through a covalent link with the introduced cysteine residue. In particular, this was shown by analysis of total protein mass using mass spectrometry which showed a shift in molecular weight of the mutant kinase in the presence of the inhibitor to be precisely equivalent to the molecular weight of NCL-00016066. A similar molecular weight shift was not observed in the wild type kinase. Importantly, this inhibitor has little activity towards the wild type Pfnek-2 and, therefore, has all the properties of an effective chemical genetic tool that could be employed to determine the cellular targets for Pfnek-2. CONCLUSIONS: Allelic replacement of wild-type Pfnek-2 with the mutated kinase will allow for targeted inhibition of Pfnek-2 with NCL-00016066 and hence pave the way for comparative studies aimed at understanding the biological role and transmission-blocking potential of Pfnek-2.


Asunto(s)
Inhibidores Enzimáticos/metabolismo , Proteínas Mutantes/metabolismo , Quinasas Relacionadas con NIMA/metabolismo , Plasmodium falciparum/enzimología , Purinas/metabolismo , Sulfonamidas/metabolismo , Espectrometría de Masas , Proteínas Mutantes/genética , Quinasas Relacionadas con NIMA/genética
17.
Nucleic Acids Res ; 40(6): 2639-52, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22110043

RESUMEN

Spliceosomes remove introns from primary gene transcripts. They assemble de novo on each intron through a series of steps that involve the incorporation of five snRNP particles and multiple non-snRNP proteins. In mammals, all the intermediate complexes have been characterized on one transcript (MINX), with the exception of the very first, complex E. We have purified this complex by two independent procedures using antibodies to either U1-A or PRPF40A proteins, which are known to associate at an early stage of assembly. We demonstrate that the purified complexes are functional in splicing using commitment assays. These complexes contain components expected to be in the E complex and a number of previously unrecognized factors, including survival of motor neurons (SMN) and proteins of the SMN-associated complex. Depletion of the SMN complex proteins from nuclear extracts inhibits formation of the E complex and causes non-productive complexes to accumulate. This suggests that the SMN complex stabilizes the association of U1 and U2 snRNPs with pre-mRNA. In addition, the antibody to PRPF40A precipitated U2 snRNPs from nuclear extracts, indicating that PRPF40A associates with U2 snRNPs.


Asunto(s)
Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Proteínas del Complejo SMN/metabolismo , Empalmosomas/metabolismo , Proteínas Portadoras/metabolismo , Células HeLa , Humanos , Empalme del ARN
18.
Proc Natl Acad Sci U S A ; 107(20): 9440-5, 2010 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-20439723

RESUMEN

Degeneration of the cholinergic system is considered to be the underlying pathology that results in the cognitive deficit in Alzheimer's disease. This pathology is thought to be linked to a loss of signaling through the cholinergic M(1)-muscarinic receptor subtype. However, recent studies have cast doubt on whether this is the primary receptor mediating cholinergic-hippocampal learning and memory. The current study offers an alternative mechanism involving the M(3)-muscarinic receptor that is expressed in numerous brain regions including the hippocampus. We demonstrate here that M(3)-muscarinic receptor knockout mice show a deficit in fear conditioning learning and memory. The mechanism used by the M(3)-muscarinic receptor in this process involves receptor phosphorylation because a knockin mouse strain expressing a phosphorylation-deficient receptor mutant also shows a deficit in fear conditioning. Consistent with a role for receptor phosphorylation, we demonstrate that the M(3)-muscarinic receptor is phosphorylated in the hippocampus following agonist treatment and following fear conditioning training. Importantly, the phosphorylation-deficient M(3)-muscarinic receptor was coupled normally to G(q/11)-signaling but was uncoupled from phosphorylation-dependent processes such as receptor internalization and arrestin recruitment. It can, therefore, be concluded that M(3)-muscarinic receptor-dependent learning and memory depends, at least in part, on receptor phosphorylation/arrestin signaling. This study opens the potential for biased M(3)-muscarinic receptor ligands that direct phosphorylation/arrestin-dependent (non-G protein) signaling as being beneficial in cognitive disorders.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Miedo , Hipocampo/metabolismo , Aprendizaje/fisiología , Memoria/fisiología , Receptor Muscarínico M3/fisiología , Enfermedad de Alzheimer/metabolismo , Animales , Arrestina/metabolismo , Condicionamiento Psicológico , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Inmunohistoquímica , Inmunoprecipitación , Espectrometría de Masas , Aprendizaje por Laberinto , Ratones , Ratones Noqueados , Fosforilación , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/metabolismo
19.
bioRxiv ; 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36778504

RESUMEN

Mechanisms of cell division are remarkably diverse, suggesting the underlying molecular networks among eukaryotes differ extensively. The Aurora family of kinases orchestrates the process of chromosome segregation and cytokinesis during cell division through precise spatiotemporal regulation of their catalytic activities by distinct scaffolds. Plasmodium spp., the causative agents of malaria, are unicellular eukaryotes that have three divergent aurora-related kinases (ARKs) and lack most canonical scaffolds/activators. The parasite uses unconventional modes of chromosome segregation during endomitosis and meiosis in sexual transmission stages within mosquito host. This includes a rapid threefold genome replication from 1N to 8N with successive cycles of closed mitosis, spindle formation and chromosome segregation within eight minutes (termed male gametogony). Kinome studies had previously suggested likely essential functions for all three Plasmodium ARKs during asexual mitotic cycles; however, little is known about their location, function, or their scaffolding molecules during unconventional sexual proliferative stages. Using a combination of super-resolution microscopy, mass spectrometry, and live-cell fluorescence imaging, we set out to investigate the role of the atypical Aurora paralog ARK2 to proliferative sexual stages using rodent malaria model Plasmodium berghei . We find that ARK2 primarily localises to the spindle apparatus in the vicinity of kinetochores during both mitosis and meiosis. Interactomics and co-localisation studies reveal a unique ARK2 scaffold at the spindle including the microtubule plus end-binding protein EB1, lacking conserved Aurora scaffold proteins. Gene function studies indicate complementary functions of ARK2 and EB1 in driving endomitotic divisions and thereby parasite transmission. Our discovery of a novel Aurora kinase spindle scaffold underlines the emerging flexibility of molecular networks to rewire and drive unconventional mechanisms of chromosome segregation in the malaria parasite Plasmodium .

20.
Res Sq ; 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36798191

RESUMEN

Mechanisms of cell division are remarkably diverse, suggesting the underlying molecular networks among eukaryotes differ extensively. The Aurora family of kinases orchestrates the process of chromosome segregation and cytokinesis during cell division through precise spatiotemporal regulation of their catalytic activities by distinct scaffolds. Plasmodium spp., the causative agents of malaria, are unicellular eukaryotes that have three divergent aurora-related kinases (ARKs) and lack most canonical scaffolds/activators. The parasite uses unconventional modes of chromosome segregation during endomitosis and meiosis in sexual transmission stages within mosquito host. This includes a rapid threefold genome replication from 1N to 8N with successive cycles of closed mitosis, spindle formation and chromosome segregation within eight minutes (termed male gametogony). Kinome studies had previously suggested likely essential functions for all three Plasmodium ARKs during asexual mitotic cycles; however, little is known about their location, function, or their scaffolding molecules during unconventional sexual proliferative stages. Using a combination of super-resolution microscopy, mass spectrometry, omics and live-cell fluorescence imaging, we set out to investigate the contribution of the atypical Aurora paralog ARK2 to proliferative sexual stages using rodent malaria model Plasmodium berghei. We find that ARK2 primarily localises to the spindle apparatus associated with kinetochores during both mitosis and meiosis. Interactomics and co-localisation studies reveal a unique ARK2 scaffold at the spindle including the microtubule plus end-binding protein EB1 and lacking some other conserved molecules. Gene function studies indicate complementary functions of ARK2 and EB1 in driving endomitotic divisions and thereby parasite transmission. Our discovery of a novel Aurora spindle scaffold underlines the emerging flexibility of molecular networks to rewire and drive unconventional mechanisms of chromosome segregation in the malaria parasite Plasmodium.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA