Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Circulation ; 147(21): 1622-1633, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37216437

RESUMEN

Brugada syndrome (BrS), early repolarization syndrome (ERS), and idiopathic ventricular fibrillation (iVF) have long been considered primary electrical disorders associated with malignant ventricular arrhythmia and sudden cardiac death. However, recent studies have revealed the presence of subtle microstructural abnormalities of the extracellular matrix in some cases of BrS, ERS, and iVF, particularly within right ventricular subepicardial myocardium. Substrate-based ablation within this region has been shown to ameliorate the electrocardiographic phenotype and to reduce arrhythmia frequency in BrS. Patients with ERS and iVF may also exhibit low-voltage and fractionated electrograms in the ventricular subepicardial myocardium, which can be treated with ablation. A significant proportion of patients with BrS and ERS, as well as some iVF survivors, harbor pathogenic variants in the voltage-gated sodium channel gene, SCN5A, but the majority of genetic susceptibility of these disorders is likely to be polygenic. Here, we postulate that BrS, ERS, and iVF may form part of a spectrum of subtle subepicardial cardiomyopathy. We propose that impaired sodium current, along with genetic and environmental susceptibility, precipitates a reduction in epicardial conduction reserve, facilitating current-to-load mismatch at sites of structural discontinuity, giving rise to electrocardiographic changes and the arrhythmogenic substrate.


Asunto(s)
Síndrome de Brugada , Cardiomiopatías , Humanos , Arritmias Cardíacas , Fibrilación Ventricular/etiología , Fibrilación Ventricular/genética , Síndrome de Brugada/complicaciones , Síndrome de Brugada/diagnóstico , Síndrome de Brugada/genética , Electrocardiografía , Cardiomiopatías/diagnóstico , Cardiomiopatías/genética
2.
Am J Physiol Heart Circ Physiol ; 326(3): H800-H811, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38180452

RESUMEN

Multielectrode arrays (MEAs) are the method of choice for electrophysiological characterization of cardiomyocyte monolayers. The field potentials recorded using an MEA are like extracellular electrograms recorded from the myocardium using conventional electrodes. Nevertheless, different criteria are used to interpret field potentials and extracellular electrograms, which hamper correct interpretation and translation to the patient. To validate the criteria for interpretation of field potentials, we used neonatal rat cardiomyocytes to generate monolayers. We recorded field potentials using an MEA and simultaneously recorded action potentials using sharp microelectrodes. In parallel, we recreated our experimental setting in silico and performed simulations. We show that the amplitude of the local RS complex of a field potential correlated with conduction velocity in silico but not in vitro. The peak time of the T wave in field potentials exhibited a strong correlation with APD90 while the steepest upslope correlated well with APD50. However, this relationship only holds when the T wave displayed a biphasic pattern. Next, we simulated local extracellular action potentials (LEAPs). The shape of the LEAP differed markedly from the shape of the local action potential, but the final duration of the LEAP coincided with APD90. Criteria for interpretation of extracellular electrograms should be applied to field potentials. This will provide a strong basis for the analysis of heterogeneity in conduction velocity and repolarization in cultured monolayers of cardiomyocytes. Finally, a LEAP is not a recording of the local action potential but is generated by intracellular current provided by neighboring cardiomyocytes and is superior to field potential duration in estimating APD90.NEW & NOTEWORTHY We present a physiological basis for the interpretation of multielectrode array-derived, extracellular, electrical signals.


Asunto(s)
Miocardio , Miocitos Cardíacos , Humanos , Ratas , Animales , Miocitos Cardíacos/fisiología , Arritmias Cardíacas , Microelectrodos , Potenciales de Acción/fisiología
3.
Circulation ; 145(8): 606-619, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35113653

RESUMEN

BACKGROUND: The pathogenic missense variant p.G125R in TBX5 (T-box transcription factor 5) causes Holt-Oram syndrome (also known as hand-heart syndrome) and early onset of atrial fibrillation. Revealing how an altered key developmental transcription factor modulates cardiac physiology in vivo will provide unique insights into the mechanisms underlying atrial fibrillation in these patients. METHODS: We analyzed ECGs of an extended family pedigree of Holt-Oram syndrome patients. Next, we introduced the TBX5-p.G125R variant in the mouse genome (Tbx5G125R) and performed electrophysiologic analyses (ECG, optical mapping, patch clamp, intracellular calcium measurements), transcriptomics (single-nuclei and tissue RNA sequencing), and epigenetic profiling (assay for transposase-accessible chromatin using sequencing, H3K27ac [histone H3 lysine 27 acetylation] CUT&RUN [cleavage under targets and release under nuclease sequencing]). RESULTS: We discovered high incidence of atrial extra systoles and atrioventricular conduction disturbances in Holt-Oram syndrome patients. Tbx5G125R/+ mice were morphologically unaffected and displayed variable RR intervals, atrial extra systoles, and susceptibility to atrial fibrillation, reminiscent of TBX5-p.G125R patients. Atrial conduction velocity was not affected but systolic and diastolic intracellular calcium concentrations were decreased and action potentials were prolonged in isolated cardiomyocytes of Tbx5G125R/+ mice compared with controls. Transcriptional profiling of atria revealed the most profound transcriptional changes in cardiomyocytes versus other cell types, and identified over a thousand coding and noncoding transcripts that were differentially expressed. Epigenetic profiling uncovered thousands of TBX5-p.G125R-sensitive, putative regulatory elements (including enhancers) that gained accessibility in atrial cardiomyocytes. The majority of sites with increased accessibility were occupied by Tbx5. The small group of sites with reduced accessibility was enriched for DNA-binding motifs of members of the SP (specificity protein) and KLF (Krüppel-like factor) families of transcription factors. These data show that Tbx5-p.G125R induces changes in regulatory element activity, alters transcriptional regulation, and changes cardiomyocyte behavior, possibly caused by altered DNA binding and cooperativity properties. CONCLUSIONS: Our data reveal that a disease-causing missense variant in TBX5 induces profound changes in the atrial transcriptional regulatory network and epigenetic state in vivo, leading to arrhythmia reminiscent of those seen in human TBX5-p.G125R variant carriers.


Asunto(s)
Anomalías Múltiples , Regulación de la Expresión Génica , Cardiopatías Congénitas , Defectos del Tabique Interatrial , Heterocigoto , Deformidades Congénitas de las Extremidades Inferiores , Mutación Missense , Linaje , Proteínas de Dominio T Box , Deformidades Congénitas de las Extremidades Superiores , Anomalías Múltiples/genética , Anomalías Múltiples/metabolismo , Sustitución de Aminoácidos , Animales , Fibrilación Atrial/genética , Fibrilación Atrial/metabolismo , Femenino , Atrios Cardíacos/metabolismo , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Defectos del Tabique Interatrial/genética , Defectos del Tabique Interatrial/metabolismo , Humanos , Deformidades Congénitas de las Extremidades Inferiores/genética , Deformidades Congénitas de las Extremidades Inferiores/metabolismo , Masculino , Ratones , Ratones Mutantes , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Deformidades Congénitas de las Extremidades Superiores/genética , Deformidades Congénitas de las Extremidades Superiores/metabolismo
4.
Am J Physiol Heart Circ Physiol ; 324(6): H866-H880, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37083466

RESUMEN

The transmembrane protein 43 (TMEM43/LUMA) p.S358L mutation causes arrhythmogenic cardiomyopathy named as ARVC5, a fully penetrant disease with high risk of ventricular arrhythmias, sudden death, and heart failure. Male gender and vigorous exercise independently predicted deleterious outcome. Our systems genetics analysis revealed the importance of Tmem43 for cardiac and metabolic pathways associated with elevated lipid absorption from small intestine. This study sought to delineate gender-specific cardiac, intestinal, and metabolic phenotypes in vivo and investigate underlying pathophysiological mechanisms of S358L mutation. Serial echocardiography, surface electrocardiography (ECG), treadmill running, and body EchoMRI have been used in knock-in heterozygous (Tmem43WT/S358L), homozygous (Tmem43S358L), and wildtype (Tmem43WT) littermate mice. Electron microscopy, histology, immunohistochemistry, transcriptome, and protein analysis have been performed in cardiac and intestinal tissues. Systolic dysfunction was apparent in 3-mo-old Tmem43S358L and 6-mo-old Tmem43WT/S358L mutants. Both mutant lines displayed intolerance to acute stress at 6 mo of age, arrhythmias, fibro-fatty infiltration, and subcellular abnormalities in the myocardium. Microarray analysis found significantly differentially expressed genes between left ventricular (LV) and right ventricular (RV) myocardium. Mutants displayed diminished PPARG activities and significantly reduced TMEM43 and ß-catenin expression in the heart, whereas junctional plakoglobin (JUP) translocated into nuclei of mutant cardiomyocytes. Conversely, elongated villi, fatty infiltration, and overexpression of gut epithelial proliferation markers, ß-catenin and Ki-67, were evident in small intestine of mutants. We defined Tmem43 S358L-induced pathological effects on cardiac and intestinal homeostasis via distinctly disturbed WNT-ß-catenin and PPARG signaling thereby contributing to ARVC5 pathophysiology. Results suggest that cardiometabolic assessment in mutation carriers may be important for predictive and personalized care.NEW & NOTEWORTHY This manuscript describes the findings of our investigation of cardiac, small intestine, and metabolic features of Tmem43-S358L mouse model. By investigating interorgan pathologies, we uncovered multiple mechanisms of the S358L-induced disease, and these unique mechanisms likely appear to contribute to the disease pathogenesis. We hope our findings are important and novel and open new avenues in the hunting for additional diagnostic and therapeutic targets in subjects carrying TMEM43 mutation.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica , beta Catenina , Animales , Masculino , Ratones , Arritmias Cardíacas/metabolismo , Displasia Ventricular Derecha Arritmogénica/genética , Displasia Ventricular Derecha Arritmogénica/diagnóstico , beta Catenina/metabolismo , Homeostasis , Intestino Delgado , Mutación , Miocitos Cardíacos/metabolismo , PPAR gamma/metabolismo
6.
Circ Res ; 128(1): 115-129, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33107387

RESUMEN

RATIONALE: ANP (atrial natriuretic peptide) and BNP (B-type natriuretic peptide), encoded by the clustered genes Nppa and Nppb, are important prognostic, diagnostic, and therapeutic proteins in cardiac disease. The spatiotemporal expression pattern and stress-induction of the Nppa and Nppb are tightly regulated, possibly involving their coregulation by an evolutionary conserved enhancer cluster. OBJECTIVE: To explore the physiological functions of the enhancer cluster and elucidate the genomic mechanism underlying Nppa-Nppb coregulation in vivo. METHODS AND RESULTS: By analyzing epigenetic data we uncovered an enhancer cluster with super enhancer characteristics upstream of Nppb. Using CRISPR/Cas9 genome editing, the enhancer cluster or parts thereof, Nppb and flanking regions or the entire genomic block spanning Nppa-Nppb, respectively, were deleted from the mouse genome. The impact on gene regulation and phenotype of the respective mouse lines was investigated by transcriptomic, epigenomic, and phenotypic analyses. The enhancer cluster was essential for prenatal and postnatal ventricular expression of Nppa and Nppb but not of any other gene. Enhancer cluster-deficient mice showed enlarged hearts before and after birth, similar to Nppa-Nppb compound knockout mice we generated. Analysis of the other deletion alleles indicated the enhancer cluster engages the promoters of Nppa and Nppb in a competitive rather than a cooperative mode, resulting in increased Nppa expression when Nppb and flanking sequences were deleted. The enhancer cluster maintained its active epigenetic state and selectivity when its target genes are absent. In enhancer cluster-deficient animals, Nppa was induced but remained low in the postmyocardial infarction border zone and in the hypertrophic ventricle, involving regulatory sequences proximal to Nppa. CONCLUSIONS: Coordinated ventricular expression of Nppa and Nppb is controlled in a competitive manner by a shared super enhancer, which is also required to augment stress-induced expression and to prevent premature hypertrophy.


Asunto(s)
Factor Natriurético Atrial/genética , Elementos de Facilitación Genéticos , Hipertrofia Ventricular Izquierda/genética , Familia de Multigenes , Infarto del Miocardio/genética , Miocitos Cardíacos/metabolismo , Péptido Natriurético Encefálico/genética , Animales , Factor Natriurético Atrial/metabolismo , Sitios de Unión , Unión Competitiva , Sistemas CRISPR-Cas , Línea Celular , Modelos Animales de Enfermedad , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/patología , Ratones Noqueados , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocitos Cardíacos/patología , Péptido Natriurético Encefálico/metabolismo , Regiones Promotoras Genéticas
7.
Circulation ; 144(3): 229-242, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-33910361

RESUMEN

BACKGROUND: Genetic variants in SCN10A, encoding the neuronal voltage-gated sodium channel NaV1.8, are strongly associated with atrial fibrillation, Brugada syndrome, cardiac conduction velocities, and heart rate. The cardiac function of SCN10A has not been resolved, however, and diverging mechanisms have been proposed. Here, we investigated the cardiac expression of SCN10A and the function of a variant-sensitive intronic enhancer previously linked to the regulation of SCN5A, encoding the major essential cardiac sodium channel NaV1.5. METHODS: The expression of SCN10A was investigated in mouse and human hearts. With the use of CRISPR/Cas9 genome editing, the mouse intronic enhancer was disrupted, and mutant mice were characterized by transcriptomic and electrophysiological analyses. The association of genetic variants at SCN5A-SCN10A enhancer regions and gene expression were evaluated by genome-wide association studies single-nucleotide polymorphism mapping and expression quantitative trait loci analysis. RESULTS: We found that cardiomyocytes of the atria, sinoatrial node, and ventricular conduction system express a short transcript comprising the last 7 exons of the gene (Scn10a-short). Transcription occurs from an intronic enhancer-promoter complex, whereas full-length Scn10a transcript was undetectable in the human and mouse heart. Expression quantitative trait loci analysis revealed that the genetic variants in linkage disequilibrium with genetic variant rs6801957 in the intronic enhancer associate with SCN10A transcript levels in the heart. Genetic modification of the enhancer in the mouse genome led to reduced cardiac Scn10a-short expression in atria and ventricles, reduced cardiac sodium current in atrial cardiomyocytes, atrial conduction slowing and arrhythmia, whereas the expression of Scn5a, the presumed enhancer target gene, remained unaffected. In patch-clamp transfection experiments, expression of Scn10a-short-encoded NaV1.8-short increased NaV1.5-mediated sodium current. We propose that noncoding genetic variation modulates transcriptional regulation of Scn10a-short in cardiomyocytes that impacts NaV1.5-mediated sodium current and heart rhythm. CONCLUSIONS: Genetic variants in and around SCN10A modulate enhancer function and expression of a cardiac-specific SCN10A-short transcript. We propose that noncoding genetic variation modulates transcriptional regulation of a functional C-terminal portion of NaV1.8 in cardiomyocytes that impacts on NaV1.5 function, cardiac conduction velocities, and arrhythmia susceptibility.


Asunto(s)
Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Sistema de Conducción Cardíaco/fisiología , Intrones , Canal de Sodio Activado por Voltaje NAV1.8/genética , Potenciales de Acción/genética , Animales , Biomarcadores , Trastorno del Sistema de Conducción Cardíaco/diagnóstico , Trastorno del Sistema de Conducción Cardíaco/genética , Trastorno del Sistema de Conducción Cardíaco/fisiopatología , Electrofisiología Cardíaca , Susceptibilidad a Enfermedades , Electrocardiografía , Femenino , Estudios de Asociación Genética , Masculino , Ratones , Canal de Sodio Activado por Voltaje NAV1.5/genética , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable
8.
Am J Physiol Heart Circ Physiol ; 323(6): H1137-H1166, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36269644

RESUMEN

Cardiac arrhythmias are a major cause of morbidity and mortality worldwide. Although recent advances in cell-based models, including human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM), are contributing to our understanding of electrophysiology and arrhythmia mechanisms, preclinical animal studies of cardiovascular disease remain a mainstay. Over the past several decades, animal models of cardiovascular disease have advanced our understanding of pathological remodeling, arrhythmia mechanisms, and drug effects and have led to major improvements in pacing and defibrillation therapies. There exist a variety of methodological approaches for the assessment of cardiac electrophysiology and a plethora of parameters may be assessed with each approach. This guidelines article will provide an overview of the strengths and limitations of several common techniques used to assess electrophysiology and arrhythmia mechanisms at the whole animal, whole heart, and tissue level with a focus on small animal models. We also define key electrophysiological parameters that should be assessed, along with their physiological underpinnings, and the best methods with which to assess these parameters.


Asunto(s)
Enfermedades Cardiovasculares , Células Madre Pluripotentes Inducidas , Animales , Humanos , Técnicas Electrofisiológicas Cardíacas , Arritmias Cardíacas/etiología , Miocitos Cardíacos
9.
Circ Res ; 127(3): e94-e106, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32290757

RESUMEN

RATIONALE: The heartbeat is organized by the cardiac conduction system (CCS), a specialized network of cardiomyocytes. Patterning of the CCS into atrial node versus ventricular conduction system (VCS) components with distinct physiology is essential for the normal heartbeat. Distinct node versus VCS physiology has been recognized for more than a century, but the molecular basis of this regional patterning is not well understood. OBJECTIVE: To study the genetic and genomic mechanisms underlying node versus VCS distinction and investigate rhythm consequences of failed VCS patterning. METHODS AND RESULTS: Using mouse genetics, we found that the balance between T-box transcriptional activator, Tbx5, and T-box transcriptional repressor, Tbx3, determined the molecular and functional output of VCS myocytes. Adult VCS-specific removal of Tbx5 or overexpression of Tbx3 re-patterned the fast VCS into slow, nodal-like cells based on molecular and functional criteria. In these cases, gene expression profiling showed diminished expression of genes required for VCS-specific fast conduction but maintenance of expression of genes required for nodal slow conduction physiology. Action potentials of Tbx5-deficient VCS myocytes adopted nodal-specific characteristics, including increased action potential duration and cellular automaticity. Removal of Tbx5 in vivo precipitated inappropriate depolarizations in the atrioventricular (His)-bundle associated with lethal ventricular arrhythmias. TBX5 bound and directly activated cis-regulatory elements at fast conduction channel genes required for fast physiological characteristics of the VCS action potential, defining the identity of the adult VCS. CONCLUSIONS: The CCS is patterned entirely as a slow, nodal ground state, with a T-box dependent, physiologically dominant, fast conduction network driven specifically in the VCS. Disruption of the fast VCS gene regulatory network allowed nodal physiology to emerge, providing a plausible molecular mechanism for some lethal ventricular arrhythmias.


Asunto(s)
Arritmias Cardíacas/metabolismo , Nodo Atrioventricular/metabolismo , Ventrículos Cardíacos/metabolismo , Proteínas de Dominio T Box/metabolismo , Transcripción Genética , Potenciales de Acción , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatología , Nodo Atrioventricular/fisiopatología , Tipificación del Cuerpo , Femenino , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Frecuencia Cardíaca , Ventrículos Cardíacos/fisiopatología , Humanos , Masculino , Ratones Noqueados , Proteínas de Dominio T Box/deficiencia , Proteínas de Dominio T Box/genética , Factores de Tiempo
10.
Circ Res ; 127(12): 1522-1535, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33040635

RESUMEN

RATIONALE: The development and function of the pacemaker cardiomyocytes of the sinoatrial node (SAN), the leading pacemaker of the heart, are tightly controlled by a conserved network of transcription factors, including TBX3 (T-box transcription factor 3), ISL1 (ISL LIM homeobox 1), and SHOX2 (short stature homeobox 2). Yet, the regulatory DNA elements (REs) controlling target gene expression in the SAN pacemaker cells have remained undefined. OBJECTIVE: Identification of the regulatory landscape of human SAN-like pacemaker cells and functional assessment of SAN-specific REs potentially involved in pacemaker cell gene regulation. METHODS AND RESULTS: We performed Assay for Transposase-Accessible Chromatin using sequencing on human pluripotent stem cell-derived SAN-like pacemaker cells and ventricle-like cells and identified thousands of putative REs specific for either human cell type. We validated pacemaker cell-specific elements in the SHOX2 and TBX3 loci. CRISPR-mediated homozygous deletion of the mouse ortholog of a noncoding region with candidate pacemaker-specific REs in the SHOX2 locus resulted in selective loss of Shox2 expression from the developing SAN and embryonic lethality. Putative pacemaker-specific REs were identified up to 1 Mbp upstream of TBX3 in a region close to MED13L harboring variants associated with heart rate recovery after exercise. The orthologous region was deleted in mice, which resulted in selective loss of expression of Tbx3 from the SAN and (cardiac) ganglia and in neonatal lethality. Expression of Tbx3 was maintained in other tissues including the atrioventricular conduction system, lungs, and liver. Heterozygous adult mice showed increased SAN recovery times after pacing. The human REs harboring the associated variants robustly drove expression in the SAN of transgenic mouse embryos. CONCLUSIONS: We provided a genome-wide collection of candidate human pacemaker-specific REs, including the loci of SHOX2, TBX3, and ISL1, and identified a link between human genetic variants influencing heart rate recovery after exercise and a variant RE with highly conserved function, driving SAN expression of TBX3.


Asunto(s)
Relojes Biológicos , Elementos de Facilitación Genéticos , Frecuencia Cardíaca , Miocitos Cardíacos/metabolismo , Nodo Sinoatrial/metabolismo , Proteínas de Dominio T Box/metabolismo , Potenciales de Acción , Animales , Línea Celular , Epigénesis Genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Ratones Transgénicos , Mutación , Proteínas de Dominio T Box/genética , Pez Cebra
11.
Development ; 145(17)2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-30042181

RESUMEN

A small network of spontaneously active Tbx3+ cardiomyocytes forms the cardiac conduction system (CCS) in adults. Understanding the origin and mechanism of development of the CCS network are important steps towards disease modeling and the development of biological pacemakers to treat arrhythmias. We found that Tbx3 expression in the embryonic mouse heart is associated with automaticity. Genetic inducible fate mapping revealed that Tbx3+ cells in the early heart tube are fated to form the definitive CCS components, except the Purkinje fiber network. At mid-fetal stages, contribution of Tbx3+ cells was restricted to the definitive CCS. We identified a Tbx3+ population in the outflow tract of the early heart tube that formed the atrioventricular bundle. Whereas Tbx3+ cardiomyocytes also contributed to the adjacent Gja5+ atrial and ventricular chamber myocardium, embryonic Gja5+ chamber cardiomyocytes did not contribute to the Tbx3+ sinus node or to atrioventricular ring bundles. In conclusion, the CCS is established by progressive fate restriction of a Tbx3+ cell population in the early developing heart, which implicates Tbx3 as a useful tool for developing strategies to study and treat CCS diseases.


Asunto(s)
Fascículo Atrioventricular/embriología , Miocitos Cardíacos/metabolismo , Proteínas de Dominio T Box/metabolismo , Animales , Fascículo Atrioventricular/metabolismo , Conexinas/metabolismo , Técnicas de Cultivo de Embriones , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Miocitos Cardíacos/citología , Organogénesis/fisiología , Proteínas de Dominio T Box/genética , Proteína alfa-5 de Unión Comunicante
12.
Int J Mol Sci ; 22(4)2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33557237

RESUMEN

Brugada syndrome and early repolarization syndrome are both classified as J-wave syndromes, with a similar mechanism of arrhythmogenesis and with the same basis for genesis of the characteristic electrocardiographic features. The Brugada syndrome is now considered a conduction disorder based on subtle structural abnormalities in the right ventricular outflow tract. Recent evidence suggests structural substrate in patients with the early repolarization syndrome as well. We propose a unifying mechanism based on these structural abnormalities explaining both arrhythmogenesis and the electrocardiographic changes. In addition, we speculate that, with increasing technical advances in imaging techniques and their spatial resolution, these syndromes will be reclassified as structural heart diseases or cardiomyopathies.


Asunto(s)
Arritmias Cardíacas/patología , Síndrome de Brugada/patología , Trastorno del Sistema de Conducción Cardíaco/patología , Fibrosis/fisiopatología , Sistema de Conducción Cardíaco/anomalías , Animales , Arritmias Cardíacas/etiología , Síndrome de Brugada/etiología , Trastorno del Sistema de Conducción Cardíaco/etiología , Humanos
13.
Int J Mol Sci ; 21(19)2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32992720

RESUMEN

Arrhythmias in Brugada syndrome patients originate in the right ventricular outflow tract (RVOT). Over the past few decades, the characterization of the unique anatomy and electrophysiology of the RVOT has revealed the arrhythmogenic nature of this region. However, the mechanisms that drive arrhythmias in Brugada syndrome patients remain debated as well as the exact site of their occurrence in the RVOT. Identifying the site of origin and mechanism of Brugada syndrome would greatly benefit the development of mechanism-driven treatment strategies.


Asunto(s)
Síndrome de Brugada , Ventrículos Cardíacos , Anciano , Animales , Síndrome de Brugada/genética , Síndrome de Brugada/patología , Síndrome de Brugada/fisiopatología , Fenómenos Electrofisiológicos , Femenino , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Humanos , Masculino , Ratones
14.
J Anat ; 234(5): 583-591, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30861129

RESUMEN

The sinus venosus is a cardiac chamber upstream of the right atrium that harbours the dominant cardiac pacemaker. During human heart development, the sinus venosus becomes incorporated into the right atrium. However, from the literature it is not possible to deduce the characteristics and importance of this process of incorporation, due to inconsistent terminology and definitions in the description of multiple lines of evidence. We reviewed the literature regarding the incorporation of the sinus venosus and included novel electrophysiological data. Most mammals that have an incorporated sinus venosus show a loss of a functional valve guard of the superior caval vein together with a loss of the electrical sinuatrial delay between the sinus venosus and the right atrium. However, these processes are not necessarily intertwined and in a few species only the sinuatrial delay may be lost. Sinus venosus incorporation can be characterised as the loss of the sinuatrial delay of which the anatomical and molecular underpinnings are not yet understood.


Asunto(s)
Atrios Cardíacos/embriología , Corazón/embriología , Nodo Sinoatrial/embriología , Animales , Evolución Biológica , Electrofisiología , Corazón/anatomía & histología , Atrios Cardíacos/anatomía & histología , Humanos , Mamíferos/anatomía & histología , Mamíferos/embriología , Nodo Sinoatrial/anatomía & histología
15.
Circ Res ; 121(5): 537-548, 2017 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-28637782

RESUMEN

RATIONALE: Genome-wide association studies previously identified an association of rs9388451 at chromosome 6q22.3 (near HEY2) with Brugada syndrome. The causal gene and underlying mechanism remain unresolved. OBJECTIVE: We used an integrative approach entailing transcriptomic studies in human hearts and electrophysiological studies in Hey2+/- (Hey2 heterozygous knockout) mice to dissect the underpinnings of the 6q22.31 association with Brugada syndrome. METHODS AND RESULTS: We queried expression quantitative trait locus data acquired in 190 human left ventricular samples from the genotype-tissue expression consortium for cis-expression quantitative trait locus effects of rs9388451, which revealed an association between Brugada syndrome risk allele dosage and HEY2 expression (ß=+0.159; P=0.0036). In the same transcriptomic data, we conducted genome-wide coexpression analysis for HEY2, which uncovered KCNIP2, encoding the ß-subunit of the channel underlying the transient outward current (Ito), as the transcript most robustly correlating with HEY2 expression (ß=+1.47; P=2×10-34). Transcript abundance of Hey2 and the Ito subunits Kcnip2 and Kcnd2, assessed by quantitative reverse transcription-polymerase chain reaction, was higher in subepicardium versus subendocardium in both left and right ventricles, with lower levels in Hey2+/- mice compared with wild type. Surface ECG measurements showed less prominent J waves in Hey2+/- mice compared with wild-type. In wild-type mice, patch-clamp electrophysiological studies on cardiomyocytes from right ventricle demonstrated a shorter action potential duration and a lower Vmax in subepicardium compared with subendocardium cardiomyocytes, which was paralleled by a higher Ito and a lower sodium current (INa) density in subepicardium versus subendocardium. These transmural differences were diminished in Hey2+/- mice because of changes in subepicardial cardiomyocytes. CONCLUSIONS: This study uncovers a role of HEY2 in the normal transmural electrophysiological gradient in the ventricle and provides compelling evidence that genetic variation at 6q22.31 (rs9388451) is associated with Brugada syndrome through a HEY2-dependent alteration of ion channel expression across the cardiac ventricular wall.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Síndrome de Brugada/genética , Síndrome de Brugada/metabolismo , Predisposición Genética a la Enfermedad/genética , Ventrículos Cardíacos/metabolismo , Proteínas Represoras/biosíntesis , Proteínas Represoras/genética , Animales , Síndrome de Brugada/fisiopatología , Electrocardiografía/métodos , Femenino , Estudio de Asociación del Genoma Completo/métodos , Ventrículos Cardíacos/fisiopatología , Humanos , Canales Iónicos/biosíntesis , Canales Iónicos/genética , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos
16.
BMC Cardiovasc Disord ; 19(1): 254, 2019 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-31711426

RESUMEN

BACKGROUND: The PhysioHeart™ is a mature acute platform, based isolated slaughterhouse hearts and able to validate cardiac devices and techniques in working mode. Despite perfusion, myocardial edema and time-dependent function degradation are reported. Therefore, monitoring several variables is necessary to identify which of these should be controlled to preserve the heart function. This study presents biochemical, electrophysiological and hemodynamic changes in the PhysioHeart™ to understand the pitfalls of ex vivo slaughterhouse heart hemoperfusion. METHODS: Seven porcine hearts were harvested, arrested and revived using the PhysioHeart™. Cardiac output, SaO2, glucose and pH were maintained at physiological levels. Blood analyses were performed hourly and unipolar epicardial electrograms (UEG), pressures and flows were recorded to assess the physiological performance. RESULTS: Normal cardiac performance was attained in terms of mean cardiac output (5.1 ± 1.7 l/min) and pressures but deteriorated over time. Across the experiments, homeostasis was maintained for 171.4 ± 54 min, osmolarity and blood electrolytes increased significantly between 10 and 80%, heart weight increased by 144 ± 41 g, free fatty acids (- 60%), glucose and lactate diminished, ammonia increased by 273 ± 76% and myocardial necrosis and UEG alterations appeared and aggravated. Progressively deteriorating electrophysiological and hemodynamic functions can be explained by reperfusion injury, waste product intoxication (i.e. hyperammonemia), lack of essential nutrients, ion imbalances and cardiac necrosis as a consequence of hepatological and nephrological plasma clearance absence. CONCLUSIONS: The PhysioHeart™ is an acute model, suitable for cardiac device and therapy assessment, which can precede conventional animal studies. However, observations indicate that ex vivo slaughterhouse hearts resemble cardiac physiology of deteriorating hearts in a multi-organ failure situation and signalize the need for plasma clearance during perfusion to attenuate time-dependent function degradation. The presented study therefore provides an in-dept understanding of the sources and reasons causing the cardiac function loss, as a first step for future effort to prolong cardiac perfusion in the PhysioHeart™. These findings could be also of potential interest for other cardiac platforms.


Asunto(s)
Mataderos , Corazón/fisiopatología , Hemodinámica , Preparación de Corazón Aislado , Ensayo de Materiales , Perfusión , Animales , Metabolismo Energético , Modelos Animales , Miocardio/metabolismo , Miocardio/patología , Necrosis , Sus scrofa , Factores de Tiempo
17.
Pediatr Cardiol ; 39(6): 1107-1114, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29774393

RESUMEN

The components of the cardiac conduction system (CCS) generate and propagate the electrical impulse that initiates cardiac contraction. These interconnected components share properties, such as automaticity, that set them apart from the working myocardium of the atria and ventricles. A variety of tools and approaches have been used to define the CCS lineages. These include genetic labeling of cells expressing lineage markers and fate mapping of dye labeled cells, which we will discuss in this review. We conclude that there is not a single CCS lineage, but instead early cell fate decisions segregate the lineages of the CCS components while they remain interconnected. The latter is relevant for development of therapies for conduction system disease that focus on reprogramming cardiomyocytes or instruction of pluripotent stem cells.


Asunto(s)
Sistema de Conducción Cardíaco/embriología , Miocardio/citología , Animales , Diferenciación Celular , Sistema de Conducción Cardíaco/citología , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/embriología , Humanos , Miocitos Cardíacos
18.
Circ Res ; 116(3): 398-406, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25599332

RESUMEN

RATIONALE: Proper patterning of the atrioventricular canal (AVC) is essential for delay of electrical impulses between atria and ventricles, and defects in AVC maturation can result in congenital heart disease. OBJECTIVE: To determine the role of canonical Wnt signaling in the myocardium during AVC development. METHODS AND RESULTS: We used a novel allele of ß-catenin that preserves ß-catenin's cell adhesive functions but disrupts canonical Wnt signaling, allowing us to probe the effects of Wnt loss of function independently. We show that the loss of canonical Wnt signaling in the myocardium results in tricuspid atresia with hypoplastic right ventricle associated with the loss of AVC myocardium. In contrast, ectopic activation of Wnt signaling was sufficient to induce formation of ectopic AV junction-like tissue as assessed by morphology, gene expression, and electrophysiological criteria. Aberrant AVC development can lead to ventricular pre-excitation, a characteristic feature of Wolff-Parkinson-White syndrome. We demonstrate that postnatal activation of Notch signaling downregulates canonical Wnt targets within the AV junction. Stabilization of ß-catenin protein levels can rescue Notch-mediated ventricular pre-excitation and dysregulated ion channel gene expression. CONCLUSIONS: Our data demonstrate that myocardial canonical Wnt signaling is an important regulator of AVC maturation and electric programming upstream of Tbx3. Our data further suggest that ventricular pre-excitation may require both morphological patterning defects, as well as myocardial lineage reprogramming, to allow robust conduction across accessory pathway tissue.


Asunto(s)
Atrios Cardíacos/metabolismo , Sistema de Conducción Cardíaco/metabolismo , Ventrículos Cardíacos/metabolismo , Atresia Tricúspide/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo , Animales , Atrios Cardíacos/embriología , Atrios Cardíacos/fisiopatología , Sistema de Conducción Cardíaco/embriología , Sistema de Conducción Cardíaco/fisiopatología , Ventrículos Cardíacos/embriología , Ventrículos Cardíacos/fisiopatología , Ratones , Miocardio/metabolismo , Receptores Notch/metabolismo , Proteínas de Dominio T Box/metabolismo , Atresia Tricúspide/genética , Atresia Tricúspide/fisiopatología , beta Catenina/genética
19.
Clin Anat ; 30(7): 988-999, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28795440

RESUMEN

Since the multi-site closure theory was first proposed in 1991 as explanation for the preferential localizations of neural tube defects, the closure of the neural tube has been debated. Although the multi-site closure theory is much cited in clinical literature, single-site closure is most apparent in literature concerning embryology. Inspired by Victor Hamburgers (1900-2001) statement that "our real teacher has been and still is the embryo, who is, incidentally, the only teacher who is always right", we decided to critically review both theories of neural tube closure. To verify the theories of closure, we studied serial histological sections of 10 mouse embryos between 8.5 and 9.5 days of gestation and 18 human embryos of the Carnegie collection between Carnegie stage 9 (19-21 days) and 13 (28-32 days). Neural tube closure was histologically defined by the neuroepithelial remodeling of the two adjoining neural fold tips in the midline. We did not observe multiple fusion sites in neither mouse nor human embryos. A meta-analysis of case reports on neural tube defects showed that defects can occur at any level of the neural axis. Our data indicate that the human neural tube fuses at a single site and, therefore, we propose to reinstate the single-site closure theory for neural tube closure. We showed that neural tube defects are not restricted to a specific location, thereby refuting the reasoning underlying the multi-site closure theory. Clin. Anat. 30:988-999, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Defectos del Tubo Neural/patología , Tubo Neural/embriología , Animales , Edad Gestacional , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA