Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Inorg Chem ; 61(40): 15991-16002, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36162137

RESUMEN

The large volume change, which accompanies the molecular spin crossover (SCO) phenomenon in some transition metal complexes, prompts frequently the coupling of the SCO with other instabilities. Understanding the driving mechanism(s) of such coupled phase transitions is not only important for fundamental reasons but also provides scope for the development of multifunctional materials. The general theoretical expectation is that the coupling has elastic origin, and the sequence of transitions can be tuned by an externally applied pressure, but dedicated experiments remain scarce. Here, we used high-pressure and low-temperature single-crystal X-ray diffraction to investigate the high-spin (HS) to low-spin (LS) transitions in the molecular complexes [FeII(H2B(pz)2)2(bipy)] and [FeII(H2B(pz)2)2(phen)]. In the bipyridine complex, the SCO is continuous and isostructural over the whole T, P-range (100-300 K, 0-2 GPa). In the phenanthroline derivative, however, the SCO is concomitant with a symmetry-breaking transition (C2/c to P1̅). Structural analysis reveals that the coupling between the two phenomena can be tuned by external pressure from a virtually simultaneous HSC2/c-LSP1̅ transition to the sequence of HSC2/c-LSC2/c-LSP1̅ transitions. The correlation of spontaneous strain and order parameter behaviors highlights that the "separated" transitions remain still connected via strain coupling, whereas the "simultaneous" transitions are partially split.

2.
Inorg Chem ; 60(7): 4986-4995, 2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33709693

RESUMEN

Activation of [FeCl(dppe)Cp] (1) by chloride abstraction with Na[BArX4] (X = F, [B(3,5-(CF3)2-C6H3)4]; X = Cl, [B(3,5-Cl2-C6H3)4]) permits reactions with a range of nitro aromatics, RC6H4NO2 (R = halogen, Me, OMe, NO2 or NMe2), to give the cationic iron nitroso complexes [Fe{N(O)-C6H4R}(dppe)Cp][BArX4]) ([3][BArX4]). Similar reactions of 1 and Na[BArX4] with [Fe(NCC6H4NO2)(dppe)Cp][BArX4] gave bimetallic [{Fe(dppe)Cp}2{µ-N≡CC6H4N(O)}][BArF4]2. However, reactions of 1 and Na[BArX4] with 4-nitrophenol gave the first example of the bench-stable iron half-sandwich phenolate complex [Fe(OC6H4NO2)(dppe)Cp]+ rather than NO2 activation. The formation of complexes [3]+ likely proceeds via the unusual blue bimetallic species [{Fe(dppe)Cp}2{µ,κ2O,O'-O2NAr}]2+. This compound undergoes N-O bond cleavage, resulting in [3]+ and a FeIV═O species, which reacts via an internal C-H activation of the dppe ligand to give [FeIII(κ3O,P,P'-P(2-O-C6H4)(Ph)-C2H4-PPh2)Cp]+. Complexes [3]+ are stable under ambient conditions, are readily purified by column chromatography and can be isolated in up to 50% yield, considering that 0.5 equiv of 1 is required as the oxygen acceptor.

3.
Inorg Chem ; 59(2): 1091-1103, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31887022

RESUMEN

The modulation of light emission by Fe(II) spin-crossover processes in multifunctional materials has recently attracted major interest for the indirect and noninvasive monitoring of magnetic information storage. In order to approach this goal at the molecular level, three segmental ligand strands, L4-L6, were reacted with stoichiometric mixtures of divalent d-block cations (M(II) = Fe(II) or Zn(II)) and trivalent lanthanides (Ln(III) = La(III) or Eu(III)) in acetonitrile to give C3-symmetrical dinuclear triple-stranded helical [LnM(Lk)3]5+ cations, which can be crystallized with noncoordinating counter-anions. The divalent metal M(II) is six-coordinate in the pseudo-octahedral sites produced by the facial wrapping of the three didentate binding units, the ligand field of which induces variable Fe(II) spin-state properties in [LnFe(L4)3]5+ (strictly high-spin), [LnFe(L5)3]5+ (spin-crossover (SCO) around room temperature), and [LnFe(L6)3]5+ (SCO at very low temperature). The introduction of the photophysically active Eu(III) probe in [EuFe(Lk)3]5+ results in europium-centered luminescence modulated by variable intramolecular Eu(III) → Fe(II) energy-transfer processes. The kinetic analysis implies Eu(III) → Fe(II) quenching efficiencies close to 100% for the low-spin configuration and greater than 95% for the high-spin state. Consequently, the sensitivity of indirect luminescence detection of Fe(II) spin crossover is limited by the resulting weak Eu(III)-centered emission intensities, but the dependence of the luminescence on the temperature unambiguously demonstrates the potential of indirect lanthanide-based spin-state monitoring at the molecular scale.

4.
Inorg Chem ; 59(24): 18402-18406, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33284611

RESUMEN

Resistance switching properties of nanoscale junctions of spin crossover molecules have received recently much interest. In many cases, this property has been traced back to the variation of molecular orbital energies upon spin transition. However, one can also expect a substantial reorganization of the molecular structure due to charge localization, which calls for a better understanding of the relationship between the redox potential and the spin state of the molecule. To investigate this issue, we carried out a detailed density functional theory and variable temperature cyclic voltammetry investigation of the benchmark compound [Fe(HB(1,2,4-triazol-1-yl)3)2] in solution. We show that, for a correct thermodynamical picture, it is necessary to take into account the charge transfer-induced electronic and structural reorganization as well as spin equilibria in the oxidized and reduced species.

5.
Angew Chem Int Ed Engl ; 59(21): 8089-8093, 2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-31943578

RESUMEN

A mixed-valence {MnII 3 MnIII FeII 2 FeIII 2 } cyanide-bridged molecular cube hosting a caesium cation, Cs⊂{Mn4 Fe4 }, was synthesized and structurally characterized by X-ray diffraction. Cyclic-voltammetry measurements show that its electronic state can be switched between five different redox states, which results in a remarkable electrochromic effect. Magnetic measurements on fresh samples point to the occurrence of a spin-state change near room temperature, which could be ascribed to a metal-to-metal electron transfer converting the {FeII -CN-MnIII } pair into a {FeIII -CN-MnII } pair. This feature was only previously observed in the polymeric MnFe Prussian-blue analogues (PBAs). Moreover, this novel switchable molecule proved to be soluble and stable in organic solvents, paving the way for its integration into advanced materials.

6.
Small ; 15(47): e1903892, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31617319

RESUMEN

Thin films of the molecular spin-crossover complex [Fe(HB(1,2,4-triazol-1-yl)3 )2 ] undergo spin transition above room temperature, which can be exploited in sensors, actuators, and information processing devices. Variable temperature viscoelastic mapping of the films by atomic force microscopy reveals a pronounced decrease of the elastic modulus when going from the low spin (5.2 ± 0.4 GPa) to the high spin (3.6 ± 0.2 GPa) state, which is also accompanied by increasing energy dissipation. This technique allows imaging, with high spatial resolution, of the formation of high spin puddles around film defects, which is ascribed to local strain relaxation. On the other hand, no clustering process due to cooperative phenomena was observed. This experimental approach sets the stage for the investigation of spin transition at the nanoscale, including phase nucleation and evolution as well as local strain effects.

7.
J Am Chem Soc ; 140(28): 8970-8979, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-29920196

RESUMEN

Molecular spin crossover complexes are promising candidates for mechanical actuation purposes. The relationships between their crystal structure and mechanical properties remain, however, not well understood. In this study, combining high pressure synchrotron X-ray diffraction, nuclear inelastic scattering, and micromechanical measurements, we assessed the effective macroscopic bulk modulus ( B = 11.5 ± 1.5 GPa), Young's modulus ( Y = 10.9 ± 1.0 GPa), and Poisson's ratio (ν = 0.34 ± 0.04) of the spin crossover complex [FeII(HB(tz)3)2] (tz = 1,2,4-triazol-1-yl). Crystal structure analysis revealed a pronounced anisotropy of the lattice compressibility, which was correlated with the difference in spacing between the molecules as well as by the distribution of the stiffest C-H···N interactions in different crystallographic directions. Switching the molecules from the low spin to the high spin state leads to a remarkable drop of the Young's modulus to 7.1 ± 0.5 GPa both in bulk and thin film samples. The results highlight the application potential of these films in terms of strain (ε = -0.17 ± 0.05%), recoverable stress (σ = -21 ± 1 MPa), and work density ( W/V = 15 ± 6 mJ/cm3).

8.
Chemistry ; 24(63): 16873-16888, 2018 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-30171722

RESUMEN

Chelate coordination of non-symmetrical didentate pyrazine-benzimidazole (L1) or pyridine-benzimidazole (L2) N-donor ligands around divalent iron in acetonitrile produces stable homoleptic triple-helical spin crossover [Fe(Lk)3 ]2+ complexes existing as mixtures of meridional (C1 -symmetry) and facial (C3 -symmetry) isomers in slow exchange on the NMR timescale. The speciation deviates from the expected statistical ratio mer/fac=3:1, a trend assigned to the thermodynamic trans-influence, combined with solvation effects. Consequently, the observed spin state FeII low-spin ↔FeII high-spin equilibria occurring in [Fe(Lk)3 ]2+ refer to mixtures of complexes in solution, an issue usually not considered in this field, but which limits rational structure-properties correlations. Taking advantage of the selective and quantitative formation of isostructural facial isomers in non-constrained related spin crossover d-f helicates (HHH)-[LnFe(Lk)3 ]5+ (Ln is a trivalent lanthanide, Lk=L5, L6), we propose a novel strategy for assigning pertinent thermodynamic driving forces to each spin crossover triple-helical isomer. The different enthalpic contributions to the spin state equilibrium found in mer-[Fe(Lk)3 ]2+ and fac-[Fe(Lk)3 ]2+ reflect the Fe-N bond strengths dictated by the trans-influence, whereas a concomitant solvent-based entropic contribution reinforces the latter effect and results in systematic shifts of the spin crossover transitions toward higher temperature in the facial isomers.

9.
Phys Chem Chem Phys ; 20(14): 9139-9145, 2018 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-29577144

RESUMEN

Using optical microscopy we studied the vacuum pressure dependence (0.1-1000 mbar) of the nucleation and growth dynamics of the thermally induced first-order spin transition in a single crystal of the spin-crossover compound [Fe(HB(tz)3)2] (tz = 1,2,4-triazol-1-yl). A crossover between a quasi-static hysteresis regime and a temperature-scan-rate-dependent kinetic regime is evidenced around 5 mbar due to the change of the heat exchange coupling between the crystal and its external environment. Remarkably, the absorption/dissipation rate of latent heat was identified as the key factor limiting the switching speed of the crystal.

10.
Angew Chem Int Ed Engl ; 57(45): 14758-14763, 2018 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-30230674

RESUMEN

Despite stated in some highly cited articles, magnetite is devoided of peroxidase activity. In fact, this very stable mixed valence FeII O⋅FeIII2 O3 complex is not catalytically competent to oxidize standard peroxidase substrates, especially at the biologically relevant pH value of 7.4. In addition, magnetite whose deleterious redox activity has been suspected in Alzheimer's disease brain damages, does not significantly interact with amyloid peptide Aß in vitro, and is not able to induce, either in the presence or absence of Aß, the reductive activation of dioxygen, the first step of an oxidative stress. In fact, this highly insoluble mineral iron derivative is probably not involved in the oxidative damage of brain neurons of patients with AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Óxido Ferrosoférrico/metabolismo , Estrés Oxidativo , Amiloide/metabolismo , Encéfalo/metabolismo , Humanos , Peroxidasa/metabolismo
11.
Phys Chem Chem Phys ; 19(19): 12276-12281, 2017 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-28451664

RESUMEN

We analyse in detail the role of surface relaxations on the spin transition phenomenon through an Ising-like model solved in the inhomogeneous mean field approach. We show the surface relaxation tends to decrease the energy cost of missing bonds. Cooperative phenomena are also affected, leading to an asymmetric hysteresis loop. The underlying mechanisms are investigated by calculating thermodynamics excess quantities. Far from the spin transition, the contribution of surface relaxations to the excess internal energy, entropy and free energy is negligible, but their role becomes substantial around the transition temperature.

12.
Angew Chem Int Ed Engl ; 56(28): 8074-8078, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28488415

RESUMEN

We report on a bistable MEMS device actuated by spin-crossover molecules. The device consists of a freestanding silicon microcantilever with an integrated piezoresistive detection system, which was coated with a 140 nm thick film of the [Fe(HB(tz)3 )2 ] (tz=1,2,4-triazol-1-yl) molecular spin-crossover complex. Switching from the low-spin to the high-spin state of the ferrous ions at 338 K led to a reversible upward bending of the cantilever in agreement with the change in the lattice parameters of the complex. The strong mechanical coupling was also evidenced by the decrease of approximately 66 Hz in the resonance frequency in the high-spin state as well as by the drop in the quality factor around the spin transition.

13.
Small ; 12(46): 6325-6331, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27690273

RESUMEN

The working principle of a new kind of nanothermometer is experimentally demonstrated using bistable materials with thermal memory. This thermometry approach allows for acquiring sub-wavelength resolution images of fast, transient heating events.

14.
Chemistry ; 22(36): 12741-51, 2016 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-27416745

RESUMEN

The highly stable nitrosyl iron(II) mononuclear complex [Fe(bztpen)(NO)](PF6 )2 (bztpen=N-benzyl-N,N',N'-tris(2-pyridylmethyl)ethylenediamine) displays an S=1/2↔S=3/2 spin crossover (SCO) behavior (T1/2 =370 K, ΔH=12.48 kJ mol(-1) , ΔS=33 J K(-1) mol(-1) ) stemming from strong magnetic coupling between the NO radical (S=1/2) and thermally interconverted (S=0↔S=2) ferrous spin states. The crystal structure of this robust complex has been investigated in the temperature range 120-420 K affording a detailed picture of how the electronic distribution of the t2g -eg orbitals modulates the structure of the {FeNO}(7) bond, providing valuable magneto-structural and spectroscopic correlations and DFT analysis.

15.
Inorg Chem ; 54(4): 1791-9, 2015 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-25590643

RESUMEN

We focus here on the properties of Fe complexes formed with Schiff bases involved in the chemistry of Fe(III) spin-transition archetypes. The neutral Fe(pap-5NO2)2 (1) and Fe(qsal-5NO2)2·Solv (2 and 2·Solv) compounds (Solv = 2H2O) derive from the reaction of Fe(II) salts with the condensation products of pyridine-2-carbaldehyde with 2-hydroxy-5-nitroaniline (Hpap-5NO2) or 5-nitrosalicylaldehyde with quinolin-8-amine (Hqsal-5NO2), respectively. While the Fe(qsal-5NO2)2·Solv solid is essentially low spin (S = 0) and requires temperatures above 300 K to undergo a S = 0 ↔ S = 2 spin-state switching, the Fe(pap-5NO2)2 one presents a strongly cooperative first-order transition (T↓ = 291 K, T↑ = 308 K) centered at room temperature associated with a photomagnetic effect at 10 K (TLIESST = 58 K). The investigation of these magnetic behaviors was conducted with single-crystal X-ray diffraction (1, 100 and 320 K; 2, 100 K), Mössbauer, IR, UV-vis (1 and 2·Solv), and differential scanning calorimetry (1) measurements. The Mössbauer analysis supports a description of these compounds as Fe(II) Schiff-base complexes and the occurrence of a metal-centered spin crossover process. In comparison with Fe(III) analogues, it appears that an expanded coordination sphere stabilizes the valence 2+ state of the Fe ion in both complexes. Strong hydrogen-bonding interactions that implicate the phenolato group bound to Fe(II) promote the required extra-stabilization of the S = 2 state and thus determines the spin transition of 1 centered at room temperature. In the lattice, the hydrogen-bonded sites form infinite chains interconnected via a three-dimensional network of intermolecular van der Waals contacts and π-π interactions. Therefore, the spin transition of 1 involves the synergetic influence of electrostatic and elastic interactions, which cause the enhancement of cooperativity and result in the bistability at room temperature.

16.
Inorg Chem ; 54(15): 7424-32, 2015 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-26172431

RESUMEN

Deprotonation of the ionogenic tetradentate ligand 6,6'-bis(1H-tetrazol-5-yl)-2,2'-bipyridine [H2bipy(ttr)2] in the presence of Fe(II) in solution has afforded an anionic mononuclear complex and a neutral two-dimensional coordination polymer formulated as, respectively, NEt3H{Fe[bipy(ttr)2][Hbipy(ttr)2]}·3MeOH (1) and {Fe[bipy(ttr)2]}n (2). The anions [Hbipy(ttr)2](-) and [bipy(ttr)2](2-) embrace the Fe(II) centers defining discrete molecular units 1 with the Fe(II) ion lying in a distorted bisdisphenoid dodecahedron, a rare example of octacoordination in the coordination environment of this cation. The magnetic behavior of 1 shows that the Fe(II) is high-spin, and its Mössbauer spectrum is characterized by a relatively large average quadrupole splitting, ΔEQ = 3.42 mm s(-1). Compound 2 defines a strongly distorted octahedral environment for Fe(II) in which one [bipy(ttr)2](-) anion coordinates the equatorial positions of the Fe(II) center, while the axial positions are occupied by peripheral N-tetrazole atoms of two adjacent {Fe[bipy(ttr)2]}(0) moieties thereby generating an infinite double-layer sheet. Compound 2 undergoes an almost complete spin crossover transition between the high-spin and low-spin states centered at about 221 K characterized by an average variation of enthalpy and entropy ΔH(av) = 8.27 kJ mol(-1), ΔS(av) = 37.5 J K(-1) mol(-1), obtained from calorimetric DSC measurements. Photomagnetic measurements of 2 at 10 K show an almost complete light-induced spin state trapping (LIESST) effect which denotes occurrence of antiferromagnetic coupling between the excited high-spin species and TLIESST = 52 K. The crystal structure of 2 has been investigated in detail at various temperatures and discussed.

17.
Inorg Chem ; 54(11): 5145-7, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25955588

RESUMEN

A mononuclear iron(II) complex has been isolated in two polymorphs. Polymorph 1b remains high-spin over all temperatures, whereas polymorph 1a undergoes a cooperative two-step spin crossover accompanied by symmetry breaking, showing an ordered 2:1 high-spin-low-spin intermediate phase.

18.
Phys Chem Chem Phys ; 17(7): 5151-4, 2015 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-25601493

RESUMEN

We studied the effect of light irradiation on the electrical conductance of micro-rods of the spin crossover [Fe(Htrz)2(trz)](BF4) network, organized between interdigitated gold electrodes. By irradiating the sample with different wavelengths (between 295 and 655 nm) either in air or under a nitrogen atmosphere we observed both a reversible and an irreversible change of the current flowing in the device. The reversible process consists of an abrupt decrease of the current intensity (ca. 10-50%) upon light irradiation, while the irreversible process is characterized by a slow, but continuous increase in time of the current, which persists also in the dark. These photo-induced processes were only detected in the high conductance low-spin (LS) state of the complex. On switching the rods to the high spin (HS) state the conductance decreases two orders of magnitude (at the same temperature) and - as a consequence - the photo-effect vanishes.

19.
Phys Chem Chem Phys ; 16(16): 7358-67, 2014 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-24622394

RESUMEN

The spin transition behavior in nanoparticles of molecular spin crossover (SCO) materials is investigated theoretically using a two-variable microscopic Ising-like model solved by Monte Carlo simulations. The extensive nature of the energy, and therefore the whole thermodynamics is affected by the increasing role of surface energetic parameters. As a consequence the pressure inside the nanoparticle is different from the external pressure of the bath. The difference of the surface energies between the low spin (LS) and the high spin (HS) states is the origin of the modification of the SCO properties at finite sizes (downshift of the transition temperature and loss of the hysteresis). On the other hand, the extensivity of the system can be controlled by the form of the nanoparticle. Hollow particles allow control of the surface to volume ratio. An important consequence of this effect is the conservation of the SCO properties as a function of size. A modification of the intermolecular interactions at the surface leads to a modification of the surface rigidity, and will impact also on the extensivity of the system. When increasing/decreasing the surface rigidity the global elasticity of the nanoparticle raises/decreases and enhances/reduces the cooperativity of the SCO material.

20.
Angew Chem Int Ed Engl ; 53(41): 10894-8, 2014 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-25160504

RESUMEN

A reverse nanoemulsion technique was used for the elaboration of [Fe(pz){Ni(CN)4}] nanoparticles. Low-temperature micellar exchange made it possible to elaborate ultra-small nanoparticles with sizes down to 2 nm. When decreasing the size of the particles from 110 to 12 nm the spin transition shifts to lower temperatures, becomes gradual, and the hysteresis shrinks. On the other hand, a re-opening of the hysteresis was observed for smaller (2 nm) particles. A detailed (57)Fe Mössbauer spectroscopy analysis was used to correlate this unusual phenomenon to the modification of the stiffness of the nanoparticles thanks to the determination of their Debye temperature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA